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Introduction
The proportional hazards models are often used in prospective 

clinical and epidemiological studies to evaluate the association between 
time to a disease and exposures or risk factors [1]. These models 
allow the risk of outcomes over time to be estimated in the presence 
of censoring, and can incorporate time-dependent covariates and 
clustering of the individuals observed. The risk or hazard function 
given a risk factor covariate Z can be written as

λ(t | Z) = λ0(t) exp(β΄Z),   (1)

where β is the regression parameter and λ0(t) is an unspecified baseline 
hazard function. This association, measured by the hazard ratio, does 
not take into account the prevalence of the risk factors in a given 
population. The attributable risk function has been used to measure 
the proportion of disease in a population associated with a given risk 
factor for binary outcomes [2]. When the outcomes are binary, the 
population attributable risk is usually defined as [3] 

φ = − = =
=

=
( 1) ( 1| 0) ,

( 1)
P D P D Z

P D
  (2)

where D denotes a binary outcome and Z denotes the binary risk factor. 
For the time-to-event outcome T, A natural extension of φ for T is, for 
some t > 0, [4]

φ ≤ − ≤ =
=

≤


( ) ( | 0)( ) .
( )

P T t P T t Zt
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Chen et al. [4] proposed an alternative measure of the attributable 
risk function for T:

λ λφ
λ

− =
=

( ) ( | 0)( ) ,
( )

t t zt
t

  (4)

where λ(t) is the population hazard function (see appendix for detail). 
Not like population attributable risk function for the binary outcomes, 
the attributable risk function for the time-to-event endpoints is not 
necessarily constant over time, even when the baseline hazard function 
itself and the exposure prevalence are constant [4]. However, Chen et 
al. only considered the case with one covariate and intervention at time 
0. The adjusted attributable risk function cannot be obtained from their
definition. In a very recent article, Samuelsen and Eide [5] proposed
ARFs for studies with covariates and interventions that may vary over
time:
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Abstract
The Attributable Fraction or risk function (ARF) is used to measure the impact of an exposure on occurrence of 

disease within a population. For any prospective cohort study, risk is likely to be estimated using time to event or survival 
data. Attributable risk function with right censored survival data has been discussed by Samuelsen and Eide. We 
propose a natural extension of the ARF to clustered survival data, which are common in medical research. We derive 
an estimator of the ARF. Simulation studies are conducted to evaluate the performance of our method and investigate 
the consequences of ignoring the cluster effect in analysis.
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where Z = (Z1, Z2, Z3,..., Zp) and = 1 2* ( *, *,..., *)pZ Z Z Z are the 

covariates without and with intervention respectively, E[λ(t | Z)] and 
E[λ(t | Z*)] are their respective expected hazard function over the two 
populations. Since a vector of covariates is considered in the definition 
of ARF, the adjusted ARF can been calculated from this definition as 
Samuelsen and Eide showed in their examples. Chen et al. [4] have 
clearly shown the difference between the definition of ARF in (3) and 
that in (4). However, the relationship between the definition of ARF 
(4) proposed by Chen et al. [4] and that (5) provided by Samuelsen and
Eide [5] is not that clear. We have shown that these two definitions are
different if we assume the distribution of Z does not change with t, but
they are the same when we consider distribution of Z among those at
risk (i.e. condition on T ≥ t), which typically changes over time (see
appendix for detail). So far, these methods do not consider the case of
ARF for clustered survival data, which are common in medical research
with cluster randomized trials or community-based or family-based
prospective cohort studies. When the cluster effects are sufficiently
large, ignoring the clustering can lead to substantially biased estimators
of regression coefficients [6], and leads to biased estimates of ARFs. In
this paper, we extend the concept of ARF to clustered survival data. By
using the gamma frailty model, which is a popular tool for addressing
cluster effects in clustered survival data [7], our approach provides a
practical method to calculate ARF in the presence of dependence in
survival data due to cluster effects.

