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Introduction 
Erythropoiesis is the process of forming red blood cells (RBC) from 

multipotent stem cells. Production of a mature RBC is the culmination 
of a complex and tightly regulated process initiated in the central 
sinus beds of medullary marrow and completed in circulation [1,2]. 
Erythropoietin (EPO) plays a central role in erythropoiesis [2,3]. EPO is 
a ~30 kD glycoprotein whose amino acid sequence is highly conserved 
among mammals (91% identity between monkey and human, ~80% 
identity between rodents and human [4]. It is well established that 
erythropoietin (EPO) is a growth and survival factor for the early 
stages of erythropoiesis. EPO acts by binding and activating EPO 
receptors (EPO-R) on the surface of populations of erythroid precursor 
cells [5]. Like that of EPO, the amino acid sequence of EPO-R is also 
highly conserved [6]. EPO-R exists constitutively in association with 
Janus 2 kinase (Jak2) [7]. Binding of EPO-R by EPO or EMP1 results 
in activation of Jak2, and phosphorylation of Jak2, EPO-R, Shc, and 
Stat5 [8]. This in turn results in the activation of three distinct signaling 
pathways: MAPK, Stat5, and AKT [9]. In addition to mediating 
activation of cell signaling, binding of EPO-R by EPO also results in 
internalization of EPO-R. This results in down-regulation of receptor 
expression on the cell surface as internalized receptors are believed 
to be degraded by the endosome-lysosome or proteosome pathways 
[10]. EPO-R are replenished on the cell surface from a pre-existing 
intracellular pool and, as has been shown in an EPO-dependent cell 
line, long term exposure to EPO can result in up-regulation of its own 
receptor [11]. 

EPO functions as a growth factor and is also believed to act as a 
survival factor for erythroid precursors, inhibiting apoptosis in early 
precursors in vitro, particularly erythroid burst forming units (BFU-e) 
and colony forming units (CFU-e) [12]. Recent in vivo work has also 
shown that EPO and novel EPO-R agonists can influence apoptosis in 
later stage erythroid precursors in the bone marrow [13,14] and the 
precipitous drop in RBC following withdrawal of EPO [15] suggests 
that EPO can influence the survival of anucleate reticulocytes (RTC) 
and nascent RBC after these cells leave the bone marrow.

Previously, we have shown that CNTO 530 and darbepoetin-α, 
two long-lived EPO-R agonists have little effect on RBC life span in 
mice [16]. The purpose of this study was to use a number of EPO-R 

agonists with varying potency (in vitro activity in UT7EPO cells) and 
pharmacokinetic behavior (terminal t½ and clearance) to test the 
hypothesis that EPO acts as a survival factor for RTC. We have found 
that short-lived EPO-R agonists can increase RTC without increasing 
RBC, that longer-lived EPO-R agonists cause an increase in RBC 
consistent with the expected 2% daily loss of senescent RBC, and very 
long-lived EPO-R agonists can increase RBC to a greater extent than 
expected. Taken together, our findings suggest that the presence of 
high circulating levels of an EPO-R agonist can act as a survival factor 
for RTC and RBC and thus foster improved efficiency of end-stage 
erythropoiesis.

Materials and Methods
Epoetin-α was obtained from Ortho Biotech (Raritan, NJ) and 

darbepoetin-α (Aranesp, Amgen, Inc. Thousand Oaks, CA) was 
purchased commercially. 

EPO-MIMETIBODYTM constructs

The general structure of the EPO-MIMETIBODYTM constructs is 
shown schematically in Figure 1. Each construct contains two EMP-1 
sequences as the pharmacophore. EMP-1 is a 20-amino acid peptide 
that was discovered by screening combinatorial libraries of random 
sequence peptides using phage display technology [17]. EMP-1 binds 
to EPO-R and expresses EPO-like bioactivity in both in vitro and in 
vivo systems [8,17]. EPO-MIMETIBODYTM constructs were expressed 
in mammalian cells and purified by routine methods and supplied by 
Centocor R&D as described previously [13,18]. Their characteristics 
are summarized in Table 1. 
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Abstract
Erythropoietin (EPO) regulates proliferation and differentiation of erythroid precursor cells into erythrocytes. 

