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Introduction
The research area which combines cells with carrier materials to 

reproduce tissues in the laboratory is called Tissue Engineering (TE). 
Within the field of TE, scientists of different disciplines such as cell 
biology, biomaterials, biomechanics, engineering and translational 
medicine are collaborating and have already made fruitful scientific 
achievements. Since cartilage consists of a single cell type namely the 
chondrocyte and has a very poor healing capacity, it was identified 
earlier on as an ideal candidate for tissue engineering. However, the 
macromolecular arcade-like collagen architecture of cartilage, which 
is capable of withstanding an enormous amount of intensive and 
repetitive forces during life, is challenging to engineer.

Both cartilage and bone are formed during a process called 
endochondral ossification. Although in the early embryonic phase 
these tissues start from the same mesenchymal cell condensates, the 
difference in self-repair capacity is striking [1]. Compared to bone, 
cartilage has a very poor regenerative capacity. The difference in repair 
capacity may be partially explained by the presence or absence of 
periosteum and the lack of inherent vasculature in cartilage. Periosteum 
is absent in articular cartilage but covers the surface of most bones. 
It has been demonstrated that the periosteum is critically involved in 
repair of bone fractures and plays an important paracrine role during 
skeletogenesis. Especially the cambium layer of the periosteum, which 
is a source of mesenchymal progenitor cells, has been shown to be 
capable of forming cartilage and bone in vitro, ex vivo and in vivo [2].

The aforementioned properties of periosteum have been explored 
to repair articular cartilage. However, due the lack of control over 
quality and amount of tissue, viability of progenitor cells and unwanted 
graft ossification, periosteum had become a less popular tissue for 
cartilage repair. Hypertrophy and ossification of the repair tissue 
remain undesirable processes hampering good functional cartilage 
repair. In this context maintaining the appropriate chondrocytic 

phenotype that can produce type II collagen and other relevant 
cartilage macromolecules is important in ensuring favourable 
longterm outcomes in cartilage repair. In this review the historic role 
of periosteum in the early examples of cartilage repair, using principles 
of tissue engineering is discussed, and the potential role of periosteum 
in engineering ectopic cartilage for autologous transplantation is 
reviewed. The lessons learned from studying periosteal chondrogenesis 
may unravel factors that may prevent undesirable hypertrophy and 
calcification of repaired cartilage.

Periosteum - a historical perspective

The outer surface of bones is covered by a condensed, fibro-
collagenous layer called periosteum. This periosteal layer is tightly 
attached to the underlying bone by collagen fibers. These so-called 
Sharpey’s fibers penetrate deep into the outer cortical tissue. Two 
morphologically distinguishable layers can be found in periosteum; 
(i) the outer, thicker fibrous layer, and (ii) the layer adjacent to the
bone called the cambium layer (Figure 1). The definition “cambium”
refers to the cambium layer of the trunk of a tree [3]. The cambium
layer in the periosteum contains mesenchymal progenitor cells with
osteo- and chondrogenic potential. Periosteum is highly active during
fetal development when it generates osteoblasts for the appositional
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Abstract
Cartilage, due to its unique physiology (lack of vasculature), can be potentially repaired using tissue engineered 

in the laboratory, by combining cells and with a supporting scaffold. This requires a marriage between material 
science, cell biology, and translational medicine, a concept well established as Tissue Engineering. 

