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Introduction
Linear models are probably the most widely used statistical models 

to investigate the influence of a set of predictors on a response variable. 
In practice, only a small subset of potential covariates actually has an 
influence on the response variable, whereas the effect of most predictors 
is very small or even zero. Since, model misspecification can have a 
significant impact on a scientific result, correctly identifying relevant 
variables is an important issue in any scientific research. If more 
predictors are included in the model, a high proportion of the response 
variability can be explained. On the other hand, overfitting (inclusion 
of predictors with null effect) results in a less reliable model with poor 
predictive performance. The problem of variable selection becomes 
more challenging for high dimensional problems, particularly when 
the number of predictors greatly exceeds the number of observations. 
High dimensional problems arise in a variety of scientific fields, such 
as bioinformatics, medicine, genetics, etc. High dimensionality could 
lead us to models that are very complex, which poses serious challenges 
in estimation, prediction and interpretation. Therefore, many classical 
approaches to variable selection cease to be useful due to computational 
infeasibility, model non-identifiability, or both. 

Various methods have been developed over the years for dealing 
with variable selection in high dimensional linear models. Very 
recently, much work has been done in the direction of Bayesian 
framework. Unlike non-Bayesian methods, Bayesian analysis enables 
one to deal with model uncertainty by averaging over all possible 
models. Moreover, Bayesian methods have the ability to significantly 
reduce the actual complexity involved in the estimation procedure 
by incorporating prior information within the data into the model 
estimation technique. With ever-increasing computing power, these 
methods are increasingly becoming popular and gaining more and 
more insight and considerations for high dimensional analysis.

In this review, we present a selective overview of some recent 
developments in Bayesian model and variable selection methods for 
high dimensional linear models. While most of the reviews in literature 
are based on conventional methods, we focus on recently developed 
methods, which have been used extensively over the years. The review 
is structured as follows. First, we give a brief overview of the traditional 

commonly used model selection methods followed by a discussion on 
some recently developed approaches for linear models, which have 
proven to be successful in dealing with high dimensional variable 
selection. Then, we mention some conventional Bayesian variable and 
model selection methods, along with some recently developed Bayesian 
approaches, with a particular emphasis on Bayesian regularization 
methods. We conclude by briefly addressing the asymptotic behaviors 
of Bayesian high dimensional variable selection methods for linear 
models under different regularity conditions.

Classical Model Selection Methods for Linear Models
In statistical tradition, commonly used methods for model 

selection are backward, forward and stepwise selection, where in 
every step, predictors are added to the model or eliminated from the 
model, according to a precisely defined testing rule. Besides accurate 
prediction, the primary goal in model selection is also to come up 
with meaningful, interpretable and parsimonious model. Traditional 
methods such as stepwise regression fall short in one or more of these 
criteria. To overcome these shortcomings, several information-type 
methods have been developed, which aim to provide a trade-off between 
model complexity and goodness-of-fit of a model. We describe the 
standard normal linear model and Bayesian hierarchical normal linear 
model in later subsections. Then, we briefly review four commonly 
used methods viz. Mallow’s Cp [1], AIC [2] and BIC [3] for standard 
normal models, and DIC [4] for Bayesian hierarchical normal linear 
models, which remain the most popular model selection methods used 
for linear models and hierarchical linear models respectively.

Standard normal linear model

In the simplest case of a normal linear regression model, it is 
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Abstract
In this article, we present a selective overview of some recent developments in Bayesian model and variable 

selection methods for high dimensional linear models. While most of the reviews in literature are based on conventional 
methods, we focus on recently developed methods, which have proven to be successful in dealing with high dimensional 
variable selection. First, we give a brief overview of the traditional model selection methods (viz. Mallow’s Cp, AIC, BIC, 
DIC), followed by a discussion on some recently developed methods (viz. EBIC, regularization), which have occupied 
the minds of many statisticians. Then, we review high dimensional Bayesian methods with a particular emphasis on 
Bayesian regularization methods, which have been used extensively in recent years. We conclude by briefly addressing 
the asymptotic behaviors of Bayesian variable selection methods for high dimensional linear models under different 
regularity conditions.
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assumed that the mean of the response variable can be described as a 
linear function of a set of predictors. Mathematically, in a normal linear 
regression setup, we have the following model 

 y X β ε= + ,					                   (1)

where y is the 1n×  vector of centered responses; X is the n p×  matrix 
of standardized regressors; β  is the 1p×  vector of coefficients to be 
estimated and ε  is the 1n×  vector of independent and identically 
distributed normal errors with mean 0 and variance 2σ . The classical 
estimator in linear regression is the Ordinary Least Squares (OLS) 
estimator 1ˆ ( ) ,OLS X X X yβ −′ ′=  which is obtained by minimizing the 
residual sum of squares (RSS) given by

( ) ( ) ( ).T
OLSQ y X y Xβ β β= − − 			                 (2)

The OLS estimator has some attractive statistical properties, in the 
sense that it is the best linear unbiased estimator (BLUE), provided the 
classical assumptions hold [5]. Also, it coincides with the maximum 
likelihood estimator (MLE) for normal linear models.

Bayesian hierarchical normal linear model

In Bayesian hierarchical normal linear model, we assume that the 
distribution of the dependent variable y is specified conditional on the 
parameters β  and 2σ  as 

1 2 2, ( , ).n
ny N X Iβ σ β σ×

 			                  (3)

Then, any prior information on ( , )β σ  is incorporated by specifying 
a suitable prior distribution 2( , )p β σ  on them. This second-level model 
has its own parameters known as hyperparameters, which are usually 
estimated from the data. After observing the data, the prior distribution, 

2( , )p β σ  is updated by the corresponding posterior distribution, which 
is obtained as

 
2 2

2
2 2 2

( , ) ( , )
( , ) .

( , ) ( , ) ( , )
p y p

p y
p y p d

β σ β σ
β σ

β σ β σ β σ
=
∫

		                 (4)

The posterior distribution contains all the current information 
about the parameters. Ideally one might fully explore the entire 
posterior distribution by sampling from the distribution, using 
Markov chain Monte Carlo (MCMC) algorithms [6]. Due to its ability 
to incorporate specific hierarchical structure of the data (correlation 
among the predictors), hierarchical modeling is often more efficient 
than traditional approaches [7].

Mallow’s Cp  

For a subset model with k p≤  explanatory variables, the Cp statistic 
proposed by Mallows [1], is defined as 

 
2

( ) 2 ,p
RSS kC n p

s
= − + 			                  (5)

where s2 is the MSE for the full model containing p explanatory 
variables and RSS(k)  is the residual sum of squares for the subset 
model containing k explanatory variables. In practice, Cp is usually 
plotted against  for a collection of subset models under consideration 
and models with Cp approximately equal to p are taken as acceptable 
models, in the sense of minimizing the total bias of the predicted values 
[5]. Woodrofe [8] showed that  Cp is a conservative model selector, 
which tends to overfit. Nishii [9] showed that  Cp is not consistent in 
selecting the true model, and often tends to select a larger model as 

n →∞ .