Here, we report on experiments designed to study how the pharmacokinetic profiles of EPO receptor agonists, 
ranging from the short-lived epoetin-α to the long-lived EPO-MIMETIBODYTM constructs CNTO 530 and CNTO 
531, influence the pharmacodynamic response in rats. Rats received a single dose of an EPO-R agonist and the 
effects on reticulocytes, red blood cells and hemoglobin were measured over time. The increase in red blood cells 
and hemoglobin were negatively correlated with clearance. At doses that cause a similar effect on reticulocytes, 
very long-lived EPO-R agonists caused prolonged production of red blood cells. In conclusion, we have shown that 
very long-lived EPO-R agonists cause prolonged production of red blood cells and increase in hemoglobin that is 
independent of their in vitro potency or the peak release of reticulocytes. These data suggest that EPO may be a 
survival factor for reticulocytes. 
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UT7 Assay

Bioactivity of EPO-R agonists was determined using a UT-7EPO cell 
proliferation assay. UT-7EPO cells are an EPO dependent subline of UT-
7, a human megakaryoblastic leukemia cells [19]. Cells were washed 
thrice in PBS with final resuspension in Iscove’s modified Dulbecco’s 
medium supplemented with 2mM L-glutamine and 5% fetal bovine 
serum (I5Q) but no epoetin-α for overnight EPO starvation. After 24 
hours of EPO starvation, cells were washed once in PBS, counted, and 
ultimately re-suspended in fresh I5Q. Cells were distributed at 30,000 
cells per well in duplicate in a 96-well plate, EPO-R agonists were added 
and the plate incubated in 5% CO2 at 37ºC. After 48 h, 20 µL of MTS 
reagent (Cell Titer 96 Aqueous One Solution Cell Proliferation Assay, 
Promega) per 100 µL reaction was added to each well. Readings were 
taken at hourly intervals, starting one hour after reagent addition. Plates 
were read at a wavelength of 490 nm with a reference wavelength of 650 
nm subtracted. Three hour data were analyzed using GraphPad PRISM 
based on a sigmoidal curve fit of the data as described previously [13]. 
Data are reported as the concentration that caused a 50% maximal 
response (EC50). 

Rats

Female Sprague Dawley CD rats weighing approximately 300 
grams were obtained from Charles Rivers Laboratories (Raleigh, NC). 
Rats were housed 2 per cage in filter topped plastic shoe-box style cages 
in a 12 hr light/dark cycle and fed and watered ad libitum. The rats were 
identified with ear tags, placed at least 1 week prior to the start of the 
study. Cage cards labeled with animal number, test article, treatment, 
study number and IACUC protocol number were affixed to the cages. 
All procedures were reviewed by the Centocor R&D Institutional 
Animal Care and Use Committee and were conducted in an AALAC 
approved facility.

Pharmacokinetics

On Day 0 all rats were weighed and received a weight-adjusted, 
single I.V. injection of 1 mg/kg (4 mL/kg) test article. Blood samples 
were taken at 20 min, 60 min, 6hr, 24hr, 48hr, 3, 6, 10, 14, 21, 28 
days. For sampling, animals were anesthetized with CO2 and a target 
volume of 300 uL of blood collected via retro-orbital bleed. Blood was 
allowed to clot and centrifuged to separate serum. Serum was stored 
at –80°C. Serum levels of the EPO-MIMETIBODYTM constructs were 
measured by ELISA using goat anti-huFc capture/goat anti-huFc 
detection and using anti-EMP-1 Fab capture/goat anti-huFc detection 
as described previously for mouse plasma [13]. Serum concentration 
data were used to calculate standard pharmacokinetics parameters 
using non-compartmental analysis. (WinNonlin version 5.1, Pharsight 
Corporation, Mountain View, CA) as described previously [13].

Pharmacodynamics 

Hematological parameters were evaluated from rat whole blood 
using an ADVIA® 120 hematology analyzer (Siemens Medical Solutions 
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Figure 1: Schematic of the general structure of EPO-MIMETIBODYTM constructs. 
They are composed of homodimers of human IgG heavy chain, a linker sequence 
and an EMP-1 (EPO-R pharmacophore) sequence at the N-terminus.

