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Introduction
Leprosy is a chronic dermatological [1] and malignant human 

neurological disease [2]. It is caused by the pathogen Mycobacterium 
leprae (MLP) which has similar characteristics to Mycobacterium 
tuberculosis (MTB). Various attempts to culture MLP have failed 
because, of all known bacteria, it has the longest doubling time [2]. MLP 
is an acid-fast, rod shaped bacillus [3] and has a doubling time of ~14 
days [2] and is host specific. It has been grown in mouse foot pads and 
more recently in nine banded armadillos because of their susceptibility 
to leprosy. According to the WHO [4], leprosy has been classified into 
two types based on how they smear the skin, paucibacillary (PB) and 
multibacillary (MB). Leprosy affects mainly the skin, peripheral nerves, 
the eyes and mucosa of the upper respiratory tract [3]. However, 
through Multidrug Therapy, there has been a reduction in the number 
of reported cases of the disease, from the 228 474 new cases in 2010 to 
192 246 cases at the beginning of 2011 [5]. Its highly reduced genome 
makes it an interesting species as a model for reductive evolution within 
a genus. 

According to Monot et al. [1], there are seven strains of 
Mycobacterium leprae that are well characterised, namely: India2, 
Thai53, TN, Africa, NHDP63, NHDP98 and Br4923. The first three 
strains are of SNP type 1, the fourth of SNP type 2, the fifth and sixth 
i.e., NHDP63 and NHDP98 are of SNP type 3, while the last one is of 
SNP 4 [1]. The MLP strain TN is from Tamil Nadu, the Thai53 strain 
is from Thailand, the NHDP strains are from the United States and the 
Br4923 strain is from Brazil. So far, complete genome sequences have 
been obtained for TN and Br4923. In this article, we use the MLP strain 
TN. 

Tuberculosis is caused by MTB and is one of the ‘most dangerous’ 

infectious diseases [6]; it claimed about 1.8 million victims in 2008 
and there were estimates of 9.4 million new cases that year (3.6 million 
of whom are women), including 1.4 million cases among people 
living with Human Immunodeficiency Virus (HIV) or Acquired 
Immunodeficiency Syndrome (AIDS) according to the World Health 
Organization (WHO). The MTB bacillus is slow growing and has a 
complex cell wall. 

Mycobacterium smegmatis (MSM) is an aerobic, fast growing, 
non-pathogenic mycobacterium which has many common features 
with pathogenic mycobacteria [7]. It has the potential to adapt to 
microaerobiosis by changing from active growth to dormant or latent 
states. It can be dormant in conditions of low oxygen concentrations 
and can survive for more than 650 days in the absence of carbon, 
nitrogen and phosphorus. MSM is particularly useful in understanding 
the cellular processes that are important to pathogenic mycobacteria 
like MLP, MTB and M. avium subsp. paratuberculosis [8]. This is one 
of the major reasons why we are including this mycobacterium in the 
present study. For the purpose of our comparisons, we will use the MC2 
155 strain of MSM. 

The genome sizes of MLP, MTB and MSM are 3,268,203; 4,411,532 
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Abstract
Mycobacterium leprae is a pathogenic bacteria that causes leprosy, a disease which affects mainly the skin, 

peripherical nerves, eyes and mucosa of the upper respiratory tract. Despite significant progress recorded in the last 
few years to stop this disease through a Multi-Drug Therapy (MDT) strategy, every year there are new reported cases 
of the disease. According to the World Health Organization, there were 192,242 new cases at the beginning of 2011. 
Mycobacterium leprae cannot be cultured in the laboratory but can be grown in mouse foot pads and more recently in 
nine banded armadillos because of its susceptibility to leprosy. Its highly reduced genome makes it an interesting species 
as a model for reductive evolution within the mycobacterial genus; it shares the same ancestor with Mycobacterium 
tuberculosis (MTB). A functional network for MTB was generated previously and extensive computational analyses were 
conducted to reveal the biological organization of the organism on the basis of the network’s topological properties. 
Here, we use genomic sequences and functional data from public databases to build protein functional networks for 
another slow grower, Mycobacterium leprae (MLP) and the fast growing non-pathogenic Mycobacterium smegmatis 
(MSM). Together with the MTB network, this provides an opportunity for comparison of three mycobacteria with different 
sized genomes. In this paper, we use network centrality measures to systematically compare MTB, MLP and MSM to 
quantify differences between these organisms at the systems biology level and to study network biology and evolution.
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and 6,988,209 base pairs, respectively (see, for example [2] and http://
mycobrowser.epfl.ch/smegmalist.html, accessed on 15 September, 
2012). This implies that the genome of MLP is approximately 1.4 Mb 
smaller than MTB and less than half the size of MSM. In addition, the 
G+C content of MLP is 57% which is lower than other mycobacterial 
genomes. However, as pointed out in Eiglmeier et al. [9], genomes of 
organisms that have suffered reductive evolution are usually richer in 
A+T content. MSM has a doubling period of three to four hours in 
culture and forms colonies in 3-4 days, MTB has a doubling time of 
twenty to twenty-four hours and forms a colony in an agar medium 
in three to four weeks [10], while, as stated earlier, MLP doubles 
in approximately fourteen days. Therefore, these three organisms 
represent three different genome sizes as well as different growth rates 
within one genus.