Akaike’s Information Criteria (AIC)

The AIC of Akaike [2] is defined as 

2log 2AIC L p= − + ,				                  (6) 

where L is the likelihood function evaluated at the MLE. Given a set of 
candidate models, the ‘best’ model is the one with the minimum AIC 
value. Similar to Mallow’s Cp, AIC is not model selection consistent 
[9]. Here, the consistency of a model selection criterion means that 
the probability of the selected model being equal to the true model 
converges to 1. More information about AIC can be found in Burnham 
and Anderson [10]. The asymptotic approximation on which the AIC is 
based is rather poor when n is small [11]. Therefore, Hurvich and Tsai 
[12] proposed a small-sample correction, leading to the cAIC  statistic 
defined by 

2 ( 1) .
( 1)c

p pAIC AIC
n p

+
= +

− −
 			                    (7)

cAIC  converges to AIC as n gets larger, and therefore, it is preferred 

to AIC regardless of the sample size [11].

Bayesian Information Criteria (BIC)

While AIC is motivated by the Kullback-Leibler discrepancy of 
the fitted model from the true model, Schwarz [3] derived BIC from a 
Bayesian perspective by evaluating the leading terms of the asymptotic 
expansion of the Bayes factor. The BIC is defined as 

2log log ,BIC L p n= − +  			                   (8)

where L  is the likelihood function evaluated at the MLE. Similar to 
AIC, model with minimum BIC is chosen as the preferred model from 
a set of candidate models. It is well known that neither AIC nor BIC 
performs better all the time. However, unlike AIC, BIC is a consistent 
model selection technique, which means, as the sample size n  gets large 
enough, the lowest BIC model will be the true model, with probability 
1 [10,11]. For a comparison of AIC and BIC, refer to Kundu and Murali 
[13] or Yang [14].

Deviance Information Criteria (DIC)

For model selection in Bayesian hierarchical normal linear models, 
Spiegelhalter et al. [4] proposed the generalization of AIC and BIC 
defined as

 2DIC D pD= + , 				                  (9) 

where = -2log LD  is the deviance evaluated at the posterior mean of 
the parameters, and pD is the effective number of parameters calculated 
as the difference between posterior mean deviance and deviance of 
posterior means. Like AIC and BIC, models with smaller DIC are 
better supported by the data. DIC is particularly useful when the 
MCMC samples are easily available, and is valid only when the joint 
distribution of the parameters is approximately multivariate normal 
[4]. DIC tends to select over-fitted models, which has been addressed 
by Ando [15], although very little is known about its performance in 
high dimensional models. As noted by Gelman et al. [16], various other 
difficulties (apart from overfitting) have been noted with DIC, but there 
has been no consensus on an alternative.

High Dimensional Methods
In the setting of a linear regression model, if the number of 

covariates p  is of the polynomial order or exponential order of the 
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penalty function  P, i.e.

 ( ) ( ) ( ) ( ),TQ y X y X Pλβ β β β= − − + 		                   (11)

where P is a function of the coefficients indexed by a parameter 0λ >
, which controls the degree of penalization. Typically, the penalty 
function P has the following properties [28]:

1. It is symmetric about the origin, i.e. ( )0   0P = ,

2.   is non-decreasing in (0, )∞ .

This approach produces a spectrum of solutions depending on 
the value of  λ . Such methods are often referred to, as regularization 
methods, and λ  is called the regularization parameter (or tuning 
parameter). The penalty function serves to control the complexity 
of the model and provides criteria for variable selection and model 
comparison, by imposing some constraints on the parameters. The form 
of ( )Pλ β  determines the general behavior of regularization methods. 
Small penalties lead to large models with limited bias, but potentially 
high variance; large penalties lead to the selection of models with fewer 
predictors, but with less variance. A variety of penalty terms have been 
proposed, among which the most popular ones are ridge regression, the 
lasso and the elastic net. We summarize these methods in Table 1. For 
a more comprehensive review on regularization methods, refer Bickel 
and Li [29].

The bridge family: Regularization methods date back to the 
proposal of ridge regression by Hoerl and Kennard [30], who suggested 
minimizing the following objective function:

2

1
( ) ( ) ( ) .β β β λ β

=

= − − + ∑
p

T
Ridge j

j
Q y X y X  	             (12)

As a continuous shrinkage method, ridge regression achieves better 
prediction performance than OLS through a bias–variance trade-
off (biased estimates with lower variance). However, ridge regression 
cannot produce a parsimonious model, as it always keeps all the 
predictors in the model.

Frank and Friedman [31] introduced bridge regression, a broad 
class of penalized regression, which is obtained by minimizing

1
( ) ( ) ( ) ,

p
T

Lasso j
j

Q y X y X
α

β β β λ β
=

= − − + ∑ 	              (13)

sample size , i.e., ( )p O nκ=  or (exp( ))p O nκ=  for 0,κ >  then it is called 

model selection criteria such as Mallow’s Cp, AIC, BIC tend to select 
more variables than necessary for high dimensional linear models, 
especially when the number of regressors increases with the sample 
size [18,19]. Also, Yang and Barron [20] argues that in some cases the 
overfitting problem can be substantial, resulting in severe selection bias, 

models have been introduced recently. Wang et al. [21] proposed a 
modified BIC (mBIC), which is consistent when p is diverging slower 
than n. Chen and Chen [22,23] developed a family of extended Bayesian 
information criteria (EBIC), for variable selection for high dimensional 
problems. On the other hand, a large amount of effort has gone into 
the development of regularization methods for simultaneous variable 
selection and coefficient estimation. Regularization methods mitigate 
modeling biases and achieve higher prediction accuracy in high 
dimensional linear models by shrinking the coefficients and providing 
meaningful estimates, even if the model includes a large number of, 
and/or highly correlated predictors. We describe the extended Bayesian 
information criteria and regularization methods in the following 
subsections, before gradually moving to Bayesian methods for high 
dimensional linear models.

Extended Bayesian Information Criteria (EBIC)

The family of EBIC is indexed by a parameter γ  in the range [0,1]. 
The extended BIC (EBIC) is defined as 

2log log 2 log ,EBIC L p n pγ= − + + 		                  (10)

where L is the likelihood function evaluated at the MLE, and 0γ >  
is a tuning parameter. The original BIC is a special case of EBIC with 

0γ = . The mBIC is also a special case of EBIC in an asymptotic sense; 
i.e. it is asymptotically equivalent to the EBIC with 1γ = . Chen and 
Chen [23] established the model selection consistency of EBIC, when 

( )p O nκ=  and 11
2

γ
κ

> −  for any 0κ > , where consistency implies that 

as n →∞ , the minimum EBIC model will converge in probability to 
the ‘true’ model. Among other developments, General Information 
Criterion (GIC) proposed by Shao [24] is known to be consistent in 
high dimensions. Kim et al. [25] showed that EBIC is asymptotically 
equivalent to GIC.