Test Article Fc Mol Wt EC50 in UT-
7EPO Assay

Terminal 
t1/2 (hr)

Cl (mL/day/
kg)

Epoetin-α* NA 34 kDa 9.55 x 10-12 2.5 425

Darbepoetin-α NA 37 kDa 6.31 x10-12 6.9 115

CNTO 528 IgG1 62 kDa 2.08 x 10-10 37.0 56.81

NEM-2824 IgG1ala-ala 58 kDa 8.00 x 10-11 50.4 23.08

NEM-2825 IgG1ala-ala 58 kDa 7.69 x 10-11 48.0 20.32

NEM-2466 IgG4ala-alaS>P 58 kDa 9.36 x 10-11 53.3 30.01

NEM-2467 IgG4ala-alaS>P 58 kDa 1.01 x 10-10 45.8 28.93

CNTO 530 IgG4ala-alaS>P 58 kDa 6.60 x 10-11 72.7 19.00

CNTO 531 IgG4ala-alaS>P 58 kDa 8.27 x 10-11 71.5 16.78

*Pharmacokinetic values for a single IV dose of epoetin-α and darbepoetin-αin 
rats are taken from Egrie et al. [46].

Table 1: Characteristics of EPO-R Agonists used in this study.
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Figure 2: A) Activity of epoetin-α, darbepoetin-α and selected EPO-
MIMETIBODYTM constructs in the UT-7EPO assay. epoetin-α and darbepoetin-α 
show similar potencies while the EPO-MIMETIBODYTM constructs although 
full receptor agonists are less potent. These data were used to calculate the 
EC50 values presented in Table 1. B) Plasma concentration vs. time plot for 
the EPO-MIMETIBODYTM constructs. These data were used to calculate the 
pharmacokinetics parameters presented in Table 1. 
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Diagnostics, Tarrytown, NY) as described previously [20]. Blood 
samples were taken on Study Days 4, 8, 15, 23, 30, and 37. RTC counts 
were enumerated by multiplying % RTC by total RBC counts and total 
RBC counts were corrected for RTC by subtraction. 

To test the hypothesis that the various EPO-R agonists have a 
differential effect on the efficiency of RTC maturation, a model was 
constructed using data from control rats and then applied to the 
treatment groups:

RBC(t N) =((RBC(t N-1) +RTC(t N))•SF)

where

RBC(t N) = Total RBC count on Day N

RTC(t N) = Reticulocyte count on Day N

SF = surviving fraction in PBS treated rats

And, RBC(t 0) = Average RBC count in PBS treated rats on Day 4

To test the hypothesis that the differential effects on conversion 
of RTC to RBC had practical significance, the area under the change 
in hemoglobin (Hgb) vs. time curves (Hgb AUC) was calculated. Hgb 
AUC(1-37) was calculated for the change in Hgb between Days 1 and 37 
(when the mean Hgb values for epoetin-α had returned to baseline) 
was calculated by subtracting the mean Hgb value of the control group 
from the treated groups at each time point, multiplying this value by 
the sampling interval and summing the resultant value. Data for Hgb 
AUC(1-37) were plotted as a function of log of the administered dose 
(mg/kg) and fitted with the following equation:

Hgb AUC(1-37)= a•log(dose)+b

Statistical analysis was performed with SigmaStat v2.03 (SPSS, Inc. 
San Rafael, CA). Correlations between the slope of the Hgb AUC(1-37) 
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Figure 3: Dose response curves for the effects of epoetin-α, darbepoetin-α and the EPO-MIMETIBODYTM constructs on RTC, RBC (not corrected for reticulocyte count) 
and Hgb. Values displayed on graph are group means (n=6).
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curves and the clearance of the EPO-R agonists were evaluated using 
the Spearman Rank Order correlation. P values less than 0.05 were 
accepted as significant.	

