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Abstract
Several novel 5-fluoro-2’-deoxyuridine (FUdR) prodrugs with postulated dual mechanisms of anticancer activity 

based on nucleoside cytotoxicity and cell differentiation induced by retinoic acid/butyric acid have been reported. The 
O-retinoyl- and O-butanoyl- esters of FUdR were reported to be more potent and had broader anticancer spectra
than either FUdR or 5-fluorouracil (FU) against a bank of human cancer cell lines. The induction of necrosis or
apoptosis in HL-60 cells by 3’-O-retinoyl-5-fluoro-2’-deoxyuridine (RFUdR) and the masked butyryl ester nucleotide,
5’-O-bis(trichloroethyl)phosphoryl-3’-O-butanoyl-5-fluoro-2’-deoxyuridine (BTCEP-BFUdR), is now reported. Apoptosis
was the major pathway of HL-60 cell death caused by RFUdR (1 × 10-5 M), independent of the exposure time. In
contrast, apoptosis and necrosis were equally evident after exposure to BTCEP-BFUdR (1 × 10-5 M) for 48 h, which is
similar to the effect of FUdR. These in vitro data support a cytotoxicity model in which release of the nucleoside (FUdR)
and the cell differentiator (all-trans retinoic acid, RA or butyrate, NaBu) from the respective prodrugs act synergistically
to induce greater cell killing.
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Introduction
Cell death pathways are important targets for anticancer drugs [1], 

and induction of differentiation to activate these pathways represents an 
attractive approach to chemotherapy [2,3]. The induction of apoptosis, 
a normal aspect of cell development and homeostasis [4,5], is an 
important phenomenon in cancer chemotherapy and chemotherapy 
resistance [6,7]. Most, if not all, anticancer agents kill tumor cell 
through apoptosis [4,6,8]. In the case of FUdR, interaction with specific 
biochemical targets may disrupt the cell cycle [9], which in turn may 
initiate an apoptotic cascade due to induced mistakes or imbalances of 
regulatory protein molecules [10]. Since apoptosis is closely linked to 
the normal differentiation pathway [11], induction of malignant cell 
differentiation may favor progression of the cell to apoptosis [12].

A number of drugs are capable of inducing malignant cell 
differentiation in vitro, including retinoic and butyric acids, and 
some of their chemical derivatives. The influence of retinoids on cell 
differentiation in embryology and cancer is well established [13], but 
the molecular biology of these effects remains the subject of intense 
research [14]. All-trans-retinoic acid (RA) treatment of Acute 
Promyelocytic Leukemia (APL) pioneered differentiation therapy, and 
while encouraging, there were several limitations, including its severe, 
even life-threatening, toxicity [15]. Butyric acid (BA) also induces 
malignant cell differentiation and inhibits neoplastic cell proliferation 
in a broad spectrum of neoplastic cells, but its ED50 in malignant cells 
in vitro is usually in the mM range [16-18]. Clinical trials of BA in 

cancer patients have been unsuccessful, possibly due to the difficulty in 
reaching and maintaining effective plasma concentrations in vivo [19]. 

For potent, cytotoxic, drugs like 5-fluoro-2’-deoxyuridine (FUdR) 
and its nucleobase, 5-fluodouracil (FU), the complex mechanisms 
of molecular cell death involve both apoptosis and necrosis, and are 
still under investigation [20]. FU itself is anabolized intracellularly 
to several cytotoxic species. Thus, the FU anabolite ribotriphosphate 
nucleotide (FUR-TP) is incorporated into RNA effecting point 
mutations, its deoxyribo monophosphate nucleotide (FdUMP) 
inhibits Thymidylate (TS), and its deoxyribotriphosphate nucleotide 
(FdUTP) is incorporated into DNA to form multiple point/pairing 
mutations; of these anabolites, FdUTP; the latter contributes the least 
to overall cytotoxicity [21]. FUdR has limited clinical utility because its 
poor bioavailability [22] necessitates intra-arterial infusion [23]. The 
maintenance of therapeutic FUdR blood levels is difficult because it is 
rapidly catabolised to FU by pyrimidine phosphorylases in blood and 
cleared via the urine [24]. 