Regularization methods

Similar to information-type methods, various regularization 
methods have been developed to overcome the problem of overfitting 
in high dimensional linear models. It is well known that OLS often 
does poorly in both prediction and interpretation in high dimensions. 
Despite its nice statistical properties, it is highly unstable in the 
presence of multicollinearity. Also, if p n , it produces a non-unique 
estimator, since X is less than full rank (non-identifiability). Motivated 
by this, regularization methods (also known as penalized likelihood or 
shrinkage method) with various penalties have been developed, which 
have proven to be successful and model selection consistent for high 
dimensional linear models [26,27].

The problem of interest involves estimating a sparse vector of 
regression coefficients by minimizing an objective function Q that is 
composed of a loss function (without loss of generality, most commonly 
used least squares loss function (RSS) is considered, although least 
absolute deviation and negative log-likelihood is also common) plus a 

Method Tuning parameter Penalty function
Lasso λ

1

p

j
j

λ β
=
∑

Ridge λ
2

1

p

j
j

λ β
=
∑

Bridge λ
1

p

j
j

α

λ β
=
∑

Adaptive Lasso
1,..., pλ λ

1

p

j j
j
λ β

=
∑

Elastic Net
1 2,λ λ 2

1 2
1 1

p p

j j
j j

λ β λ β
= =

+∑ ∑

Group Lasso λ 2

1 1

k

j

mK

k
k j

λ β
= =
∑ ∑

Table 1: Different penalty functions.

a high dimensional problem [17]. Despite their popularity, classical 

which damages predictive performance for high dimensional models. 
To overcome this, various model selection criteria for high dimensional 
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where λ  is the tuning parameter and α  is the concavity parameter, 
as it controls the concavity of the objective function (13). It includes 
lasso and ridge as special cases (corresponding to 1α =  and 2α =  
respectively). Although Frank and Friedman [31] did not solve for 
the estimator of bridge regression for any given 0α ≥ , they indicated 
that optimum choice of α  would yield reasonable predictor. The 
bridge estimator does variable selection when 1α ≤  and shrinks the 
coefficients when 1α >  [32]. These three estimators viz. ridge, lasso 
and bridge are together referred to as the bridge family. 

Among penalized regression techniques, the most popular and 
widely used method in statistical literature is the Least Absolute 
Shrinkage and Selection Operator (LASSO). The lasso of Tibshirani 
[33] is obtained by minimizing 

1
( ) ( ) ( ) .

p
T

Lasso j
j

Q y X y Xβ β β λ β
=

= − − + ∑ 		                (14)

Compared to ridge regression, a remarkable property of lasso 
is that it can shrink some coefficients exactly to zero, and therefore, 
can automatically achieve variable selection. Intuitively, this can be 
explained by the fact that jβ  is much larger than 

2

jβ  for small jβ  

and thus the L1-penalty 
1

p

j
j

λ β
=
∑  enforces some jβ 's exactly to zero.

Figure 1 shows the behavior of these three penalty functions in a 
two-parameter case, 1β  and 2β . To obtain the regularized estimators, 
we essentially seek the points at which the objective function contour 
first “hits” the constraint. Lasso, ridge and bridge penalty functions 
have constraints shaped like a square, circle and star, respectively. As 
a consequence of the different shapes, lasso is likely to involve variable 
selection ( 1 0β =  or 2 0β = ), as well as parameter estimate shrinkage, 
and ridge yields mainly parameter estimate shrinkage; in contrast, 
bridge induces an even higher chance of variable selection than lasso, 
because the star shape of bridge makes the contour even more likely to 
hit one of the points ( 1 0β =  or 2 0β = ), than does the diamond shape 
of lasso.

Some generalizations: The lasso has demonstrated excellent 
performance in many situations. As a consequence, most of the 
developments in recent years are focused on the lasso and related 
problems. However, despite its promising nature, there are three 
inherent drawbacks of lasso [35]. Firstly, due to the nature of the convex 
optimization problem, the lasso method cannot select more predictors 
than the sample size. But, in practice, there are often studies that involve 
much more predictors than the sample size, e.g. microarray gene 
expression data analysis, cloud detection through analysis of satellite 

images, classification of spam emails, and many others. Secondly, when 
there is some group structure among the predictors, the lasso estimator 
usually selects only one predictor from a group, while ignoring others. 
Thirdly, when the predictors are highly correlated, lasso performs 
unsatisfactorily. We discuss some of the alternatives and generalizations 
that have been proposed to overcome the above limitations of lasso. 

The lasso uses a unique tuning parameter λ  to equally penalize all 
the coefficients. In practice, due to the single tuning parameter, lasso 
can either include irrelevant variables or over-shrink large coefficients 

issue, Zou [37] introduced the adaptive lasso that uses a weighted L1- 
penalty

1
( ) ,

p

j j
j

Pλ β λ β
=

=∑  				                   (15)

where jλ  is the tuning parameter corresponding to the jth coefficient 

jβ , ( )1 1j p= . The intuition of adaptive lasso is to shrink coefficients 
differently by shrinking important variables slightly and unimportant 
variables heavily.

To address the issue of variable selection for grouped variables, 
Yuan and Lin [38] proposed the group lasso estimator, in which the 
penalty is given by 

1 2

2 2 2

1
( ) ... ,

mk

K

k k k
k

Pλ β λ β β β
=

= + + +∑ 		                   (16)

where K is the no. of groups with 
1

K

k
k

m p
=

=∑  and 
jkβ  is the coefficient 

corresponding to jth predictor in the kth group, ( )1 1 kj m= , 1(1) .k K=  
With appropriately chosen tuning parameter, the group lasso can 
shrink all coefficients in a group to zero or keep all coefficients in a 
group in the model.

Zou and Hastie [35] proposed the elastic net estimator to achieve 
improved performance in situations when there is multicollinearity and 
grouping among predictors. The penalty term in elastic net is a convex 
combination of the lasso penalty and the ridge penalty, i.e.

2
1 2

1 1
( ) ,λ β λ β λ β

= =

= +∑ ∑
p p

j j
j j

P 		                                    (17)

where 1 0λ > , 2 0λ >  are two tuning parameters.

The elastic net estimator can be interpreted as a stabilized version of 
the lasso, and it often outperforms the lasso, especially when there are 
groups of highly correlated predictors.