Results
The ability of the epoetin-α, darbepoetin-α and the EPO-

MIMETIBODYTM constructs to activate EPO-R was studied in UT-7EPO 
cells. Representative data are shown in Figure 2a and the EC50 values 
are presented in Table 1. All the EPO-MIMETIBODYTM constructs 
supported proliferation of UT-7EPO cells, albeit at as much as ~100 fold 
lower potency compared to epoetin-α and darbepoetin-α. 

The results of the pharmacokinetic analysis of the EPO-
MIMETIBODYTM constructs are shown in Figure 2b and the terminal 
t1/2 and systemic clearance in Table 1. The EPO-MIMETIBODYTM 
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Figure 4: Dose response for the effects of epoetin-α on MHC on Day 7. Values 
displayed on graph are group means (n=6).
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Figure 5: Relationship between reticulocytosis and increase in RBC. Doses that caused an approximate 1000 cells/L peak increase in RTC were parsed from the dose 
response dataset and plotted with their corresponding increase in RBC. Data are expressed as group mean (n=6) change from baseline. Data for RBC are corrected 
for reticulocyte count and expressed as 106 cells/L. Despite the very similar peak reticulocyte counts, there is an appreciable difference in the resulting change in RBC; 
epoetin-α causing almost no change in RBC and CNTO 530 causing a marked increase.
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constructs showed as much as 10 fold longer t1/2 and lower clearance 
than epoetin-α. 

To study the pharmacodynamic effects of epoetin-α, darbepoetin-α 
and the EPO-MIMETIBODYTM constructs, rats received a single 
sc dose of each test article over a range of doses on Day 1 and 
serial blood samples were collected starting on Day 4. (To avoid an 
endogenous RTC response to blood collection, pre-dose samples were 
not collected and Day 4 values from the PBS treated rats were used 
as Day 0 values for graphing.) Representative dose response data for 
RTC, total RBC and Hgb for epoetin-α, darbepoetin-α, CNTO 528 
and CNTO 530 are shown in Figure 3. The dose responses for other 
EPO-MIMETIBODYTM constructs were similar to those of CNTO 
530 (Data not shown). As is evident from the figure, although all test 
articles caused a dose responsive increase in peak RTC, the time to 

peak RTC and the duration of the increase in RTC were related to the 
administered dose and the clearance of the EPO-R agonist. It is also 
evident that epoetin-α, although causing a dose responsive increase 
in Hgb, did not cause a commensurate dose responsive increase in 
total RBC. An increase in mean corpuscular Hgb (MHC) explains the 
increase in Hgb in the epoetin-α treated rats. The peak MHC on Day 7 
is illustrated for epoetin-α in Figure 4.

From the dose response data, doses that caused the same peak 
increase in RTC were selected for further study. The RTC and RBC 
(corrected for RTC counts) responses for these doses are shown in 
Figure 5. The results for the test articles are arranged by efficiency of 
RBC production. As is evident from the figure, a similar peak RTC 
response was not necessarily followed by a commensurate increase in 
RBC. To confirm this observation, we constructed a pharmacodynamic 
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Figure 6: Modeling of the conversion of RTC to RBC at dose that cause a similar increase in RTC. The model is describe in Materials and Methods and assumes no 
loss in RTC and a 2% loss in RBC. The model closely follows the measured RBC values for the control mice and most EPO-MIMETIBODYTM constructs. In contrast, 
the model overestimates the measured response for epoetin-α, but underestimates the response to CNTO 530.
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model that predicts RBC based on RTC. The results of the model are 
graphed with the measured RBC (corrected for RTC) in Figure 6. The 
survival fraction for RTC was determined based on the Day 4 and Day 
8 RBC values for the PBS treated rats. A value of 2% loss was found. 
The model accurately predicted the RBC values for the PBS and CNTO 
531. For epoetin- and darbepoetin-α the model over-predicted the RBC 
response and the model under-predicted the RBC response for the other 
EPO-MIMETIBODYTM constructs. Taken as a whole, the performance 
of the model indicates that for epoetin-α and darbepoetin-α the 
efficiency of conversion of RTC to RBC was lower than in control rats 
and, with the exception of CNTO 531, for the EPO-MIMETIBODYTM 
constructs the efficiency was greater than expected. This suggests that 
a long terminal half-life and low clearance of an EPO-R agonist may 
influence the efficiency of conversion of an RTC to an RBC. 