Over the years the in vivo and in vitro chondrogenic potential of periosteum has been recognised by many 
researchers and as such periosteum is explored both to repair cartilage defects directly by transplanting periosteum 
into the cartilage defect or by using periosteum as a cell source for cartilage engineering purposes. The initial 
example hereof is the first generation of Autologous Chondrocyte Transplantation. Graft hypertrophy and ossification 
remain the primary drawbacks of cartilage repair strategies using engineered cartilage. These drawbacks may 
(partially) be due to the endochondral ossification process that can take over when cartilage is repaired. In this 
process chondrogenesis of progenitor cells is followed by hypertrophy of these cells and subsequent ossification. 
Periosteal progenitor cells go through this process in order to heal bone fractures. This review provides an overview 
of the role of periosteum in cartilage repair and cartilage tissue engineering and illustrates how periosteum can be 
used as a model to study the endochondral process. Such studies may provide clues to further optimize cartilage 
tissue engineering by identifying important factors which are capable of maintaining cells in their chondrogenic 
phenotype. Finally, the use of periosteum to engineer cartilage in vivo at an extra-articular site is described.
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growth of bone. In 1942, Duhamel was the first to publish a report 
which recognised the osteogenic function of periosteum [4]. Culturing 
periosteum was first described by Fell [5]. These reports of Duhamel 
and Fell reported about the osteogenic capacity of periosteum. Now 
it becomes more and more clear that osteogenesis of periosteum is 
due to the process of endochondral ossification. The first phase of 
the endochondral process is chondrogenesis and it was the group 
of Caplan in the nineties which reported about the chondrogenic 
capacity of periosteum [6,7]. Caplan’s group mostly used (super) 
confluent isolated chick periosteum cells to examine the osteogenic 
and chondrogenic capacity of these cells. At this time the group of 
O’Driscoll reported an ex vivo culture model [8]. In this model whole 
periosteal tissue grafts are isolated and cultured in a bilayer of agarose. 
Work of the group of O’Driscoll confirmed earlier reports of Press 
(1924) and Owen (1970) that the osteochondral potential of periosteum 
decreases with age [9,10]. In vitro Transforming Growth Factor 
(TGF)-β and members of its superfamily such as Bone Morphogenic 
Proteins (BMP’s) are used to trigger chondrogenesis of periosteal cells. 
In vivo, Parathyroid hormone related peptide (PTHrP) is expressed by 
periosteum [11]. PTHrP acts together with Indian Hedgehog (Ihh) in a 
negative feedback loop regulating the pace of chondrocyte proliferation 
and terminal hypertrophic differentiation in the developing growth 
plate, thus growth of long bones is also influenced by periosteum in 
a paracrine way [12]. Post-natal and even after closure of the growth 
plates periosteum remains important for fracture healing. In case of 
a bone fracture especially cells of the periosteal cambium layer are 
involved in bone formation via the endochondral ossification process. 
During this process cartilage tissue is formed. This cartilage undergoes 
hypertrophy, dies and leaves a template behind for invading cells to 
deposit bone tissue and providing the necessary  vascularisation [13]. 
The thickness and chondrogenic potential of periosteum decreases with 
increasing age [14], thereby deteriorating the natural healing capacity 
of the bone. Periostin is expressed by the periosteum and increased 
periostin expression is found under mechanical stress (e.g. fracture) 
[15]. This adhesion molecule is believed to play a role in the recruitment 
of osteoblast precursors [16] and thus determines, in part, the fracture 
healing capacity at places where periosteum is covering bone. At 
locations where periosteum is absent (e.g. within the joint capsule of the 
femoral neck) fractures heal slowly. This may be explained by decreased 
availability of mesenchymal precursors, but also by virtue of absence of 
periostin and other important periosteum-excreted paracrine factors. 
This concept is strengthened by the fact that removing periosteum 
surrounding a fracture leads to absence of cartilage in the fracture callus 
[17] and consequently impairs the fracture healing process. 

Hypertrophy and ossification after cartilage repair

One year after Duhamel reported the osteogenic function of 
periosteum, Hunter was the first to recognise that articular cartilage, 
once destroyed, does not heal spontaneously [18,19]. Whereas the 
progenitor cells in bone marrow and periosteum contribute to bone 
formation during fracture healing, articular cartilage is largely deprived 
of these progenitors. Although it has been shown that the superficial 
layer of articular cartilage and the synovial membrane contain 
mesenchymal progenitor cells [20,21], cartilage has a limited ability for 
self repair [22]. Cartilage defects may arise due to trauma or cartilage 
degeneration. Although patient’s history may differentiate between 
traumatic and degenerative lesions, in clinical practice it often remains 
difficult to find the cause of cartilage defects. Small or early superficial 
cartilage defects may present with only (minor) effusion of the affected 
joint or even without symptoms or pain, as cartilage lacks nerve fibres. 
A study of Hjelle and co-workers showed that in more than 60% of 
arthroscopies for different indications (e.g meniscus lesion), cartilage 
lesions were found along [23]. In addition, diagnosis of structures 
likely to be damaged upon trauma (e.g. subchondral bone, ligaments or 
menisci), by Magnetic Resonance Imaging (MRI) may reveal an even 
higher general incidence of cartilage lesions. Important developments 
in the field of MRI are protocols such as delayed Gadolinium 
Enhanced MRI of Cartilage (dGEMRIC) and T1Rho. Both techniques 
are designed to visualize cartilage on the collagen and GAG content 
level [24]. Overall MRI is expected to replace cartilage biopsies for 
evaluation of (novel) cartilage repair strategies and thus becomes more 
important in evaluation of progression of cartilage degeneration and 
cartilage repair techniques in a non-invasive manner. Both biopsies and 
MRI’s have shown that cartilage repair may be hampered by unwanted 
hypertrophy and ossification. Peterson was the fist to describe this 
unwanted hypertrophy during ACT, while interlesional osteophytes are 
reported after microfracture procedures, minced cartilage procedures, 
and perichondrium arthroplasty [25,26]. Interlesional osteophytes can 
seen as a consequence of ossification of the repaired cartilage.