Other related regularization methods include the smoothly clipped 
absolute deviation (SCAD) method [28], the fused lasso [39], the 
adaptive elastic net [40], the minimax concave penalty (MCP) [41], the 
adaptive bridge estimator [32], the Dantzig selector [42], and the group 
bridge estimator [43].

Optimization algorithms: Various optimization algorithms have 
been proposed to obtain the lasso and related estimators [44]. Notably, 
the least angle regression (LARS) [45], and the coordinate descent 
algorithm [46,47], are the most computationally efficient ones. Given 
the tuning parameters, these algorithms are extremely fast (e.g. the 
computational load of LARS is same as that of a single OLS fit), thus 
making the penalized regression approaches extremely popular in high 
dimensional data analysis.

Limitations of regularization methods: In spite of being 
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<Figure 1: A graphical illustration of the properties of three different penalty 
functions. The eclipses represent the contours of the objective functions (A–
C). The square, round, and star shapes represent the lasso, ridge, and bridge 
constraint, respectively. The dots are the points where contours are “tangent” 
to the constraints, i.e., the regularized estimates. Note that, in lasso (A) or 
bridge (C), the constraint is discontinuous at zero. If the contour first touches 
the constraint at point zero, the corresponding parameter estimate is zero and 
variable selection is achieved [34].

[36], which is critical for high dimensional problems. To address the 
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theoretically attractive, here are at least three serious disadvantages of 
frequentist penalized regression approaches:

1. Penalized regression is essentially an optimization problem 
that only provides a point estimate of β. Nevertheless, people usually 
also need to know the level of confidence of the estimates, such as 
the confidence interval (or credible interval), and the p-value. This 
problem can be addressed by applying bootstrap sampling [33], but it is 
computationally intensive. Kyung et al. [48] showed that the bootstrap 
estimates of the standard errors of the lasso estimates might be unstable, 
and are not consistent if true 0jβ = .

2. The penalized regression approaches need to preset the tuning 
parameter(s). The commonly used method is to use cross-validation 
[49], to choose ‘optimal’ values of the tuning parameters. However, 
cross-validation can be computationally costly, e.g. for the adaptive lasso, 
it is very challenging to choose multiple tuning parameters. Moreover, 
cross-validation is a standard way to assess the predictive accuracy of 
the model. Choosing tuning parameters using cross validation of the 
prediction error can result in unsatisfactory performance, when the 
main goal is to identify relevant variables. 

3. In frequentist framework, it may be challenging to deal 
with complicated multilevel/hierarchical structures of data, and to 
incorporate external information (for example, data with specific group 
level information) into the model.

High Dimensional Bayesian Variable and Model 
Selection Methods

In the Bayesian framework, the model selection problem is 
transformed to the form of parameter estimation: rather than searching 
for the single optimal model, a Bayesian will attempt to estimate the 
posterior probability of all models, within the considered class of 
models (or in practice, of all models with non-negligible probability) 
[50]. In many cases, this question is asked in variable-specific form 
(variable selection): i.e. the task is to estimate the marginal posterior 
probability that a variable should be in the model [50]. Thus, variable 
selection can be considered a special case of model selection.

In this section, we review some recently developed Bayesian 
methods for high dimensional variable selection. There is an enormous 
amount of literature on Bayesian variable selection methods [50-55]. 
Some conventional Bayesian variable selection methods are Gibbs 
Variable Selection (GVS) [50,53,56], Bayesian Model Averaging 
(BMA) [50,54,56], Stochastic Search Variable Selection (SSVS) [52], 
Unconditional Priors for Variable Selection [57], Product Space Search 
[58], and RJMCMC (Reversible Jump MCMC [59]). Other methods 
include approaches based on Zellner’s g-prior [60-62], Bayes factor 
[63], fractional Bayes factor [64], objective Bayes [65,66], etc. Due to 
space constraint, it is impossible to discuss all the available methods in 
this review. Since, detailed and comprehensive reviews on the state-of-
the-art Bayesian methods have previously appeared in literature [50-
55], here we only mention some of those approaches. Instead, we focus 
on popular recently developed methods. We particularly focus on the 
Bayesian regularization methods, which have been proven successful 
for high dimensional variable selection.

Most of the conventional Bayesian variable selection methods 
rely on MCMC algorithms by specifying spike and slab priors on 
the coefficients subject to selection [50-52], requiring computation 
of marginal likelihood, which is computationally intensive for high 
dimensional models. Also, posterior sampling of these methods often 
requires stochastic search over an enormous space of complicated 

models facilitating slow convergence and mixing, when the marginal 
likelihood is not analytically tractable [67]. On the other hand, Bayesian 
regularization methods specify both the spike and slab as continuous 
distributions, which can be written as scale mixtures, leading to simpler 
MCMC algorithm with no marginal likelihood being computed. 
Also, unlike conventional Bayesian methods, Bayesian regularization 
methods specify shrinkage priors, which enable simultaneous variable 
selection and coefficient estimation. We also discuss two new model 
selection approaches viz. Bayesian model selection based on nonlocal 
prior densities proposed by Johnson and Rossell [67], and Bayesian 
subset regression (BSR) proposed by Liang et al. [68], which are 
shown to be model selection consistent for high dimensional linear 
models.

Bayesian regularization methods

Regularization methods are originally developed by the 
frequentists, and obtaining statistical inference on the regression 
coefficients is usually difficult, and often requires various kinds of 
asymptotic approximations. In contrast, a Bayesian approach enables 
exact inference, even when the sample size is small. Regularization 
methods naturally lend itself to a Bayesian interpretation, in which the 
penalization term in penalized regression is the negative log prior of 
the coefficient. Apart from their easy interpretability, Bayesian methods 
have some advantages over frequentist methods. Firstly, in MCMC-
based Bayesian regularization methods, we have a valid measure of 
standard error obtained from the posterior distribution, and thus, we 
can easily obtain interval estimates of the parameters, along with other 
quantities. Secondly, it is more flexible in the sense that we can estimate 
the tuning parameter jointly with other parameters of interest. Thirdly, 
unlike in frequentist framework, it is fairly straightforward to extend a 
Bayesian model to incorporate multilevel information inherent in the 
data. Lastly, using MCMC and Gibbs sampler to search for the model 
space for the most probable variable models, without fitting all possible 
models is efficient, which avoids time-consuming computation [56].