Although MTB and MLP share a common ancestor, MLP is an 
obligate intracellular parasite while MTB is a facultative intracellular 
parasite [11]. Youm and Saier [11] compared the clinical CDC1551 
strain of MTB to the TN strain of MLP. The genome of the MTB strain 
encodes 4189 proteins and the MLP strain 1605 proteins. This reduction 
in the MLP is attributed to reductive evolution with many genes having 
become pseudogenes. They defined a pseudogene as an inactivated 
gene that no longer produces functional proteins. In comparison to 
other mycobacterial species, two main consequences were proposed for 
the reduction in the genome of MLP [12]: the presence of few proteins 
belonging to the PE and PPE functional category and traces belonging 
to insertion sequences and bacteriophages. As shown in Table S1, the 
number of proteins in the MTB genome belonging to the PE and PPE 
family is roughly fifteen times that of MLP, and while 82 proteins in 
MTB are insertion sequences or derived from bacteriophages there are 
only two in MLP. In addition, the presence of pseudogenes in MLP and 
the corresponding absence thereof in MTB accounts for some of the 
phenotypic differences between the two pathogens. 

Gómez-Valero et al. [13] defined reductive evolution as the process 
by which genes and their corresponding functions are lost, resulting 
in the downsizing of the genome. Three reasons based on changes in 
lifestyle were given why an organism may have reductive evolution: a 
desire to ’move’ from a free living to a host-associated or intracellular 
life, when the organism restricts itself from multiple to specific hosts 
and from multiple to specific host tissues. By analyzing the distribution 
of gene-loss along the ancestral genome, it was shown that the genome 
downsizing in MLP was as a result of gene by gene inactivation and not 
inactivation in blocks or large chunks, before a gradual nucleotide loss 
[13]. In addition, they classified ancestral genes in the MLP genome into 
three categories: retained, absent/deleted and pseudogenized. Genes 
belonging to the ’absent’ category have either diverged so much that 
they cannot be recognized or were totally deleted, while those in the 
pseudogenized category have sufficient levels of nucleotide similarity 
with MTB. It was also reported that 1537 genes have been lost from 
the ancestor to MLP, of which, 1129 are pseudogenes. In this work, 
we use functional genomic data from public databases to generate 
functional interaction networks for slow growers: MLP and MTB, and 
the fast growing non-pathogenic MSM. We used network centrality 
measures to make the following comparisons: MTB versus MLP, MTB 
versus MSM and MLP versus MSM in order to determine the impact of 
genome size on network evolution.

Materials and Methods
We downloaded datasets containing Uniprot protein accession 

numbers (ids) and gene names from UniProt Consortium [14] http://

www.uniprot.org, accessed on 29 June, 2012) for the three mycobacterial 
organisms: Mycobacterium leprae, Mycobacterium tuberculosis and 
Mycobacterium smegmatis. These protein accession numbers were 
then used to extract protein protein interactions data from STRING 
[15,16]. STRING (Search Tool for the Retrieval of Interacting Genes/
Proteins) is a database containing predicted and known Protein-Protein 
Interactions (PPI). These functional protein-protein associations 
are derived from conserved genomic neighbourhood, gene fusion, 
imports from database (knowledge), phylogenetic co-occurrence, high-
throughput experiments and text mining. STRING web resources and 
databases can be accessed from http://string-db.org/(accessed on 30 
June, 2012). All the data from these different sources are integrated into 
a single network, before computing the combined confidence score for 
all PPI’s.

In addition, we derived other interactions from sequence similarity 
and signatures (shared domains), microarray data (co-expression), 
Protein Data Bank (PDB) [17,18] and MINT [19], DIP [20] and Intact 
http://www.ebi.ac.uk/intact/(accessed on 6 October 2012) data. PPI 
data from MINT, DIP and Intact were used to predict interologs in 
MLP and MSM based on the premise that orthologs of interacting 
proteins should themselves interact. Ortholog data were downloaded 
from Biomart (http://www.ebi.ac.uk/uniprot/biomart/, accessed 
on 12 August 2012). DOMINE is a database containing known 
and predicted protein domain interactions. The Domain-Domain 
Interactions (DDI) are inferred from Protein Data Bank (PDB) entries 
and those interactions from PFAM domain definitions predicted by 
thirteen different methodologies. We extracted DDI’s with PFAM 
ids from the DOMINE website (http://domine.utdallas.edu/cgi-bin/
Domine, accessed on 17 October, 2012), neglecting self interactions to 
avoid loops. With the aid of the data containing PFAM ids and their 
corresponding InterPro ids, we converted those interactions from 
DDI into their interPro equivalents, before changing them to Uniprot-
Uniprot protein interaction ids. InterPro data was downloaded from 
the interPro website for both MLP and MSM. We assigned a uniform 
score of 0.85 for all these interactions. We also used an information-
theory based technique proposed by Mazandu and Mulder [21] to 
derive PPI’s from protein sequence similarity and signatures as well as 
shared domains. In line with Mazandu et al. [22], the microarray data 
for MTB were downloaded from the Standford Microarray Database 
(SMD), at http:smd.stanford.edu/ (accessed on 28 October, 2011) and 
NCBI Gene Expression Omnibus (GEO) (see, http://www.ncbi.nlm.
nih.gov/geo/ (accessed on 12 September, 2012). 