Periosteal and perichondrium arthroplasty

Periosteal progenitor cells capable to undergo chondrogenesis 
reside in their own matrix. This not only gives periosteum good 
handling properties but some even regard periosteum as a 
natural scaffold with its own progenitor cells. As such periosteum 
transplantation is a potentially interesting approach for the treatment 
cartilage defects. Many researchers have reported on the chondrogenic 
potential of periosteum [2,27-29]. In a rabbit study de novo formatted 
hyaline cartilage with collagen type II (COl2A1) was found in more 
than 90 percent of the cartilage defects treated with autologous 
periosteal grafts [2]. However studies in human subjects never showed 
such successful results [30]. Many factors may impact the clinical 
results when applying periosteum in humans for cartilage repair; (i) 
a decreasing number of progenitor cells with increasing age, (ii) the 
method of harvesting periosteum is essential to include the cambium 
layer with its progenitors, (iii) ossification of subchondral bone by 
factors released by the transplanted periosteum or ossification of the 
transplanted periosteum itself [31]. An alternative method is the use 
of perichondrium. This tissue resembles periosteum, but in contrast 
to periosteum does not cover bones but covers cartilage of the ribs. 
Perichondrial arthroplasty used for human cartilage repair was first 
described by Skoog et al. [32]. This technique has been reported to give 
an initial cartilage repair in the defect [33,34]. On the long term poor 
results related to overgrowth of the graft and ossification are reported 
by Bouwmeester et al. [26]. This report of Bouwmeester was one of 

Figure 1: Periosteum stained with thionine. The cambium layer contains a 
high density of progenitor cells and is attached to the bone. The fibrous layer 
contains less cells that are predominantly fibroblastic (magnification 200X).
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the first reports illustrating the need to prevent ossification of the 
repaired cartilage and the need to maintain cells in their chondrogenic 
phase. These authors concluded that a better fixation of the graft might 
improve the results. However, the underlying biology causing the poor 
outcome of the technique is not understood. In a study comparing 
periosteum with perichondrium, chondrogenesis was significantly 
more observed when using periosteal grafts [35]. Lack of control of 
the amount of progenitor cells prior to transplantation, graft fixation 
and control of unwanted ossification post-transplantation, remain 
an issue of concern, especially when using progenitor cells for Tissue 
Engineering of cartilage.

The role of periosteum in autologous chondrocyte 
transplantation

The work of Brittberg and co-workers showed that chondrocytes 
can be harvested from the patient, cultured ex vivo and then 
successfully transplanted for the repair of articular cartilage defects 
using a gel carrier [36]. This technique, commonly referred to as 
Autologous Chondrocyte Transplantation or Implantation (ACT of 
ACI), is one of the first examples to successfully espouse the principles 
of tissue engineering for cartilage repair. In the early years of ACT, 
transplanted chondrocytes were kept in the cartilage defect by suturing 
an autologous periosteal flap over the treated defect with no additional 
augmentation using artificial structures. It was expected that the 
combination of the chondrogenic potential of periosteum together with 
the transplanted chondrocytes would be essential and would generate 
a chondrogenic unit leading to cartilage repair [37]. However, since 
the chondrogenic effect of the periosteum declines drastically with age 
[14], the stimulatory effect of the periosteum might only be relevant in 
younger patients. On the other hand, periosteum alone could be used 
to treat younger patients [37]. But the combination of chondrocytes 
and periosteum may better be reserved for older patients. Because of 
the substantial risk of periosteal hypertrophy, the technology requires 
refinement with the inclusion of new bioactive biomaterials that can 
secure the cells in the defect area and enhance their proliferation and 
differentiation. This optimization effort has led to the introduction of 
collagen meshes in ACI procedures.  Since ACI demands the harvesting 
of autologous cartilage donor tissue from a non load bearing site at 
the articular cartilage surface, one might argue that this technique 
intrinsically causes extra damage to the already damaged joint. As 
an alternative, mesenchymal progenitor cells can be harvested from 
other donor sites. This is appealing as the use of these cells in cartilage 
repair would not further damage the joint. Mesenchymal progenitor 
cells in cartilage repair are therefore the subject of investigation by 
several groups including ours. However, the implementation of these 
cells can pose several challenges. Our group reported that periosteal 
progenitor cells implanted into an osteochondral defect have a poor 
survival compared to chondrocytes [38]. Ball et al. [39] demonstrated 
increased viability of differentiated, allogenic perichondrium cells 
upon implantation compared to non-differentiated ones [39]. When 
using progenitor cells for cartilage repair, ossification of the repaired 
tissue may impair clinical results. Examples hereof are ossification and 
formation of interlesional osteophytes when applying techniques such 
as microfracture and periosteum or perichondrium plasty [25,26]. 
These findings illustrate that maintaining differentiated progenitor 
cells in their chondrogenic state is a challenging task in cartilage 
repair. In contrast to native chondrocytes, it seems that progenitor 
cells have the tendency to follow the different phases of endochondral 
ossification towards hypertrophy and mineralisation after being 
triggered to differentiate into chondrocytes. As such, it is of utmost 