Regularization methods as hierarchical models: Recent years 
have seen a resurgence of interest in Bayesian hierarchical modeling 
techniques. This increasing popularity can be contributed to the fact 
that hierarchical models are more easily interpreted and handled in 
the Bayesian framework. Hierarchical models can significantly reduce 
the ‘effective’ no. of parameters in a model by linking the coefficients 
together, or shrinking some of them. In Bayesian hierarchical models, 
the hyperparameters include shrinkage parameters, which control the 
complexity of the model, similar to the tuning parameter λ in penalized 
regression approaches. With the given prior distribution, the log 
posterior density for linear models become

2 2

2 2

log ( , , , ) log ( , )

log ( , ) log ( ) log ( ),

p y X p y X

p p p

β σ λ β σ

β σ λ σ λ

∝ +

+ +
		                   (18)

where 2( )p σ  and ( )p λ  are the prior distributions of 2σ  and λ  
respectively, 2( , )p y X β σ  is the likelihood function and 2( , )p β σ λ  is 
the prior distribution of β . It is to be noted that the posterior mode 
(MAP) estimate can be obtained by maximizing the posterior density in 
equation 18. Therefore, the posterior mode estimate is equivalent to the 
penalized regression estimate, with 2log ( , )p β σ λ  as the penalty. Thus, 
with particular priors, hierarchical models can lead to similar results as 
penalized regression approaches. 

It is evident that the prior distribution 2( , )p β σ λ  plays an 
important role in Bayesian regularization methods. For models with a 
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large number of potential variables, it is reasonable to assume that most 
of the variables have no or very weak effects, whereas only some have 
noticeable effects. Therefore, we should set up a prior distribution that 
gives each coefficient a high probability of being near zero. Such prior 
distributions are often referred to as shrinkage prior distributions. 

A shrinkage prior distribution should have an infinite spike at zero 
and very heavy tails, thereby strongly shrinking small coefficients to 
zero, while minimally shrinking large coefficients, and also enable to 
incorporate hierarchical structure of the data. Therefore, the resulting 
hierarchical models can effectively remove unimportant variables and 
reliably estimate the coefficients of important variables simultaneously 
[6].

Different Hierarchical Formulations
Bayesian lasso: Tibshirani [33] suggested that the lasso estimates 

can be interpreted as posterior mode estimates, when the regression 
parameters are assigned independent and identical Laplace priors. A 
remarkable feature of the double exponential distribution is that it can 
be presented as a two-level hierarchical model [69], as scale mixtures 
of normal distributions with independent exponentially distributed 
variances. The two-level formulation of the double exponential 
distributions offers advantages of easily interpreting the model and 
developing computational algorithms. The latent variables 2 2

1 ,.., pτ τ  
directly control the amount of shrinkage in the coefficient estimates. If 

2
jτ = ∞, there is no shrinkage; if 2 0jτ = , the jth coefficient is shrunk to 

zero. Although these latent variables are not the parameters of interest, 
they are useful quantities that allow easy computation [70]. 

Park and Casella [71] introduced Gibbs sampling for Bayesian 
lasso, using a conditional Laplace prior specification of the form 

 2

2 2
1

( ) exp{ }
2

p
j

j

p
λ βλβ σ

σ σ=

= −∏  		     	               (19) 

and non-informative scale-invariant marginal prior on 2σ , i.e.  
2

2
1( )p σ σ∝ . They pointed out that conditioning on 2σ  is important, as 

it ensures unimodal full posterior. Lack of unimodality might slow down 
the convergence of the Gibbs sampler, and make the point estimates 
less meaningful [48]. The Bayesian formulation of the original lasso, 
as given in Park and Casella [71], is given by the following hierarchical 
model:

2 2

1 2 2

1 2 2 2 2 2
1

1

2
2 2 2
1

1

2 2

, , ( , ),

, ,.., (0, ),

,.., ,
2

( ).

j

n
n

p
p

p j
j

p

p
j

y X N X I

N

e

p

λ τ

β σ β σ

β σ τ τ σ τ

λτ τ λ

σ σ

×

×

=

−

=

∏

∏









  			                 (20)

With this formulation, the posterior distribution of β is normal, 
while the reciprocals of the latent variables are distributed as inverse 
Gaussian distributions (Table 2). The posterior distribution of σ2 is 
inverse gamma distribution. Based on this, Park and Casella [71] 
formulated the Gibbs sampler for the Bayesian lasso and achieved 
variable selection by interval estimation. The adaptive version of 
Bayesian lasso can be obtained similarly by specifying variable-specific 
tuning parameter (Table 2).

Method
 

2
1( , ,.., )pp β σ τ τ  1( ,.., )pp τ τ 2( , , )p y Xβ τ Posterior Distributions of Latent 

Parameters

Bayesian lasso
 

2(0, )pN Dτσ 2 2
2

2

1 2

jp

j

e
λ τλ −

=
∏

1 2 1( , )T
pN A X y Aσ− − 2 2

2
2

, , ,

IG ( , )

j

j

X yτ β σ

λ σ λ
β

−



Bayesian ridge
 (0, )pN Dτ′ 2 2

1

( , )
p

j

Inv v sχ
=

−∏
1 2 1( , )T

pN A X y Aσ− −′ ′ 2

2

2 2

1

, ,

v p
p

j
j

X y

vs

τ β

χ

β

−

+

=

+∑


Bayesian adaptive lasso
 

2(0, )pN Dτσ 2 22
2

1 2

j jp
j

j

e
λ τλ −

=
∏

1 2 1( , )T
pN A X y Aσ− − 2 2

2
2

, , ,

IG ( , )

j

j
j

j

X yτ β σ

λ σ
λ

β

−



Bayesian elastic net
 

2 *(0, )pN D τσ 2 2
12

1 2

1 2

jp

j

e
λ τλ −

=
∏

1 1* 2 *( , )T
pN A X y Aσ

− − 2 2

2 2
21

12

, , ,

( , )

j

j

X y

IG

τ β σ

λ σ
λ

β

−



Bayesian group lasso* (K Groups) 2 2(0, )
k km k mN Iσ τ 2

1

1
( , )

2 2

K
k

k

m
Gamma λ

=

+∏
1 * 2 1( , )

k

T
m k k kN A X y Aσ− − 2 2

2 2
2

2

, , ,

IG ( , )

k

k

X yτ β σ

λ σ λ
β

−



*For Bayesian Group Lasso the shrinkage prior distribution is 2
1( , ,.., )Kp β σ τ τ  with corresponding mixing density 1( ,.., )Kp τ τ  and posterior distribution  2

1( , , ,.., )k k pp β β σ τ τ− , where  

1 1 1( ,.., , ,.., )k k k Kβ β β β β− − + ′= ,  * 1
2 k k

k k
y y X β′ ′

′≠

= − ∑ , 2
1 ,  1(1) .

k

T
k k k m

k
A X X I k Kτ= + = 1( )TA X X Dτ

−= + ,  * * 1( )TA X X D τ
−= + , 

2

2( )T
pA X X Iσ

τ
′ = + , Dτ′  is a diagonal matrix with diagonal elements 22 στ λ=

, *Dτ  is a diagonal matrix with diagonal elements 2 1
2( ) ,iτ λ− −+   1,..,i p=   and Dτ  is a diagonal matrix with diagonal elements 2

jτ . IG refers to inverse Gaussian distribution. 