To determine if the purported increase in efficiency of converting 
an RTC to an RBC had a meaningful effect on the increase in Hgb, the 
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Figure 7: A) Mean Hgb response over time. Data are shown for the effects of 
the various EPO-R agonists at a dose of 0.3 mg/kg. These data were used to 
calculate the area under the curve for Hgb at that dose. B) Data for Hgb AUC(1-

37) for the complete dose response dataset are shown as a function of log10 of 
the administered dose. 

Test Article Cl mL/day/kg a b R2

Epoetin-α 507.84 9.2 49 0.89
Darbepoetin-α 163.20 16.7 124 0.99
CNTO 528 56.81 16.7 80 0.99
NEM-2824 23.08 21.9 75 0.99
NEM-2825 20.32 22.6 102 0.68
NEM-2466 30.01 32.3 62 0.92
NEM-2467 28.93 23.1 55 0.68
CNTO 530 19.00 37.9 173 0.93
CNTO 531 16.78 47.0 182 0.95

Table 2: Hgb AUC(1-37) Regression Analysis (Hgb AUC(1-37)= a•log(dose)+b).

area under the Hgb vs. time curve was calculated. Data for the effects of 
the various EPO-R agonists at a dose of 0.3 mg/kg on Hgb are shown in 
Figure 7A. These data were used to calculate the area under the curve 
for Hgb at that dose. Data for Hgb AUC(1-37) for the complete dose 
response dataset plotted as a function of log10 of the administered dose 
are shown in Figure 7B. The data were well modeled by a log linear 
relationship and the constants for the regression analysis are shown 
in Table 2. There was a statistically significant correlation between the 
slope of the regression curves and the clearance of the EPO-R agonist 
(Coefficient of Correlation = −0.845, P < 0.001).	

To summarize, the rank order from highest potency in UT-7EPO 
cells are as follows: Epoetin-α, Darbepoetin-α, NEM-2466, CNTO 
531, NEM-2824, NEM-2825, CNTO 530, CNTO 528 and NEM-2467. 
Interestingly, for in vivo effects on hemoglobin AUC(1-37) the order 
changes to CNTO 531, CNTO 530, NEM-2467, NEM-2466, NEM-
2825, NEM-2824, CNTO 528, Darbepoetin-α and Epoetin-α.

Discussion
In these experiments, all EPO-R agonists caused a dose responsive 

increase in RTC and Hgb. However, at doses that caused the same peak 
increase in RTC widely divergent effects on RBC were seen; epoetin-α 
causing a negligible increase in RBC and CNTO 530 causing a 6 fold 
greater increase suggesting that the efficiency of maturation of RTC 
to RBC was different among the agonists tested. Finally, to determine 
if the differential effects observed on the maturation of RTC to RBC 
had practical implications, we examined the dose response of the 
various EPO-R agonists on increasing Hgb. The negative correlation 
between the slope of the Hgb AUC(1-37) vs. dose curves and the 
rate of pharmacokinetic clearance of the various EPO-R agonists 
demonstrated that those with slowest clearance showed the greatest 
efficacy. Interestingly, there was no significant correlation between 
Hgb AUC(1-37) and potency in the UT-7EPO assay. Taken together, these 
data suggest that maintaining the blood levels of the EPO-R agonist 
over the time required for maturation of RTC may be an important 
factor in determining efficacy.