Out of the seven experiments used in analyzing the microarray 
data for the MTB network, two with file ids 15569 and 15575 were 
downloaded from SMD and the remaining five; GSM219305, 
GSM219324, GSM219694, GSM219695, GSM219696 from GEO [22]. 
For MSM, we retrieved 23 experiments from the Array Express database: 
four with GEO accessions: GSM743320, GSM743321, GSM743322, 
and GSM743323. The remaining 19 ids are GSM748761, GSM748762, 
GSM748763, to GSM748779. We then employed a random partial 
least squares regression approach described by Mazandu et al. [22] 
to generate functional association scores between pairs of interacting 
proteins. However, for MLP, we downloaded only four experiments 
contained in the GSE17191 series matrix from GEO (http://www.ncbi.
nlm.nih.gov/geo/query/acc .cgi?acc=GSE17191, accessed on 12 August, 
2012). This limited number of microarray experiments prevented us 
from using the same technique used for MSM and MTB so we decided 
to calculate the correlation instead. The Pearson correlation coefficient 
was calculated to find co-expressed genes and we inferred interactions 
between genes for which the correlation coefficient was exactly one.
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After calculating the confidence score for each functional 
association protein pair, we computed the combined confidence score 
C(p,q) for interacting proteins p and q using the formula [15]

( , ) ( , )
1

1 (1 ),
n

s
p q p q

s

C c
=

= − −∏
					   

			                                                                     (1)

where n is the total number of PPI data sources and ( , )
s
p qc  is the 

confidence score of a functional association between p and q predicted 
using the type of data source s. In all the three networks, n=11. Next, we 
define some network centrality measures that we used to characterize 
the proteins in each of the networks and in determining the most 
central protein.

Let { }1 2 3, , ,..., mP p p p p=  be an ordered set of all proteins and 
{ }1 2 3 4 1( , ), ( , ),...., ( , )m mQ p p p p p p−=  be the set of all interacting 

proteins in the network G. It is conventional to define a network G as a 
graph G=(P, Q) [23]. Then, we define the entries bij for i, j=1, 2, 3, · · ·,m 
of the [24] m by m adjacency matrix of G as

( , )

1 if ( , ) are functional interactions in G

0 Otherwise.i j

i j
p p

p p
b


= 


We assume that the networks under consideration are simple, 
meaning there are no loops and no multiple functional protein-protein 
interactions. Hence, bii=0. Most importantly, the adjacency matrix is 
symmetric for undirected networks. Next, let 

1 2( , )d p p  be the distance 
between protein 

1p  and
2p . For all possible paths in a network G from 

1p  to 2p , 
1 2( , )d p p  is the length of the shortest path from 

1p  to 2p . If 
there is no path between any two proteins, then the distance between 
them is infinite. The average shortest path length of a network is defined 
as [25].
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where 1 2( , )d p p  is the shortest path length from 1p  to 2p . The 
density of a network is the ratio of the number of edges to the number 
of possible edges in the network [25].

When two proteins 1p  and 2p  are functionally linked together 
by an edge, we say they are adjacent to each other. Several approaches 
were used to define the degree centrality of a protein ip . However, 
Nieminen [26,27], gave a mathematical formula for computing it as:

1
( ) ( , ), for =1,2,3, ,

m

i i j
i

D p u p p i m
=
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where ( , )i ju p p  is the Kronecker-Delta function. ( )iD p  is large if 
ip  is functionally connected to other proteins in the network, meaning 

that such a protein partakes in a high number of biological interactions 
in the organism. If ( )iD p =0, then it means ip  does not interact with 
other proteins and it ’may’ not be an important protein neccessary for 
the survival of the organism. From the above formula, it means that the 
maximum ( )iD p  is m−1. The degree centrality of a protein gives an 
indication of its communicability in a network [28].

Betweenness is a structural property of communication in a network. 
According to Freeman [28], this means that a protein in a biological 
network is central if it falls on the shortest path between connecting 
pairs of other proteins. Thus, other proteins in the network depend on 
such a protein because it could withhold or distort information during 
transmission. The greater the betweenness of a protein [28] the greater 
its influence on the flow of information and importance in the biological 

processes of an organism. Mathematically, the normalized betweenness 
of a protein 1p  in a network is defined as [21],

1
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Where ( , ) ( , )x y y xσ σ=  is the number of shortest paths from 
protein x to y with ( , ) 1x xσ = , ( , ) 1( )x y pσ  represents the number of 
shortest paths from x to y with 1p  as an inner protein [29], and

{ }
1 1( , ) : .pP x y P P x y p= ∈ × ≠ ≠

The eigenvector centrality ( )ie p  of a protein ip  is a positive 
multiple [23,30] of the sum of the adjacent centralities

1
( ) ( ),

m

ij j i
j

a e p e pλ
=

=∑
for all i . This can be expressed as ,Ae eλ=  where e is the 

eigenvector of the adjacency matrix A corresponding to the eigenvalue 
l. According to Cvetkovi et al. [31], the eigenvector chosen as the 
eigenvector centrality must have all positive entries. Among all the 
eigenvectors corresponding to different eigenvalues l, only the one 
corresponding to the eigenvalue of the largest modulus should be the 
eigenvector centrality. The eigenvector centrality of a protein gives an 
indication of how connected the protein is to other well connected 
proteins in the network.