One approach to circumvent the pharmacokinetic limitations 
and rapid metabolism of BA, RA and FUdR is to chemically combine 
them using biodegradable ester linkages [25]. These combinations 
may improve their individual properties (e.g., reduced catabolism, 
delayed elimination, reduced toxicity), give rise to synergistic effects, 
and improve the pharmacokinetics of delivery to target tissue [26]. 
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The in vitro anticancer mechanisms of 3’-O-retinoyl-5-fluoro-2’-
deoxyuridine (RFUdR) and the masked butyryl ester nucleotide, 
5’-O-bis(trichloroethyl)phosphoryl-3’-O-butanoyl-5-fluoro-2’-
deoxyuridine (BTCEP-BFUdR), shown in Figure 1, are now reported.

Materials and Methods
3’-O-Retinoyl-5-fluoro-2’-deoxyuridine (RFUdR) and 

3’-O-butanoyl-5’-O-bis(2,2,2,-trichloroethyl)phosphoryl-5-fluoro-
2’-deoxyuridine (BTCEP-BFUdR) (Figure 1) were synthesized by 
literature methods [25]. Retinoic acid (RA), Sodium butyrate (NaBu) 
and the reagents used for in vitro tests were cell culture quality. Fetal 
Bovine Serum (FBS), trypan blue and Waymouth cell culture medium 
were purchased from GIBCO BRL Co., and RPMI 1640 cell culture 
medium was kindly provided by Dr. M. Suresh (Faculty of Pharmacy 
and Pharmaceutical Sciences, U. Alberta).

Human acute promyelocytic leukemia cells (HL-60 cells; ATCC) 
were cultivated in suspension in RPMI 1640 medium supplemented 
with 10% of fetal bovine serum. The cells were grown at 37°C in a 
humidified air atmosphere with 5% CO2. Cell density was determined 
by a Coulter counter (Coulter Electronics, Ltd.) and cell viability 
was estimated by trypan blue dye exclusion. Cells were harvested by 
centrifugation and re-suspended in the growth medium at a density 
of 2 × 105 cells/mL, then dispensed into 24-well culture plates (1 mL/
well). After pre-incubation (24 h), freshly prepared test compounds 
dissolved in DMSO were added at concentrations of 10-6 M and 10-5 

M for RFUdR, BTCEP-BFUdR, RA and FUdR, and 10-3 M for NaBu. 
The controls contained DMSO only. The final concentration of DMSO 
was less than 0.1%. Culture plates were incubated for 1, 2 and 7 days, at 
37°C in a humidified air atmosphere with 5% CO2.

Qualitative changes in cell morphology were observed by 
microscopic observation of Wright-stained cytospin preparations (on 
slides), which show normal HL-60 cells as typical promyelocytes with 
large round nuclei (Plate 1). 

Quantitative cell death by apoptosis and necrosis were estimated 
by flow cytometry using a literature method in which the membrane-
impermeant Propidium iodide (PI) stain is used to reflect changes 
in DNA morphology and the membrane permeant Hoechst 33342 
(HO342) stain marks the structural integrity of the cell membrane as 
well as DNA [27]. This method is based on the concept that apoptotic 
cells will display morphological changes in their nuclei, but not display 
membrane damage until the final stages of cell death, whereas necrotic 
cells will demonstrate early loss of membrane function and structural 
integrity [28]. Following the requisite incubation period, the cells were 
harvested by gentle centrifugation and the medium was decanted. A 
stock solution of Hoechest 33342 (0.5 mM in distilled water and stored 
at 4°C) was diluted to 0.1 mM with Ca++- and Mg++-free Phosphate-
buffered saline (PBS) just before use. PI stain (0.03 mM) was freshly 
prepared in PBS. Fixative was 25% (v/v) ethanol in PBS. The cells 
were mixed with PI (100 µL) and kept on ice for 30 min, then fixative 
(1.9 mL) was added with vortex mixing, followed by the addition 
of Hoechst 33342 (0.1 mM, 50 µL) again mixed by vortex for a few 
seconds. This cell preparation was then kept on ice for at least 30 min 
before the measurement of fluorescence intensity by flow cytometer 
(Coulter Elite Inc.).