Attributable Risk Function for Clustered Survival Data
Assume n is the total number of subjects in a study with K clusters 

and nk subjects in cluster k (k = 1,...,K), so that 
=

=∑
1

K

k
k

n n . Let Tki be the 
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survival times, Lki be the censoring times and Zki be the P-dimensional 
vector of covariates for subject i (i = 1,...,nk) in cluster (k = 1,...,K). Let 
Tk denote the vector 1( ,..., )

kk knT T  with Lk and Zk defined similarly. 
Suppose that Tk, Lk and Zk are independent across clusters and (Tk, Lk) 
(k = 1,...,K) are i.i.d with the components of Tk and Lk conditionally 
independent given covariates Zk. Let Xki = min(Tki, Lki), Δki =I(Tki 
≤ Lki) and the at-risk indicator Yki(t) = I(Xki ≥  t). We also suppose  

=

∆ >∑
1

max 1.
kn

k ki
i

 The model we consider has the form 

λki(t) = ukλ0(t) exp(β΄Zki),                   (6)

where the uk is the common risk factor for all subjects in cluster k. We 
present two approaches to modelling cluster effects.

The fixed effects model

When the number of clusters, K, is small, the fixed effects model 
can be used by including indicator variables for clusters. Arbitrarily 
setting one cluster as the reference cluster, for example, cluster 1, we 
obtain

λki(t) = λ0(t) exp(αk + β΄Zki)                   (7)

for k = 1,..., K, with α1 = 0. Using the same method suggested by 
Samuelsen and Eide [5], the attributable fractions can calculated 
by treating the clusters as (K - 1) dimensional vector of covariates. 
However, when K is large, compared to the sample size, and therefore 
there are too many parameters in the model, the asymptotics break 
down since K → ∞ as n → ∞ [7]. This approach is well-known to cause 
bias in parameter estimates.

The frailty model

The frailty model does not treat the cluster effects as parameters, 
but treats them as a sample from a frailty distribution. In this paper, 
we consider gamma frailty with mean 1 and variance θ. The density is 
given by

θ

θ

θ
θ θ

− −
=

Γ

1/ 1

1/

exp( / )( ) .
(1/ )

u uf u                                   (8)

Under the gamma frailty model, the marginal hazard function can 
be obtained from the expectation of the hazard function [8], conditional 
on being at risk at t and covariate Z:

μ(t | Z) = E(U | T ≥ t, Z) λ0(t) exp(β΄Z)

= {1 + θΛ0(t)exp(β΄Z)}-1 λ0(t) exp(β΄Z), 

where λΛ = ∫0 00
( ) ( ) .

t
t s ds  Note the average frailty value,  

θ β −+ Λ 1
0{1 ( )exp( ' )}t Z is a decreasing function of time, which is due 

to the fact that the subjects with high frailty values experience the event 
earlier on average and the population will contain more and more 
subjects with low frailty values. From this, the ARF is defined as

µ µφ
µ
−

=
[ ( | )] [ ( | *)]( ) .

[ ( | )]
E t Z E t Zt

E t Z
                      (9)

Compared to the fixed effects model, the frailty model has the 
advantage of parsimony. The number of parameters to describe cluster 
effects does not increase with the number of clusters. In the gamma 
frailty, we have used only one parameter θ to describe the cluster effects 
(the heterogeneity of cluster effects). As θ increases, frailties become 
more dispersed and dependence increases [7].

Estimation Procedure
There are many methods available to fit the semiparametric gamma 

frailty model [8-11]. Assume we have the estimates θ̂ , β̂  and Λ0
ˆ ( )t  of 

θ, β and Λ0(t) respectively. We consider the following two situations:

The distributions of Z and Z* do not depend on time t 

The estimated ARF can be represented as
θ β β

φ
θ β β

−

−

+ Λ
= −

+ Λ

1
0
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E t Z Z
t

E t Z Z
              (10)

When the covariate is one binary variable such that P(Z =1) = p, 
P(Z = 0) = 1-p and P(Z* = 0) =1, the estimator simplifies to

θ
φ

θ β β θ

−

− −

+ Λ
= −

+ Λ + − + Λ

1
0

1 1
0 0

ˆˆ{1 ( )}
(̂ ) 1 .ˆ ˆ ˆ ˆˆ ˆ{1 ( )exp( )} exp( ) (1 ){1 ( )}

t
t

p t p t
      (11)

Although the distributions of Z and Z* do not depend on time t, 
this function changes over time. When the effect of frailty does not 
exist, that is θ =ˆ 0 , it becomes time-independent.