The closeness of a protein in a network is a measure of the degree to 
which it is close to other proteins on average and it can also be defined 
as the reciprocal of the average distance to other proteins. The closeness 
and betweenness centralities are anchored on the fact that information 
flows [29] along the shortest paths in a network and does not split. 
The closeness centrality of a central protein is usually high as it has a 
shorter distance to other proteins on average [21]. Let +


 be the set 

of all positive real numbers, the normalized closeness :C P +


 of 
a protein is

1 2

1 2

( 1) ,
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p p

mC
d p p

≠

−
=
∑

where 1 2( , )d p p  is as defined in (2) and it is the length of the 
shortest path between 1p  and 2p .

Comparing two biological networks using evolution rewiring

Given any two networks, the approach used by Shou et al. [32] in 
measuring the evolutionary rewiring rate of biological networks was 
to name one as the reference network and the other as the compared 
network. For example, we take MTB as the reference network and MLP 
as the compared one. Firstly, all orthologous nodes from both networks 
are identified. This is then followed by the identification of three sets 
of nodes: Common nodes (CN), Lost Nodes (LN) and Gained Nodes 
(GN). Common nodes are nodes that have orthologous counterparts in 
both networks. Loss nodes are nodes present in the MTB network but 
with an absence of the orthologous counterpart in the MLP network, 
while gained nodes are nodes present in the compared network that 
do not have orthologous counterparts in the reference network. 
Three types of edges were distinguished as: gained edges from gained 
nodes, lost edges from lost nodes, and common edges from common 
nodes. TE is the total number of possible edges if both networks were 
fully connected. TE is the total number of rewired edges obtained by 
counting all interolog edges in both networks.
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The ratio RE/TE was defined as the percentage of edge change in 
both networks. This ratio will be used later to measure edge changes 
in the different types of biological networks we want to compare. The 
formula [32]

Rewiring rate = ,
Time divergence

RE
TE×

			 
				                                                     (3)

was then used to calculate the evolutionary rewiring rate of two different 
organisms, where time divergence is the estimated evolutionary 
divergence time (measured in Mys) between the two organisms. The 
rewiring rate is measured as the number of rewired edges per edge per 
Mys. Network identity is defined as [32] the ratio of the number of 
common edges between orthologous nodes present in both networks 
to the total number of edges in both networks times 100%.

Results and Discussions
We generated three functional interaction networks for MTB, MLP 

and MSM by integrating data from eleven different evidence types. In 
Table 1, we present a comparison of the number of interactions and 
confidence scores from each of the data sources. We classified the 
confidence scores into three confidence levels viz-a-viz, low confidence 
scores are those scores less than 0.3 but not equal to zero (score<0.3), 
medium confidence scores range from 0.3 to 0.7 (0.3 ≤ score ≤ 0.7), 
while high confidence scores are scores strictly greater than 0.7 but less 
than or equal to 1 (0.7<score ≤ 1). In most cases, the combined score is 
higher than the individual sub-scores [15] and the confidence increases 
when a protein-protein interaction is predicted by many data sources 
or when interaction data are integrated from many evidence types. An 
understanding of the biological organization of an organism from its 
PPI network can play a crucial role in vaccine or drug target discovery 
by highlighting important proteins. Network centrality measures can be 
used to locate central proteins that play important roles in the biological 
processes and molecular functions of the organism. 

In the next section, we present and compare the functional PPI 
networks for MTB, MLP and MSM.

Functional Protein-Protein Interaction Networks for the 
three Mycobacteria

A description of the MTB network has been given previously 
by Mazandu and Mulder [21], the only difference between the MTB 
network presented in this work and the previous one, is that the 
number of functional interactions has increased from 58098 to 59919, 

because of the addition of PPIs predicted from interologs and PDB. In 
this paper, we follow the approach used by Mazandu and Mulder [21] 
in generating biological networks by taking those interactions with 
medium and high confidence scores. In addition, all the three networks 
included functional associations with a low confidence score if the 
interactions were predicted by two or more data sources. However, the 
number of functional interactions with low confidence scores is small 
in all three networks compared to those predicted by medium and high 
confidence scores. Table 2 summarizes important structural properties 
of the three networks under consideration. 

The numbers of proteins in the MLP and MSM networks are 1412 
and 4953, while the numbers of protein protein functional interactions 
are 27042 and 66543, respectively. This shows that the number of 
proteins and functional association pairs in MSM and MTB are roughly 
three times that of MLP, though they share a common ancestor. 
The 1412 proteins in the MLP network corresponds to 87.9% of the 
complete proteome obtained from the Uniprot database [14,33,34], 
while the 4953 proteins in MSM amounts to 74.5% of the complete 
proteome. From Mazandu and Mulder [21] and Table 2, there are 201 
hubs, in the MTB network, while MLP and MSM, have 103 and 755 
hubs, respectively. Degree based hubs are proteins with a high degree 
and structural hubs are those proteins that are able to disconnect 
the network [21]. Here we are referring to structural hubs. The high 
number of hubs in the MSM network may simply be a reflection of the 
larger genome and network.