Results
Microphotographs of Wright-stained HL-60 cells following 

incubation for 7 days in the presence of the test drugs are shown in 
Plate 1. In the absence of prodrug or drug the HL-60 APL cells appear 
predominantly as typical promyelocytes with large round nuclei (A). 
The morphologic changes in HL-60 cells induced by the prodrugs 
included irregularly-shaped nuclei and pyknotic changes in nuclear 
chromatin. However, the differentiated cell phenotypes, observed 
after treatment with the prodrugs, were not the same as those induced 
by RA or BA (B and C), displaying morphological characteristics of 
cell death, such as highly condensed chromatin, fragmented nuclei, 
toxic granulation and vacuolation. Cells treated with either RFUdR 
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Figure 1: Chemical structures of FUdR, all-trans-retinoic acid, butanoic acid and the substitution patterns for RFUdR and BTCEP-BFUdR.
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or BTCEP-BFUdR thus appeared committed to cell death rather than 
terminal differentiation or maturation, which may be due to toxic 
synergism of FUdR or FdUMP released upon hydrolysis of RFUdR and 
BTCEP-BFUdR, respectively. 

Prolonged exposure to all test compounds decreased cell survival, 
coincident with an increase in cell apoptosis, as determined by flow 
cytometry (Table 1). A 24 h exposure to either RFUdR or BTCEP-
BFUdR, or to their component active moieties (FUdR, RA, BA) had 
little effect on cell survival, but cell survival dropped markedly after 
48 h and especially after 7 days. BTCEP-BFUdR was less toxic than 
RFUdR or FUdR at 1 x 10-6 M concentrations, but there were no clear 
distinctions regarding mechanisms of death among the compounds 
other than for BA, which had a negligible toxicity at the concentrations 
studied.

Discussion
The prodrugs of FU, including the orally stable and well-tolerated 

FU substitute capecitabine, are effective largely by virtue of their in 
vivo catabolism to FU [29]. Resistance to FUdR can result from the 
depletion of activated pyrimidine kinases which hydrolyse FUdR to FU 
[30], high activity of pyrimidine phosphorylase [24], and Thymidylate 
synthase (TS) overproduction and/or TS structure variation [31]. Only 
FU, despite its own clinical limitations, is used routinely for anticancer 
chemotherapy [32]. The current work is based on the hypothesis that a 
prodrug that can deliver FUdR into the target cell without conversion 
to FU will have the advantage of facile conversion to active forms, 
especially FdUMP and FdUTP. Furthermore, masking FUdR with 
a differentiation-inducing moiety will increase cytotoxicity to non-
differentiated (cancer) cells. 

Several cell lines have been treated successfully with such combined 
cytotoxic-differentiation therapy, even when the two drug moieties are 
not chemically linked, i.e., synergistic effects but not a single prodrug 
formulation). For example, induction differentiation of M1 myeloid 
leukemic cells by interleukin 6 increased their apoptotic response to 

1-β-D-arabinofuranosylcytosine (ara-C) [33], and enhanced cell killing 
was observed in human colon carcinoma cells in vitro treated sequentially 
with FU and the differentiation inducer N-methylformamide [34]. It 
has also been reported that retinoids increased the therapeutic efficacy 
of FU in vivo in mice [35]. In initial in vitro anticancer studies, the 
cytotoxicities of two dual acting differentiation-cytotoxic prodrugs, 
FUdR O-retinoyl ester (RFUdR) and a masked FUdR monophosphate 
O-butanoyl ester (BTCEP-BFUdR), were greater and had broader 
anticancer spectra than either FUdR, RA or BA alone [25]. Apart from 
the cytotoxic action of FUdR or FdUMP released upon hydrolysis of 
RFUdR and BTCEP-BFUdR, respectively, the second metabolite (RA 
or BA) of these double-barreled prodrugs was expected to induce 
malignant cell differentiation and synergistic induction of cell apoptosis 
with the cytotoxic metabolite (FUdR or FdUMP). To confirm this 
postulate, cell morphology and flow cytometric methods were used to 
monitor the cell differentiation and cell death in human HL-60 acute 
promyleocytic leukemia cells after exposure of the cells to RFUdR and 
BTCEP-BFUdR. 