Table 2: Scale mixture representation of different shrinkage priors and corresponding posterior distributions.
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Bayesian ridge: The hierarchical representation of Bayesian ridge 
estimator is obtained as follows:	

1 2 2

1 2 2

1

2 2 2

, , ( , ),

(0, ),

( , ).

n
n n

p
p

j

y X N X I

N

Inv v s

β σ β σ

β τ τ

τ χ

×

×

=

−

∏







			                 (21)

Under this hierarchical prior, the posterior distribution of β is 
normal, while the reciprocal of the latent variable 2τ  is distributed as 
χ2 distribution. The above Bayesian ridge regression can be extended 
to include variable-specific latent variables. In that case, the prior 
distributions become	

2 2 2 2 2(0, ),  ( , ).j j j jN Inv v sβ τ τ τ χ−  		                   (22)

And the conditional posterior distribution of  
2
jτ  becomes

2
2

2 2, , .v p
j

j

X y
vs
χ

τ β
β
+−

+


 			                (23)

Bayesian group lasso: The hierarchical representation of Bayesian 
group lasso estimator is obtained as follows:

 

1 2 2

1 2 2 2 2

2
2 2
1

1
2 2

, , ( , ),

, (0, ),  
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1

,.., ( , ),
2 2
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n
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m
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K
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K
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y X N X I

N I

k K
m

Gamma

p

β σ β σ

β σ τ σ τ
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







 		                 (24) 

Under this hierarchical prior, the posterior distribution of βk is 
normal, while the reciprocals of the latent variables are distributed 
as inverse Gaussian distributions (Table 2). A non-informative scale-
invariant marginal prior on σ2 results in an inverse gamma posterior 
distribution of σ2.

Bayesian elastic net: Similarly, the hierarchical representation of 
Bayesian elastic net estimator is obtained as follows:

2 2
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1 2 2
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	                                             (25)

Posterior distributions of the tuning parameters 
and their expectations

E-step M-step

Bayesian lasso
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Bayesian adaptive lasso
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Bayesian elastic net
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Bayesian group lasso** (K Groups)
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* *where, ( )TA X X D= +  ,  
1

2 2
1( .., )

Km K mD Diag I Iτ τ= . 
Table 3: EM algorithms for various Bayesian regularization methods.
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Under this hierarchical prior, the posterior distribution of β is 
normal, while the reciprocals of the latent variables are distributed as 
inverse Gaussian distributions (Table 2). Here also, a non-informative 
scale-invariant marginal prior on σ2 results in an inverse gamma 
posterior distribution of σ2. For a slightly different version of Bayesian 
elastic net estimator refer to the paper of Li and Lin [72]. Other related 
developments are Bayesian bridge [73], and a different version of 
Bayesian adaptive lasso [74]. 

Estimation of hyperparameters: In the Bayesian framework, 
typical approaches for estimation of the tuning parameters are based 
on incorporating them into the Gibbs sampler with an appropriate 
hyperprior [48]. Park and Casella [71] suggested using a gamma 
prior G(a,b) for a proper posterior. The prior, which is put on 2λ  for 
convenience because of the way λ  enters into the posterior [48], is 
given by

22 2 1( ) ( ) ,  , 0.
( )

a
a bbp e a b

a
λλ λ − −= >

Γ 	                                                   (26)

For elastic net, we have two parameters, and we assign 1 1( , )G a b  

and 2 2( , )G a b  for 2
1λ  and 2

2λ  respectively. When the prior (Equation 
26) is used in the hierarchy, the full conditional distributions of all the 
tuning parameters are gamma distributions, and are listed in Table 3. 
For Bayesian ridge, a gamma prior G(a,b) is put on s2, which again 
results in a gamma posterior (Table 3). The tuning parameters can 
also be estimated through the marginal likelihood of λ , which can be 
implemented with an EM/Gibbs algorithm [48].

In this 
section, we briefly describe two popular model-fitting algorithms (viz. 
MCMC and EM), for estimating parameters in Bayesian regularization 
methods in linear regression. For the MCMC algorithms, we only 
describe the hierarchical formulations and the corresponding posterior 
distributions. Any feature of the posterior distribution is a legitimate 
candidate for Bayesian inference: moments, quantiles, highest posterior 
density regions, etc. [19]. Posterior median is one attractive measure as 
a robust estimator. Hans [75] emphasized using the posterior mean as 
point estimate, as it facilitates prediction of future observations via the 
posterior predictive distribution. However, implementation of MCMC 

computing time. For practical and computational purposes, it is often 

parameters and their standard errors. The EM algorithm [76] aims 
to address this issue by providing MAP estimates along with speedy 
inference and fast computation. 

It must be emphasized that both non-Bayesian and Bayesian 
regularization methods are essentially optimization methods, with the 
common goal of determining the model parameters that maximize 
some objective function. A Bayesian approach can often lead to very 
different results than a traditional penalized regression approach [76]. 
Although, the Gibbs samplers discussed in this paper are extremely fast 
[48], one should be aware of the existence of problems relating to MCMC 
algorithms, e.g. slow convergence, poor mixing, etc. Therefore, once 
the simulation algorithm has been implemented and the simulations 
are drawn, it is absolutely necessary to check the convergence of the 
simulated sequences [6]. Inference based on the output of a slowly 
converging algorithm may require long runtime (many iterations 
e.g. thousands, millions, or more). If the convergence is not attained 
(painfully slow), one should resort to an alternative algorithm or other 
remedies, e.g. increasing burn-in period, thinning, etc. [6], for the 
inference to be valid.

MCMC algorithm

As shown above, the conditional posterior distribution for each 
parameter has standard form, and thus, can be directly sampled. Thus, 
the MCMC algorithm can be applied to fully explore the joint posterior 
distribution by sampling each parameter from its conditional posterior 
distribution. In summary, the MCMC algorithm proceeds as follows: 

1. Initialize all the parameters with some plausible values. 

2. Update β by sampling from its conditional posterior.

3. Update the latent variables and the variance parameter by 
sampling from their conditional posterior distributions. 

4. If the hyperparameters are not prefixed, update them by sampling 
from their conditional posterior distributions.

EM algorithm 

Given the latent variables 
2
jτ ’s, the prior information of β can be 

incorporated in the linear model, as p ‘additional data-points’ with 
value 0 (prior means), and corresponding ‘explanatory variables’ equal 
to 0, except jx  which equals 1 and residual variance depending on 2

jτ  
[6]. Therefore, given 2

jτ , the posterior mode of 2( , )β σ  can be obtained 
by performing weighted linear regression on the augmented response 
variable y*, augmented design matrix X* and augmented variance-
covariance matrix Σ , where



* 1
1,( ..., ,0,0..0)n p

n
p

y y y+ × ′= , *n p pX + × = 
p

X
I

=  
 
 
 

 and

n p n p+ × +Σ  =
2

2

0
0

n
p p

I

β

σ
σ ×

 
 
 Σ 

 and βΣ  is a diagonal matrix 

containing prior variances. Therefore, by treating the latent variables as 
‘missing data’ and averaging over them, we can estimate the posterior 
mode of 2( , )β σ  by EM algorithm [76]. The algorithm proceeds as 
follows:

1. Initialize all the parameters with some plausible values. 

2. E-Step: Update the latent variables by replacing their posterior 
conditional expectations.

3. M-Step: Update 2( , )β σ  by weighted linear regression on the 
augmented data as follows:

  

* 1 * 1 * 1 *

2 * * 1 * *

ˆ ( ) ,
1 ˆ ˆˆ ( ) ( ).