The distributions of Z and Z* change over time t

In survival data, the distribution of some covariates for the subjects 
at risk usually changes over time. In order to get the estimate of φ(t), 
we need to estimate the population survival function conditional on 
covariate, Z:

θθ β −= + Λ
ˆ1/

0
ˆ ˆˆ ˆ( | ) {1 ( )exp( ' )} .S t Z t Z                 (12)

Following Samuelsen and Eide’s [5] approach, the population 
hazard in a finite population with n individuals and covariates zi, i = 
1,2,...,n can be estimated by

n
1

0 i 0 i i
i 1

n

i
i 1
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The population hazard in a finite population with covariates *,iz  i 
= 1,2,...,n can be estimated by

n
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Ŝ(t | Z *)

θΛ β λ β
µ

−

=

=

+
=
∑

∑
.    (14)

The estimate of φ(t) can be calculated as
θ β β

µφ
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Simulations
In this section, we evaluate the performance of our method and 

investigate the consequences of ignoring the cluster effect in analysis. 
The time-to-event data were generated according to the model 
(6), where there are 200 clusters with cluster size 10; β = 0, log(2) 
respectively; u had gamma frailty with mean 1 and variance θ = 0.5, 
1.64, which corresponds to Kendall’s τ = 0.2, 0.45 respectively; baseline 
functions were constant of 0.01, 0.1 and 1 respectively. Each individual’s 
binary exposure indicator was generated from Bernoulli distribution 
with p = 0.25. Censoring times were from Uniform distribution U(0, L) 
where L was chosen to get about 10% and 30% of censored observations 
respectively. For each case described above, 1000 simulated data were 
generated. Following Chen et al. [4] we calculated the estimates and 
their associated variances at the 75 percentile and median of the 
marginal survival distribution, t1 and t2, respectively. The results are 
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shown in Table 1 and 2. Here the bias is the absolute difference between 
the average of the 1000 estimates and the true attributable fraction and 
SE is the sample standard error. As shown in Table 1, where β=0, SE 
increases when the frailty is ignored. However, in Table 2, where β = 
log(2), both bias and SE increase when the frailty is ignored, especially 
for large θ.

Discussion
Clustered survival data often occur in many practical areas, where a 

group of related subjects constitutes a cluster, such as a group of patients 
from the same hospital, a group of students from the same school, a 
group of people from the same community or a group of genetically 
related members from the same family. The attributable fraction with 
clustered survival data is discussed in this article as a measure of the 
proportion of disease over time with associated risk factors within 
given populations. Our simulations show that ignoring cluster effects 
can cause the increase of both bias and the sample standard error of the 
attributable fraction, especially for large cluster effects.

In this paper, we only consider gamma frailty. However, gamma 
frailty can be easily replaced with other frailty distributions which 
have a simple Laplace transform representation, such as the inverse 
Gaussian distribution, the positive stable distribution, or others. We 
focus on ARF when an intervention takes place at time 0. However, we 
can also consider ARF when an intervention takes place at time t and 
use φA(t) to denote it. Under the proportional hazard model conditional 

on frailty U the estimate of φA(t) can be expressed as

θ β β
φ

θ β β

−
∈

−
∈

+ Λ
= −

+ Λ
∑
∑

1
0( )

1
0( )

ˆ ˆ ˆˆ{1 ( )exp( ' *)} exp( ' *)ˆ ( ) 1 ,ˆ ˆ ˆˆ{1 ( )exp( ' )} exp( ' )
i ii R t

A
i ii R t

t z z
t

t z z
                (16)

where R(t) is the risk set at time t i.e. the set of subjects with Xi ≥ t. 

In this paper, our interest is in the modelling cluster effect on ARF. 
To make inference for ARF, one may use the bootstrap method [12] 
to find the standard errors of the estimates and construct confidence 
intervals. Applications of the proposed methods to a real data analysis 
and associated inference issues will be investigated in our future 
research.

References

1. Cox DR (1972) Regression models and life-tables. J R Statist Soc B 34: 187-
220.

2. Walter SD (1976) The estimation and interpretation of attributable risk in health 
research. Biometrics 32: 829-849.

3. Levin ML (1953) The occurrence of lung cancer in man. Acta Unio Int Contra 
Cancrum 9: 531-541.

4. Chen YQ, Hu C, Wang Y (2006) Attributable risk function in the proportional 
hazards model for censored time-to-event. Biostatistics 7: 515-529.