The average path length is computed by finding the mean over all 
shortest paths between all pairs of proteins in the network [21]. While 
the MLP network has an average shortest path length of approximately 
3 which can be seen in Figure S1(b), the MTB and MSM networks 
have average shortest path length of approximately 4, as shown in 
Figures S1(a) and S1(c), respectively. These figures show the probability 
distributions of their shortest path lengths. The computed average path 
length for each of the organisms is of the order log |P| in magnitude. 
Using the same argument as in Mazandu and Mulder [21], this means 
that each of the networks exhibit the ‘small world property’ [35,36]. 
These values give an indication of information spread in their respective 
networks independent of the number of proteins. Out of the three 
organisms, MSM has the highest number of connected components at 
166 compared to the 23 for MTB and 19 for MLP.

Furthermore, based on the degree of each protein in the three 
networks, results of our computation show that the distribution of 
the degree approximates a power-law, that is, for each protein degree 

Type of evidence Low Confidence Medium Confidence High Confidence
MTB MLP MSM MTB MLP MSM MTB MLP MSM

Genomic neighbourhood 1163 417 402 6972 1698 1661 4731 1237 836
Gene fusion 337 26 86 52 14 16 99 27 6

Co-occurence 1033 197 316 5862 276 932 1461 120 369
Experiments 220 185 116 170 224 236 133 510 377

Database knowledge 3 24 19 970 31 33 2002 216 430
Text mining 1174 279 171 722 498 224 93 95 38

Shared domain 0 0 0 20915 0 42805 17792 6070 6478
Sequence similarity 8524 777 0 1345 48 921 77 9 244

Interologs 0 0 0 0 0 0 1701 1600 34
PDB 0 0 0 5082 0 0 864 4683 5487

Coexpression 6538 0 0 225 0 3559 4 12856 4523
Combined Score 6844 145 55 30142 1655 48848 29776 25904 18527

Table 1: Data source and confidence range (low confidence: scores less than 0.3; medium confidence: scores from 0.3 to 0.7; high confidence: scores greater than 0.7) of 
the functional networks for MLP, MTB and MSM.
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k, ( ) .P k k β−=  We show that each of the networks depicts a scale-
free topology. The degree exponents for each of the mycobacterial 
species are 3.48β  , 3.41β   and 3.41β   for the MTB 
(Figure S2(a)),MSM(Figure S2(c)) and MLP (Figure S2(b)) networks, 
respectively.

Locating the most central protein

One of the major problems in network analysis is which criteria 
should be used to identify the most central protein in a network. 
However, as stated earlier, the higher the betweenness of a protein, 
the greater the influence on the flow of information and importance 
in the biological processes of an organism. By ordering proteins based 
on betweenness, the MTB network in Mazandu and Mulder [21] was 
analyzed for the variations in the betweeness metric in terms of protein 
category by showing that proteins with high degree centralities that are 
positioned in the centre of the network are more likely to locate other 
proteins in a connected component faster than structural hubs. From the 
three computed networks, we used the betweenness centrality metric 
to obtain the following most central proteins: Q8VKQ9 in the MTB 
network, which does not have an ortholog in the other two networks; 
A0R5I7 in the MSM network, which is not orthologous to any protein 
in the MTB and MLP networks, and P57993 in the MLP network, 
which is an ortholog of P65728 in the MTB network and A0QQK3 in 
the MSM network. Table 3 shows some important properties of these 
central proteins based on network centrality measures. Apart from the 
most central MTB protein, which belongs to the PE family, the most 
central proteins in MSM and MLP (and its orthologs) are Serine-
threonine protein kinases.

Next, for each network, we calculated the shortest path length, d of 
all proteins from Q8VKQ9, A0R5I7 and P57993, classified them into 
d=1, 2, 3, · · ·, 9 from the protein and n, the total number of proteins 
in each set. For example, from Figure S3 (supplementary material), 
d=1 represents proteins which have a shortest path length one from 
Q8VKQ9 and n=156 proteins belong to that category, in the same vein, 
d=2 means those proteins with distance two from Q8VKQ9 and n=987 
etc. Out of the 4136 proteins in the MTB network, only 53 have no path 
to this protein. A similar diagram showing the distribution of shortest 
path lengths of other proteins from A0R5I7 for the MSM network 
and P57993 for the MLP network are illustrated in Figures S4 and S5 
(supplementary material), respectively. Thirty-six (out of 1412) proteins 
have no path to P57993 in MLP and 409 out of the 4953 proteins have 
no path to A0R5I7 in MSM.

For different protein sets at each distance from the central protein for 
the three organisms under consideration, we used their Gene Ontology 
(GO) annotations to carry out GO term over-representation analysis 
using Blast2GO [37]. Blast2GO enrichment analysis tool produces a 
statistical significance [38] analysis of each GO term in a given protein 
set using Fisher’s exact test to find over or under represented functional 
labels between two protein sets. The proteins in the sets under 
consideration were used as the query sets and the remaining proteins 
in the network constitute the reference-set. We considered functions 
with p-values less than 0.05 to be significant and computed the adjusted 
p-values using the BONFERRONI correction [39]. The results are 
shown in Tables S2-S10 (supplementary material). From Table S2, the 
result shows that proteins annotated to cellular metabolic process were 
the most over-represented for proteins sets with d=1 and 2 in MLP. 
In Table S3, the GO term corresponding to ‘integral to membrane’ is 
over-represented in d=1, oxidoreductase and acyl-CoA dehydrogenase 
activity in d=2, and proteins involved in biosynthetic processes are 