T T

T

X X X y

y X y X
n p

β

σ β β

− − −

−

= Σ Σ

= − Σ −
+

	                                   (27)

4. Repeat 1,2, and 3, until convergence.

Table 3 gives the summary of E and M steps for different Bayesian 
regularization methods. In some cases, the hyperparameters need to 
be updated in the E-step, which can be easily done by plugging in their 
conditional posterior expectations. Other variants of EM algorithms 
are proposed by Figueiredo [77] and Xu [78]. 

Extension to GLM: A generalized linear model (GLM) consists 
of three components: the linear predictor, the link function and the 
distribution of the outcome variable [6,79]. The linear predictor can be 
expressed as: Xη β= ; the link function (.)g  relates the linear predictor   
η  to the mean of the outcome variable y as: 1( ) ( )E y X g X β−=  and the 
distribution of y depends on the linear predictor X β  and generally 

Algorithms for fitting Bayesian regularization methods: 

algorithms for high dimensional problems may require excessive 

desirable to have a fast algorithm that returns point estimates of the 
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also a dispersion (or variance) parameter φ and can be expressed as: 

1

( , ) ( , )
n

i i
i

p y X p y Xβ φ β φ
=

=∏ , where i iX β η=  is the linear predictor for 

the ith observation. 

The standard IRLS algorithm proceeds by approximating the 
generalized linear model by a weighted normal linear regression, and 
estimating the maximum likelihood estimates of the parameters ( , )β φ  
using weighted least squares, and then iterating the process [6]. At 
each iteration, the algorithm calculates pseudo-data iz  and pseudo-
variances 2

iσ  for each observation based on the current estimates of 
the parameters ˆ ˆ( , )β φ , approximating the generalized linear model 
likelihood ( , )i ip y X β φ  by the normal likelihood 2( , )i i iN z X β φσ  and 
then updating the parameters by weighted linear regression. The 
iteration proceeds until convergence. The pseudo-data iz  and pseudo-
variances 2

iσ  are calculated by

2

ˆ ˆ( , )
ˆ ,

ˆ ˆ( , )

1ˆ ,ˆ ˆ( , )

i i

i i

i i

i
i i

L y X
z X

L y X

L y X

β φ
β

β φ

σ
β φ

′
= −

′′

=
′′

		                                  (28)

and the estimates are obtained as 

1ˆ ( ) ,
1ˆ ˆ ˆ( ) ( ),

T T
WLS

T

X WX X Wz

z X W z X
n p

β

φ β β

−=

= − −
−

  	                                   (29)

where  1 2 2
1( ,.., )nW Diag σ σ− = , L is the log-likelihood, L′  and L′′  are 

first and second order derivatives of L with respect to iη  and ˆ ˆ( , )β φ  are 
the current estimates of  ( , )β φ . Thus, all the methods described above 
can be easily extended to generalized linear models by approximating 
the GLM likelihood by normal likelihood [80,81].

Related Bayesian shrinkage methods: Bayesian regularization 
methods are not merely the Bayesian versions of different regularization 
methods. In fact, Bayesian regularization methods fall into the broad 
class of Bayesian shrinkage methods. Apart from the methods discussed 
above, there are tons of other Bayesian shrinkage methods available 
in literature, which include the normal/exponential-gamma model of 
Griffin and Brown [82]; the normal/gamma and the normal/inverse-
Gamma model [70,83]; the horseshoe prior of Carvalho et al. [84]; the 
generalized double-Pareto model of Armagan et al. [85]; the orthant 
normal prior of Hans [86]; mixture of uniform prior of Knürr at al. [87]; 
the Laplace-Poisson model of Chen et al. [88], and the hypergeometric 
inverted-beta model of Polson and Scott [89]. For the literature of EM 
algorithms in Bayesian shrinkage methods, refer Gelman et al. [6], 
Green [90], Polson and Scott [89]. 

Bayesian model selection using nonlocal priors

Regularization methods identify only one model that maximizes a 
penalized likelihood function, or minimizes RSS subject to a penalty. 
On the other hand, most conventional Bayesian methods based on 
local prior densities [61-64] provide estimates of posterior model 
probabilities that are poor and unrealistic, and therefore, the posterior 
model probability estimates are often unreported for high dimensional 
linear models [67]. To overcome this deficiency, Johnson and Rossell 
[67] recently proposed Bayesian model selection methods by specifying 
nonlocal prior densities on the regression coefficients, which provide 

accurate estimates of the posterior probability that each identified 
model is correct. Unlike local prior densities, which are positive at null 
parameter value, nonlocal prior densities are identically zero whenever 
a model parameter is equal to its null value [91]. Johnson and Rossell 
[67] introduced two classes of nonlocal priors on the coefficients, along 
with their frequentist analogues for both densities, which we describe 
below.

Product moment (pMOM) densities: The first class of nonlocal 
densities is called product moment (pMOM) densities, which are 
defined as

1
2 2 22 2
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1exp ,
2

p prp
p p

p
r

p j
j

p r d A

A

β τ σ π τσ

β β β
τσ

− − −

=

=

 ′× −  
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for 0τ > , pA  a p p×  nonsingular matrix, and 1,2,...r =  is called the 
order of the density and pd  is the normalizing constant independent 
of 2σ  and τ . Similar to BIC, an objective function that might be 
associated with this prior can be expressed as 
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where L is the likelihood function and 0d > . Similar to BIC, model 
with minimum value of the objective function (equation 31) should be 
selected as the best model.