5. Samuelsen SO, Eide GE (2008) Attributable fractions with survival data. Stat 
Med 27: 1447-1467.

6. Henderson R, Oman P (1999) Effect of frailty on marginal regression estimates 
in survival analysis. J R Statist Soc B 61: 367-379.

λ0(t) ≡ λ0 θ Cens. %
t1 : S(t1) = 0.75 t2 : S(t2) = 0.5

Gamma Frailty Ignoring Frailty Gamma Frailty Ignoring Frailty
Bias SE Bias SE Bias SE Bias SE

0.01 1.64 10% .0003 .0099 .0001 .0137 .0001 .0054 .0003 .0136
0.01 1.64 30% .0002 .0112 .0007 .0157 .0001 .0062 .0001 .0155
0.01 0.5 10% .0001 .0130 .0001 .0138 .0006 .0107 .0008 .0136
0.01 0.5 30% .0001 .0151 .0000 .0155 .0002 .0125 .0004 .0159
0.1 1.64 10% .0004 .0099 .0007 .0140 .0004 .0054 .0002 .0140
0.1 1.64 30% .0003 .0114 .0005 .0156 .0004 .0061 .0012 .0156
0.1 0.5 10% .0005 .0133 .0006 .0140 .0000 .0105 .0007 .0131
0.1 0.5 30% .0004 .0157 .0001 .0162 .0002 .0127 .0000 .0159
1.0 1.64 10% .0000 .0103 .0004 .0135 .0005 .0053 .0005 .0134
1.0 1.64 30% .0004 .0116 .0003 .0157 .0002 .0062 .0002 .0147
1.0 0.5 10% .0003 .0131 .0004 .0141 .0002 .0110 .0003 .0135
1.0 0.5 30% .0009 .0148 .0007 .0159 .0002 .0134 .0000 .0167

Table 1: Estimation of attributable fractions in simulated clustered survival data: β = 0.

λ0(t) ≡ λ0 θ Cens. %
t1 : S(t1) = 0.75 t2 : S(t2) = 0.5

Gamma Frailty Ignoring Frailty Gamma Frailty Ignoring Frailty
Bias SE Bias SE Bias SE Bias SE

0.01 1.64 10% .0089 .0092 .0251 .0148 .0054 .0043 .0250 .0119
0.01 1.64 30% .0087 .0094 .0131 .0150 .0055 .0044 .0339 .0116
0.01 0.5 10% .0075 .0116 .0219 .0145 .0103 .0064 .0077 .0096
0.01 0.5 30% .0075 .0126 .0140 .0153 .0099 .0071 .0125 .0102
0.1 1.64 10% .0086 .0093 .0249 .0148 .0052 .0044 .0249 .0117
0.1 1.64 30% .0086 .0097 .0119 .0153 .0054 .0045 .0346 .0123
0.1 0.5 10% .0076 .0118 .0223 .0148 .0098 .0066 .0079 .0095
0.1 0.5 30% .0075 .0129 .0141 .0158 .0094 .0067 .0134 .0097
1.0 1.64 10% .0091 .0095 .0249 .0143 .0054 .0043 .0245 .0118
1.0 1.64 30% .0092 .0098 .0122 .0158 .0052 .0047 .0354 .0122
1.0 0.5 10% .0075 .0118 .0221 .0152 .0101 .0064 .0077 .0097
1.0 0.5 30% .0076 .0129 .0144 .0152 .0099 .0067 .0130 .0098

Table 2: Estimation of attributable fractions in simulated clustered survival data: β = log(2).

Advances in Markov Chain Monte Carlo 
Methods and Survival Analysis

http://www.jstor.org/discover/10.2307/2985181?uid=3738256&uid=2&uid=4&sid=47698794332857
http://www.ncbi.nlm.nih.gov/pubmed/1009228
http://www.ncbi.nlm.nih.gov/pubmed/13124110
http://www.ncbi.nlm.nih.gov/pubmed/16478758
http://onlinelibrary.wiley.com/doi/10.1002/sim.3022/abstract
v


Citation: Xie C, Lu X, Pogue J (2012) Attributable Risk Function with Clustered Survival Data. J Biomet Biostat S1:007. doi:10.4172/2155-6180.S1-
007

Page 4 of 4

J Biomet Biostat                                              ISSN:2155-6180 JBMBS, an open access journal

7. Glidden DV, Vittinghoff E (2004) Modelling clustered survival data from 
multicentre clinical trials. Stat Med 23: 369-388.