over-represented in d=3 for MTB. Similarly, in Tables S4-S5, the GO 
terms cellular metabolic process and protein metabolic process were 
over-represented in MSM for d=1 and both nucleotide and ATP 
binding were over-represented for d=2. Furthermore, we subdivided 
the total proteins in each mycobacterial organism into different sets 
based on network centrality measures and used Blast2GO’s [37] Fisher’s 
Exact test to find over represented GO terms in each of the sets. The 
results are as tabulated in Tables S2-S10 (supplementary material). 
Table S6 shows for high degree proteins the GO-term ‘translation’, 
high closeness, the GO-term ‘nucleotide binding’ and high eigenvector 
centrality the GO-term ‘ribonucleoprotein complex’ are significantly 
over-represented in the MLP network. From tables S7-S8, hubs having 
GO-term ‘cobalin binding’ and high degree proteins (degree >100) have 
GO-term ‘regulation of transcription, DNA-dependent’ significantly 
over-represented in MSM. In the same vein, as shown in Tables S9-
S10 for the MTB network, protein sets that are hubs, high degree, 
high betweenness, high closeness and eigenvector have the following 
respective GO-terms: ‘transposase activity’, ‘oxidoreductase activity’, 
‘binding’, ‘ACP phosphopantetheine’, and ‘oxidoreductase activity’ 
significantly over-represented.

Comparing important proteins in the MTB and MLP 
networks

We compare important proteins in the MTB and MLP networks 
using the approaches presented in Mazandu and Mulder [21] and Shou 
et al. [32] to understand the biological processes to which these proteins 
are involved. These proteins possess certain topological properties such 
as having high betweenness, closeness and eigenvector centralities, 
which make them important in the functionality of the network. 

The center of gravity of a network is defined as the set of proteins that 
maximizes the closeness measure to any other protein in the network 
[21]. A protein in a functional network belongs to the gravity centre, 
if its closeness centrality measure is strictly greater than the reciprocal 
of the average shortest path length [21]. This value corresponds to 
1/3.62739 or 0.27568 in MTB and 1/3.16955 or 0.31550 in the MLP 
network. In using the betweenness centrality to determine important 
proteins, we considered those proteins in which their betweenness is 
greater than the total number of shortest paths; obtained by multiplying 
the average shortest path length by the total number of proteins in 
the functional network. We then combined these criteria with the 
requirement that the eigenvector centrality should be greater than 
10−5. We obtained a set of 355 and 116 proteins which have a high 
centre of gravity and thus may be potentially interesting as drug targets 
in the MTB and MLP networks, respectively [40-43]. Interestingly, 
proteins belonging to the intermediary metabolism and respiration 
functional class are the most represented in these lists of potential drug 
targets as shown in Table S1 and Figure 1. This is followed by proteins 
belonging to the unknown classes for MTB and information pathways 
for MLP. We obtained the functional classes from Tuberculist (http://
genolist.pasteur.fr/Tuberculist, accessed 28 October, 2011) & Leproma 
(http://genolist.pasteur.fr/Leproma, accessed 28 September, 2012). 
Among these potential drug targets, we extracted those proteins with 
high closeness which are classified as central proteins, and influential 
proteins, which are those with high eigenvector centralities. 241 and 
69 are central and influential targets, respectively in the MTB network, 
while 95 and 37 are central and influential targets, respectively in MLP.

We used the technique described in Shou et al. [32] to identify a 
total of 2859 proteins in the MTB network without a corresponding 
ortholog in the MLP network and 135 proteins in the MLP network 
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without corresponding orthologs in the MTB network. In total, 1277 
proteins have orthologous counterparts in both networks as shown in 
Table 4, only five pairs are both hubs (Table S10). A close look at Table 
S10 shows that these proteins have high betweenness and closeness. The 
protein O07727 (Probable D-amino-acid oxidase) in the MTB network 
is a drug, central and influential target and should be examined further 
as a potential drug target.

Comparing important proteins in the MTB and MSM 
networks

Due to the unavailability of curated functional classes for MSM 
at the time of writing, we were unable to make the same kind of 
comparison as with MLP. However, we identified 2148 distinct proteins 
belonging to the MTB network without corresponding orthologs in 
the MSM network. Similarly, 2965 proteins in the MSM network have 
no corresponding orthologs in the MTB network. 1988 proteins have 
orthologous counterparts in both networks (Table 5). Furthermore, 
we found five orthologous protein pairs in the networks that are both 
hubs (Table S11). Using the same approach as outlined previously, 
we identified 294 potential drug targets in the MSM network and 
by choosing proteins with closeness greater than 0.27, we found 184 
proteins as central targets. As defined earlier, influential targets are 

proteins top ranked by their eigenvector centralities, with values greater 
than 0.07. We identified 16 influential target proteins in MSM.

Comparing important proteins in the MSM and MLP 
networks

As shown in Table 5, out of the 1412 proteins in the MLP proteome, 
only 342 have no orthologous counterpart in the MSM network. 3883 
proteins in MSM have no corresponding ortholog in MLP. Sixteen out 
of the 1070 orthologs present in both networks are both hubs (Table 
S12).