importance to maintain cells in their desired differentiation state 
when applying these cells for cartilage TE purposes. Work of Hendriks 
and co-workers showed that chondrocytes stimulate mesenchymal 
progenitor cells towards chondrogenesis when both cell types are co-
cultured [40]. Importantly, the resulting cartilage constructs remains in 
its chondrocyte phase. The underlying mechanism was later described 
by Fisher et al. who suggested that human articular cartilage-derived 
soluble factors such as parathyroid hormone related peptide (PTHrP) 
are potent means of improving chondrogenesis and suppressing the 
hypertrophic development of mesenchymal stem cells [41] as they 
differentiate into chondrocytes. Furthermore, we have recently shown 
that cyclooxygenase-2 (COX-2) inhibitors are also able to decrease 
chondrocyte hypertrophy (manuscript in preparation). Taken together, 
studying periosteal chondrogenic differentiation may improve the use of 
mesenchymal progenitor cells for cartilage TE purposes. In conclusion, 
cartilage defects remain challenging to treat and TE approaches are 
being extensively evaluavated to overcome the inability of cartilage to 
repair itself. Both the past experience of periosteum transplantations 
into the cartilage defect and studying cartilage formation by periosteal 
progenitor cells both in vitro as in ex vivo models give important clues 
how to further optimize cartilage TE.

Periosteum as a model to study and improve cartilage te

As mentioned above, periosteum can be harvested and cultured 
as an ex vivo model [8]. After harvesting, periosteum is embedded 
in a sandwich of agarose. TGF-β is used to induce chondrogenesis of 
progenitor cells in the cambium layer. The advantage of such a model 
is that mesenchymal progenitor cells remain in their own surrounding 
matrix and time consuming and demanding cell culture techniques are 
bypassed. Such an ex vivo model enables the investigation of factors 
controlling chondrocyte terminal differentiation and ossification. In 
follow-up, these factors may be tested for their ability of maintaining 
differentiated progenitor cells for cartilage TE engineering purposes in 
vivo. Next to biochemical factors also biomechanical factors impact the 
outcome of articular cartilage repair. As such periosteal arthroplasty 
was one of the first models which confirmed the essential role of 
Continous Passive Motion (CPM) for maturation of cartilage repair 
strategies. Since periosteum cultured as an ex vivo model can be loaded 
with different mechanical loading regimes, this also enables us to 
unravel biomechanical factors which improve collagen type II-content 
of TE engineered cartilage [42]. Especially engineering cartilage with 
the appropriate amount of Collagen type II (and other essential extra 
cellular matrix components such as glycosaminoglycans) remains 
challenging and has not been fully achieved yet. Periosteum as a 
source for mesenchymal tissue formation has been investigated in 
literature for several species such as minipig, chicken, etc., although 
rabbit periosteum is most frequently used. Harvesting periosteum 
for (fundamental) research purposes or periosteum transplantations 
should be performed not only under sterile conditions, but should also 
aim to harvest a maximum yield of progenitor cells. While the group 
of O’Driscoll describes a specifically designed periosteal elevator, the 
Shastri-group has described hydraulic elevation of periosteum as a safe 
and reliable method for harvesting [43,44]. Interestingly, subperiosteal 
injection of TGF-β in vivo enhances the quality of harvested periosteal 
tissue prior to use for ex vivo or in vivo cartilage TE purposes [45].