8. Nielsen GG, Gill RD, Andersen PK, Sorensen TIA (1992) A counting process 
approach to maximum likelihood estimation in frailty models. Scand J Statist 
19: 25-43.

9. Klein JP (1992) Semiparametric estimation of random effects using the Cox 
model based on the EM algorithm. Biometrics 48: 795-806.

10. Therneau TM, Grambsch PM (2000) Modeliing survival data: extending the Cox 
model. Springer, New York.

11. Ha ID, Lee Y, Song JK (2001) Hierarchical likelihood approach for frailty 
models. Biometrika 88: 233.

12. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and 
Hall.

Appendix

Assume the covariate Z at time 0 is a binary variable such that P( Z 1) p,= =  
P( Z 0) 1 p.= = −   What is the relationship between definition of the attributable risk 
function, (t )φ in (4) provided by Chen et al. (2006) and the definition of (t )φ  in (5) 
provided by Samuelsen et al. (2008)? The survival function given the risk factor 
covariate Z can be written as

t
00

( u )exp( )du
S(t | Z 1) e ,

λ β−∫= =
t

00
( u )du

S(t | Z 0) e .
λ−∫= =     (17)

The population (or marginal) survival function is
t t

0 00 0
( u )exp( )du ( u )du

S(t ) pe (1 p)e .
λ β λ− −∫ ∫= + −   (18)

The population density function can be obtained from the population survival 
function as follows:

t t
0 00 0

( u )exp( )du ( u )du

0 0f (t ) S'(t ) (t )exp( )pe (t )(1 p)e .
λ β λ

λ β λ
− −∫ ∫= − = + − (19)

The population hazard function is
t t

0 00 0

t t
0 00 0

( u )exp( )du ( u )du

0 0

( u )exp( )du ( u )du

(t )exp( )pe (t )(1 p)ef (t )(t ) .
S(t ) pe (1 p)e

λ β λ

λ β λ

λ β λ
λ

− −

− −

∫ ∫+ −
= =

∫ ∫+ −

(20)

Based on the definition provided by Chen et al. (2006),

0(t )(t ) (t | Z 0)(t ) 1 ,
(t ) (t )

λλ λφ
λ λ

− =
= = −   (21)

where (t )λ  is give in (20). If we assume the distribution of Z does not change 
with t, the expectations of (t | Z)λ  and (t | Z 0)λ =  are given by

0 0E( (t | Z)) (t )exp( )p (t )(1 p),λ λ β λ= + −
0E( (t | Z 0)) (t ).λ λ= =    (22)

Then, based on the definition provided by Samuelsen et al. (2008)

E[ (t | Z)] E[ (t | Z 0)] exp( )p p(t ) ,
E[ (t | Z)] exp( )p (1 p)

λ λ βφ
λ β
− = −

= =
+ −   (23)

which does not equal the value in (21). However, distribution of Z among those 
at risk typically changes over time (Samuelsen et al., 2008). In fact, the conditional 
distribution of Z given T t≥  can be obtained by

S(t | Z 1)pP( Z 1|T t ) ,
S(t )

=
= ≥ = S(t | Z 0)(1 p)P( Z 0 |T t ) .

S(t )
= −

= ≥ =   (24)

Then, from (17), (20) and (24), we have

 E( (t | Z)) (t | Z 1)P( Z 1|T t ) (t | Z 0)P( Z 0 |T t )λ λ λ= = = ≥ + = = ≥

        
0 0{ (t )exp( )S(t | Z 1)p (t )S(t | Z 0)(1 p)} / S(t )λ β λ= = + = −

        
t t

0 00 0
( u )exp( )du ( u )du

0 0{ (t )exp( )pe (t )(1 p)e } / S(t )
λ β λ

λ β λ
− −∫ ∫= + −

        (t ),λ=  
and

0E( (t | Z 0)) (t | Z 0) (t ).λ λ λ= = = =

So,

E[ (t | Z)] E[ (t | Z 0)] (t ) (t | Z 0)(t ) .
E[ (t | Z)] (t )

λ λ λ λφ
λ λ
− = − =

= =

The two definitions are the same.
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