Table 5 summarizes the three comparisons discussed so far. A 
common edge is an edge in which both protein pairs are corresponding 
orthologs in both networks and are interologs. From the second to 
last column, we include the total number of common edges to the two 
organisms being compared. 3693 functional interactions are common 
to the MTB and MLP networks, 2284 edges are common to the MSM 
and MTB networks, while 1901 are common to MLP and MSM. 

From the three networks, we sought those proteins which have 
orthologous counterparts in all three organisms and found a total of 
1001 proteins (Figure 2), 260 additional proteins have orthologs in the 
MLP and MTB networks, 46 proteins have orthologs in MLP and MSM 
alone, and 983 orthologous proteins are present in just the MTB and 
MSM networks etc. All three networks have 297 common edges. Based 
on the classification of proteins as drug, central and influential targets 
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Figure 1: Comparing functional classes for drug, central, and influential targets 
in MTB and MLP.
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Figure 2: Venn diagram showing the orthologs shared and number of unique 
proteins in the three organisms.

Parameters Values
Mycobacterium 

tuberculosis
Mycobacterium 

leprae
Mycobacterium 

smegmatis
Number of proteins 

(Nodes) 4136 1412 4953

Number of functional 
interactions (Edges) 59919 20742 66543

Number of hubs 201 103 755
Density 0.007 0.0208 0.0054

Average degree 28 29 26
Average shortest path 

length 3.62739 3.16955 4.2224

Number of connected 
components 23 19 166

% of Nodes in largest 
component 98.7% 97.5% 91.7%

Table 2: Comparing network parameters and values in the MTB, MLP and MSM 
networks.
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and using the 1001 orthologs in their intersection, we found eight drug 
and one influential target overlaps among the three organisms.

Subnetworks of orthologs only

From the original three networks, we removed those proteins (and 
interactions or edges involving those proteins) that are not among the 
1001 set of common proteins. We are now left with three subnetworks 
each consisting of 1001 proteins. The network properties of the three 
subnetworks are compared in Table 6. The last row (singletons) shows 
the number of proteins in the subnetworks without neighbours or 
proteins, and thus with degree zero. We then determined the number 
of shared edges for the orthologs and used this to calculate network 
identity for these subnetworks. The last column of Table 7 shows that 
the MLP and MTB subnetworks are more similar than the MTB versus 
MSM and MLP versus MSM subnetworks. 

As an example, from Table S10, we chose the Q7D903 protein from 
the MTB network on the grounds that it has a high betweenness, it is 
a hub and has orthologs in both MLP and MSM networks. As shown 
in Figure 5, this protein has 37 neighbours while its corresponding 
orthologs Q9CD64 and A0R3F9 have 17 and 34 neighbours in MLP 
and MSM networks, respectively (Figures 6 and 7). However, out of the 
37 neighbours, Figure 8 shows that only seven of them have orthologs 
in both MLP and MSM. In the same vein, out of the 17 neighbours of 
Q9CD64, 13 have orthologs in both MTB and MSM core subnetworks. 
Finally, the third network in Figure 8) shows that only seven proteins 
out of the 34 neighbours of A0R3F9 have orthologs in both MLP and 
MTB subnetworks. Among the three proteins in Figure 8, only six of 
their respective neighbours are orthologs of each other. The functional 
classes of the neighbour nodes are not conserved but then neither are 
those of the central ortholog proteins. This may be due to differences 
in assigning functional classes for different organisms and the fact that 
for MSM we had to use GO terms, since there was no functional class 
label available. We used PINV http://biosual.cbio.uct.ac.za/biosual/
tests /pinv/pinv.html (accessed on 15 June, 2013) to generate the figure 
showing the interactions these proteins are involved in.

Evolutionary differences between the three mycobacterial 
species

In line with Shou et al. [32], for each pair of networks compared, 
we took sub-samples of their edges from 100% to 1%. We subjected 
both networks to random attacks by removing 50 nodes and all edges 
involving those nodes; repeated the simulations 10 times before 
calculating 95% confidence intervals on the resulting numbers. Since 
the MTB and MSM networks have more edges and nodes than the MLP 

network, we decided to remove 200 nodes rather than 50. The results in 
Tables S13-S15 show that as more nodes and their edges were removed 
from the networks, the percentage of edge change (defined previously) 
decreases. Since the three organisms have a common ancestor, and 
considering that they diverged approximately 2000 million years ago 
and computed rewiring rates for MTB and MLP networks and MLP 
and MSM networks.

In line with Shou et al. [32], we define bottlenecks as proteins within 
the top 10% ranked by betweenness and hubs as proteins within the top 
10% ranked by degree. The choice of 10% is due to the small number 
of proteins in the MLP network. We grouped proteins in each network 
into Bottleneck Hubs (BH), Non-Hub-Bottlenecks (NH-B), Non-
Bottleneck Hubs (NB-H) and Non-Hub Non-Bottlenecks (NH-NB). 
Bottleneck hubs are proteins within the top 10% ranked by betweenness 
and degree, non hubs non bottlenecks are neither within the top 10% 
ranked by betweenness nor degree. Non-hub bottlenecks are not within 
the top 10% ranked by degree but are top 10% ranked by betweenness, 
while non-bottleneck hubs are the converse of non-hub bottlenecks. 
Figures 3 and 4 show that Bottleneck hubs rewire faster than non-hubs 
non bottlenecks. For the MSM network, it can be observed from Figure 
4 that no proteins belong to the Non-hub non-bottlenecks category. 
These results agree with those in Shou et al. [32].