Product inverse moment (piMOM) densities: The second class 
of nonlocal densities is called product inverse moment (piMOM) 
densities, which are defined as
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for 0τ >  and r=1,2,.... The parameter τ  in both pMOM and piMOM 
prior densities represents a scale parameter that determines the 
dispersion of the prior densities on β  around the null vector, and 
it should be estimated carefully for efficient computation [67]. The 
objective function associated with this prior can be expressed as 	

          (33)	  

where L is the likelihood function and 0d > . Similar to above, model 
with minimum value of the objective function (Equation 33) should be 
selected as the best model

Based on these prior densities, Johnson and Rossell [67] formulated 
marginal densities in analytical form, leading to analytical posterior 
probabilities. Using these expressions, they proposed an MCMC 
scheme to obtain posterior samples. They demonstrated that the 
proposed method is model selection consistent (posterior probability 
of selecting the ‘true’ model approaches 1), as n →∞  and as long as 
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n p≤  under certain regularity conditions on the design matrix X. 
Also, the proposed method performed impressively, when compared 
with Bayesian methods based on local prior specifications [61-64]. 
Moreover, the proposed method performs either as well, or better 
than various regularization methods, as evident from their simulation 
studies. Although they provided frequentist versions of the nonlocal 
prior specifications, Johnson and Rossell [67] recommended using 
Bayesian methods, as it facilitates inference regarding the posterior 
probability that each model is true along with easy computation.

Bayesian Subset Regression (BSR)

Another recently developed method, which is particularly 
interesting to us and within the scope of current review, is the Bayesian 
Subset Regression (BSR) method proposed by Liang et al. [92], for 
high dimensional generalized linear models. They propose a new prior 
specification, which results in a Bayesian subset regression (BSR), with 
the negative log-posterior distribution approximately reduced to EBIC, 
when the sample size is large. In addition, they propose a variable 
screening procedure based on marginal inclusion probability, which 
is shown to have same theoretical properties of sure screening and is 
consistent, as the SIS procedure by Fan and Song [93], although both 
SIS [93,94], and its iterative extension ISIS [95] are outperformed by the 
proposed method, in terms of prediction accuracy. Also, the proposed 
method outperforms several popular regularization methods, including 
lasso and elastic net, suggesting that BSR is more suitable in high 
dimensional models than regularization methods. Here, we describe 
the method for high dimensional linear models.

Prior specification: To formulate the prior specification of their 
method, let us denote the number of explanatory variables as Pn. 
Following Liang et al. [92], let us denote by nξ  a subset model (of size  

nP≤ ) of the full model with nP  predictors. Let, ( )* * *
1 2, ,..,

n nξ ξβ β β β=  
denote the vector of true regression coefficients of the model nξ . 
With this formulation, Liang et al. [92] set up following priors on  nξ
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which ensures that the prior information of nξ
β  can be ignored for 

sufficiently large n; vn  denotes the prior probability of each variable, 
independent of other variables to be selected for the subset model, and   
Kn is an upper bound on the model size nξ  facilitating calculation of 
the MLE ˆ

nξ
β .

Posterior distribution: With the above prior specifications and 
following prior probability specification
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and equals −∞  otherwise. Thus, the negative of the log-likelihood 
approximately reduces to the EBIC. This leads to Bayesian subset 
regression, with the MAP model approximately equivalent to the 
minimum EBIC model. For the simulation of the posterior, they 
propose an adaptive MCMC algorithm. With extensive numerical 
studies, they establish that BSR outperforms penalized likelihood 
approaches significantly, especially when the dimension of Pn is 
increasing. Under mild conditions, they establish the consistency of the 
resulting posterior. In addition, they show that the posterior probability 
of the true model will converge to 1 as  n →∞ . 

Asymptotic Behaviors of High Dimensional Bayesian 
Methods

In this section, we consider the asymptotic behaviors of Bayesian 
variable selection methods in high dimensional linear models. Here also 
we denote the number of explanatory variables as Pn which is possibly 
much larger than the sample size n and it is assumed that the regression 

coefficients satisfy the sparseness condition *

1
lim

nP

jn j
β

→∞
=

< ∞∑ , where *
jβ  

is the jth ‘true’ regression coefficient. The sparseness condition describes 
a general situation when all explanatory variables are relevant, but most 
of them have very small effects [96]. Several authors have studied the 
asymptotic properties of Bayesian variable selection methods under 
different regularity conditions [68,96-99]. Wang et al. [96], Jiang [97] 
and Jiang [98] used a framework developed by Wasserman [100], for 
showing consistency in the context of density estimation. According 
to Wasserman [100], ‘density consistency’ is defined as ‘given a proper 
prior to propose joint densities ( , )f x y  of response y and explanatory 
variables vector  x, the posterior-proposed densities are often close to the 
true density for large  n’. Given a proper prior to propose joint densities 
of response y and explanatory variables vector x, the above three works 
showed that the posterior-proposed joint densities are often consistent 
to the true joint density for large n. Jiang [98] defined a proper prior 
for different sets of explanatory variables to prove that the posterior-
proposed densities with different parameterizations were consistent to 
the true density. Wang et al. [96] further proved the ‘regression function 
consistency’, which ensures good performance of high dimensional 
Bayesian variable selection methods, especially when some regression 
coefficients are bounded away from zero, while the rest are exactly zero. 
Jiang [97] also studied the convergence rates of the fitted densities for 
generalized linear models and established consistency under some 
realistic assumptions. In summary, the asymptotic results reveal that 
with appropriate prior specification, high dimensional Bayesian 
variable selection methods not only can identify the ‘true’ model with 
probability 1, but also can give consistent parameter estimates [96], 
facilitating tremendous applications in a variety of fields. For other 
asymptotic results refer Casella et al. [19] or Moreno et al. [101].

On the other hand, unlike frequentist methods, asymptotic 
behaviors of Bayesian regularization or shrinkage methods are less 
studied and poorly understood [68]. Armagan et al. [99] provided 
sufficient conditions on prior concentration for strong posterior 
consistency, when ( )nP o n=  as n →∞  for various Bayesian shrinkage 
methods, including Bayesian lasso [71], generalized double pareto 
[85], and horseshoe estimator [84]. Posterior consistency involves 
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examining a posterior probability of a set of parameter values as 
n → ∞ , where the set is any neighborhood of the true parameter 
value [102]. Posterior consistency is mainly verified after checking 
sufficient conditions for a general posterior consistency theorem, after 
defining a suitable topology of the parameter, and the neighborhood of 
the true value of the parameter [102]. Bhattacharya et al. [92] studied 
prior concentrations of various Bayesian shrinkage priors to investigate 
whether the entire posterior distributions of these methods concentrate 
at the optimal rate, i.e. the posterior probability assigned to a shrinking 
neighborhood (proportional to the optimal rate) of the true value of 
the parameter converges to 1. They argued that most of the Bayesian 
shrinkage methods are sub-optimal, in terms of posterior contraction, 
which is considered stronger optimality condition than posterior 
consistency alone. Due to lack of theoretical justification, Bayesian 
shrinkage methods are not easily adopted by subjective Bayesians and 
frequentists [68]. Therefore, much work in this direction needs to be 
done to better understand these approaches regarding their asymptotic 
behaviors in high dimensional linear models.

Discussion
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