In vivo differentiation of periosteum to generate cartilage

In vivo stimulation of periosteal progenitor cells (e.g. by damaging 
periosteum or by subperiosteal injection of a gel) can also be used 
to engineer ectopic cartilage. An interesting approach designed by 
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Takahashi et al. [46] used early fracture callus, induced at the iliac crest 
[46]. The early fracture callus was implanted into osteochondral defects 
of rabbit knees and yielded excellent results in terms of cartilage repair. 
Later work showed that periosteum stimulation by partial resection of 
periosteum without inducing a true fracture also generated cartilage. 
After harvesting and transplantation of this ectopically generated 
cartilage osteochondral defects were successfully repaired with this 
tissue [47]. Shastri and co-workers published an interesting concept 
of inducing osteogenesis in an artificially created subperiostal space 
they refer to as the “in vivo bioreactor” (IVB).  They also went on 
to demonstrate chondrogenesis within the IVB by the injection of 
a hyaluronic acid-based gel containing the anti-angiogenic factor 
Suramin. In this system the inhibition of angiogenesis provided the 
hypoxic character to the biogel-environment which was likely to favour 
the formation of cartilage that resembles early fracture callus [48,49]. 
Following the initial report, which focused on bone, we aimed to achieve 
controlled chondrogenesis within the IVB and control the local subperiosteal 
environment by simply injecting a gel to initiate the endochondral process. 
In a seminal study Emans and Shastri demonstrated that both agarose and 
polysaccharide gels loaded with liposomes containing TGF-β1 were equally 
successful in triggering the formation of ectopic cartilage, thus paving the way 
for using simply a biomaterial as a trigger for chondrogenesis in vivo. The 
hypercellular cartilage induced within the IVB, was harvested during its early 
chondrogenic phase and successfully implanted into an osteochondral defect 
where excellent lateral integration into the subchondral bone as well as in the 
articular cartilage was observed. Importantly, absence of ossification of the 
transplanted ectopically produced cartilage was observed in a long term follow-
up study [48]. 

In cartilage repair techniques such as ACT and Matrix Assisted 
Chondrocyte Transplantation (MACT), cells are harvested from 
articular cartilage [36]. This may affect joint homeostasis and implies 
expensive culture techniques. Thus alternative cell sources which do 
not interfere with the joint (homeostasis) and finding methods which 
bypass expensive and time consuming culture techniques are important 
goals to further optimize cartilage repair techniques. The main 
advantage of the herein described approach is that the body is used 
as its own “in situ incubator”; thereby omitting the above summarized 
drawbacks of currently used techniques. This approach also provides 
a donor tissue that already carries a certain degree of cartilaginous 
micro architecture and optimally integrates into the subchondral 
bone/articular surface and remodels via endochondral pathways at 
the anatomically desired sites. Scotti et al. [50] showed that if early 
non-hypertrophic endochondral tissue is harvested and implanted the 
transplanted graft would not further ossify [50]. As such it seems that in 
contrast to transplant periosteum directly after harvesting, ossification 
of repaired cartilage does not occur when periosteum is differentiated 
into cartilage prior to transplantation [46-48].

Conclusion 
Early on, periosteum was recognised for its chondrogenic capacity 

and as such has been explored as an autologous tissue for cartilage 
repair. Periosteum is a source of mesenchymal progenitor cells, which 
are capable of forming cartilage and bone and participating in natural 
repair mechanisms such as repair of bone fracture through ossification 
of a cartilage callus via endochondral ossification. Since periosteum 
can be harvested and cultured using organ culture techniques, wherein 
it serves as a matrix for the directed chondrogenesis of its progenitor 
cells, periosteum is well suited as a model system to study the factors 
that influence chondrogenesis.  One can envisage that using periosteum 
organ culture models biophysical and biochemical variables that 
impact chondrocyte fate, lineage choices and maintenance can be 

identified. This knowledge can then be translated into viable clinical 
treatment strategies such as ACI but also for cartilage repair strategies 
which make use of progenitors cells (e.g. the in vivo bioreactor) since 
chondrogenesis of progenitor cells may be followed by unwanted 
hypertrophy and ossification.
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