Critical to interpreting the results of this study is the issue if RTC 
and RBC express EPO-R. It is well established that early erythroid 
precursor cells express EPO-R and that as these cells mature, expression 
of EPO-R decreases [21-23]. More problematic is expression of EPO-R 
by late stage erythroblasts, RTC and nascent RBC. In pioneering work, 
Baciu et al. [24] demonstrated in vitro binding of unlabeled EPO to 
membranes from human RTC and RBC. Akahane et al. [25] studied 
binding of 125I-EPO in rat bone marrow and found low-level expression 
of EPO-R on polychromic but not orthochromic erythroblasts (Poly/
OrthoEB). In contrast, Fraser et al. [22] showed that OrthoEB from 
cultured human bone marrow cells retained 30% of the initial number 
of EPO-R. Working with cultured Friend virus infected mouse bone 
marrow cells Wickrema et al. [26] found that RTC stage cells expressed 
15% of the initial EPO-R mRNA content and bound 5% of the initial 
amount of 125I-EPO. More recently, Mihov et al. [27] were able to 
demonstrate low-level specific binding of 125I-EPO to RTC and RBC 
and using Scatchard analysis estimated 105 binding sites per RTC and 
1-4 binding sites per mature RBC. Interestingly, although the value 
for EPO binding sites per RBC is very small, it is in keeping with the 
number of specific 125I-EPO binding sites on RBC measured by Myssina 
et al. [28]. 

That the EPO binding sites on RTC and RBC represent expression 
of functional EPO-R is supported by the work of a number of groups 
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who showed EPO can influence of a variety of physiologic functions 
in RTC and RBC: inhibition of Ca+2-ATPase activity in rat and rabbit 
reticulocyte membranes [29,30] and human RBC [28]; activation of 
nitric oxide synthase activity in murine RTC and RBC [27]; glucose 
transport in rat RBC [31] reactive oxygen metabolism and in rat RBC 
[32] and the work of Lang et al. [33] who have shown that EPO can 
inhibit eryptosis mediated in human RBC by a wide variety of insults 
(reviewed in Lang et al. [33]). Thus, when levels of EPO-R agonist fall, 
the lack of signaling by the remaining EPO-R on RTC may result in 
their rapid clearance via eryptosis.

The mechanism by which the lack of signaling by the small number 
of EPO-R expressed on RTC controls eryptosis is uncertain. EPO-R 
is a type I receptor that in early erythroid precursors is internalized 
after ligand binding via coated pits and targeted for destruction in by 
the proteosome/lysosome pathway [10]. However, during maturation 
RTC progressively loose coated pits [34] and thus may be unable to 
internalize and down-regulate EPO-R. Moreover, EPO can protect 
cardiac myocytes [35] and neuronal cells [36] from apoptosis; cell 
types not traditionally known to express EPO-R. Although RTC may 
express only a small fraction of the number of EPO-R expressed on 
earlier precursors, this low number of receptors may still be sufficient 
to influence cell behavior. 

In normal cells, phosphatidylserine (PS) is preferentially 
distributed to the inner leaflet of the plasma membrane and loss of PS 
asymmetry is an early indicator of apoptosis [37]. Scramblases catalyze 
the bidirectional movement of phospholipids across the plasma 
membrane resulting in a net redistribution of PS from the inner to the 
outer leaflet [38,39]. Increased exposure of PS at the cell surface has 
been shown to mediate recognition and phagocytosis by macrophages 
[40] and exposure of PS is believed to contribute to clearance of 
senescent RBC [41,42]. A 37 kDa type II membrane protein scramblase 
has been isolated from human RBC (PLSCR1) [43] that is activated 
by increased cytosolic free Ca+2 to redistribute PS between the leaflets 
in proteoliposomes. Of interest, the Ca+2 ionophore A23187 has been 
shown to mediate exposure of PS on RBC [44], EPO has been shown to 
inhibit Ca+2-permeable cation channels, thus decreasing cytosolic free 
Ca+2 [28] and acute deprivation of EPO has been shown to increase PS 
exposure in RTC and RBC [45]. It is thus a reasonable hypothesis that 
lack of EPO-R signaling can lead to the activation of scramblase activity 
resulting in the rapid exposure of PS on RTC (and nascent RBC) and 
that exposure of PS subsequently leads to untimely phagocytosis and 
poor efficiency of end-stage erythropoiesis.

Conclusion
In conclusion, we have shown that very long-lived EPO-R agonists 

cause an unexpectedly high production of RBC and increase in Hgb 
that is independent of their in vitro potency or the peak release of RTC. 
These data suggest that EPO may be a survival factor for RTC.
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