Conclusion
In this study, we have generated functional protein-protein 

interaction networks for Mycobacterium leprae, Mycobacterium 
smegmatis and used an updated Mycobacterium tuberculosis network. 
In addition, since the betweenness centrality is a measure of the flow 
of information in a network, we have identified central proteins in each 
of the three networks, and carried out an overrepresentation analysis 
of the GO terms in the three networks under different headings. We 
compared the three networks using the following three-way approach: 
slow grower (MTB) versus slow grower (MLP), fast grower MSM versus 
MLP, MTB versus MSM and using orthologs as described in Shou et 
al. [32], we identified 1001 orthologous proteins common to the three 
networks. We also computed the network identities of the compared 
networks and determined that MLP’s network is more similar to the 
MTB network than the MSM network which makes sense as they are 
more closely related and both are slow growers. Furthermore, from 
the original three networks, we removed those proteins and functional 
interactions involving those proteins that are not among the 1001 set 
of proteins. Thus, obtaining three subnetworks each consisting of 1001 
proteins. Based on the criteria outlined in Section 3-C, we determined 
eight overlapping drug targets proteins and one overlapping influential 

Organism Uniprot Acc Description Eigenvector Betweenness Closeness Degree Hubs

Mycobacterium tuberculosis Q8VKQ9 PE family protein 1.65648e-03 117248.09 0.34124 156 N

Mycobacterium smegmatis A0R5I7 Serine/threonine 5.26173e-04 605562.88 0.31979 153 Y
protein kinase

Mycobacterium leprae P57993 Probable serine/threonine 3.05175e-02 36356.78 0.42189 125 N
protein kinase

Table 3: The most central proteins for the three mycobacterial organisms and their centrality measures.

Organism Uniprot Acc. Uniprot Description shortest path length (d)
1 2 3 4 5 6 7 8 9

Mycobacterium tuberculosis Q8VKQ9 PE family protein 156 987 2190 656 77 12 4 0 0
Mycobacterium leprae P57993 Probable serine/threonine-protein kinase 125 820 328 87 11 4 0 0 0

Mycobacterium smegmatis A0R5I7 Serine/threonine protein kinase 153 1573 1857 721 174 51 10 3 1

Table 4: The three most important proteins in the three networks and the shortest path lengths from each of them.
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Figure 3: Rewiring rates for MTB and MLP networks. We used log scale on the 
rewiring axis.
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Figure 4: Rewiring rates for MSM and MLP networks.

A B Proteins Proteins Common Common Network
in A only in B only Proteins Edges Identity

MLP MTB 135 2859 1277 3693 4.5%
MSM MTB 2965 2148 1988 2284 1.5%
MLP MSM 342 3883 1070 1901 2.1%

Table 5: Number of ortholog proteins shared, common edges and network identity 
of the compared networks.

target protein among the 1001 proteins set. We then determined the 
number of shared edges for the orthologs and used this to calculate 
network identity for these subnetworks. Our result shows that the MLP 
and MTB subnetworks are more similar than the MTB versus MSM 
and MLP versus MSM subnetworks. One other interesting result that 
we found in this study is that among the three proteins in the three 
subnetworks shown in Figure 8, only six of their respective neighbours 
are orthologs of each other. Finally, by comparing the network rewiring 
rates of the compared organisms, we determined that bottleneck hubs 
rewire faster than non-hubs non-bottlenecks in line with Shou et al. [32].

Parameters Values
Mycobacterium 

tuberculosis
Mycobacterium 

leprae
Mycobacterium 

smegmatis
Number of proteins 
(Nodes) 1001 1001 1001

Number of functional 
interactions (Edges) 9941 13670 5086

Number of hubs 38 60 160
Density 0.0198 0.0273 0.0101
Average degree (µd ) 20 27 11
Average shortest path 
length 3.1055 3.0124 4.1655

Number of connected 
components 16 33 157

% of Nodes in largest 
component 98.5% 95.8% 79.2%

#(Degree-µd ) < 0 628 598 773
#(Degree-µd ) = 0 25 10 16
#(Degree-µd ) > 0 976 393 212
Singletons 15 24 125

Table 6: Comparing network parameters and values in the MTB, MLP and MSM 
subnetworks. µd is the mean degree for each network. #(Degree-µd) < 0=628 
means the total number of proteins such that the deviation from the mean degree 
(Degree-µd) is less than zero is 628.
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Figure 5: The structural hub protein MT1027 with Uniprot accession Q7D903, 
in the MTB network and its 37 neighbours. Nodes are coloured by functional 
classes. This is a drug target protein.

A B Edges in Edges in Common Common Network
A only B only Proteins Edges Identity

MLP MTB 13670 9941 1001 2820 11.9%
MSM MTB 5086 9941 1001 656 4.3%
MLP MSM 13670 5086 1001 1849 9.8%

Table 7: Number of common edges and network identity of the compared sub 
networks.
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is a drug target protein.
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