The current observations of concentration dependency and 
complex mechanisms of cell death are rationalized on the basis 
that these prodrugs might be enzymatically hydrolyzed very slowly 
[36], therefore, in the drug screening time (48 h), hydrolysis may be 
incomplete. Following Michaelis-Menten calculations, the hydrolysis 
velocity is V=Vmax[S]/([S]+KM), where Vmax is the maximum reaction 
rate; [S] is the concentration of the prodrug; KM is the Michealis constant, 
and assuming that the condition satisfies KM>>[S], we would have V 
≅ Vmax[S]/KM, namely, V ∝ [S]. Therefore, the hydrolytic rate would 
be slower at lower concentration. Furthermore, these prodrugs release 
two active drugs with different anticancer mechanisms, each having its 
own pharmacologically effective concentration; if the concentration of 
either active drug is lower than the required minimum concentration, 
it would look like only one of these drugs was effective.

Quantitative cell death was determined by the flow cytometry 
using a literature technique based on preservation of the integrity of 

Plate 1: Representative morphology of HL-60 human acute promyelocytic leukemia cells on Wright-stained cytospin slides after 7 days of incubation (A) control; (B) 
with sodium butanoate (1 × 10-4 M); (C) with retinoic acid (1 × 10-5 M); (D) with RFUdR (1 × 10-5 M); (E) BTCEP-BFUdR (1 × 10-6 M).
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the plasma membrane in cells undergoing apoptosis until the final 
stages of the cell death [28]. In contrast, in cell necrosis, one of the 
earliest changes is loss of membrane function and structural integrity. 
Although novel fluorescent chromophores such as intrinsic reduced 
Nicotinamide adenine dinucleotide (NADH) can be used for cell death 
detection [37], the flow cytometry assay chosen for this work does 
demonstrate loss of cell membrane function using a DNA-binding 
fluorescent dyes (PI) and cell membrane integrity using Hoechst 33342. 
Cell death after treatment with RFUdR, BTCEP-BFUdR, RA, NaBu 
or FUdR was found to be both dose-dependent and time-dependent 
(Table 1). RA was weaker inducer of cell death than RFUdR, BTCEP-
BFUdR or FUdR at the same concentration (1 × 10-5 M). NaBu was a 
very weak death inducer even at the high concentration (1 × 10-3 M) 
compared to the other compounds although it was previously shown 
to induce the cell differentiation [25] but to be effective in vitro only at 
mM concentrations [18,19]. 

It is well known that RA functions through several types/subtypes 
of retinoic acid nuclear receptors (RAR and RXR) that function as 
transcription factors that regulate the expression of specific genes 
[38,39]. These responses may be responsible for the proportional 
increase in differentiated cells, which is quickly followed by an increase 
in the proportion of cells displaying morphologic characteristics of 
apoptosis [40]. RA can induce apoptosis in a variety of cell lines [41,42], 
and in some cases, RA-mediated differentiation is a prerequisite for the 
induction of apoptosis [12].

Effects of prodrugs RFUdR and BTCEP-BFUdR on induction 
of cell differentiation and cell death in HL-60 acute promyelocytic 
leukemia cells show that these prodrugs can induce the malignant 
cell differentiation, but instead of terminal differentiation, the cells 
undergoing differentiation experienced enhanced cell death. Apoptosis 
was the major pathway of HL-60 cell death caused by RFUdR, whereas 
necrosis was an important part of the HL-60 cell death treated with 
prodrug BTCEP-BFUdR (as for FUdR), both in a time-dependent 
manner. In vitro data previously showed that some of the prodrugs 
with cytotoxic-differentiation mechanisms did potentiate cell apoptosis 
[25], which may be associated with the observed significant increase 
tumor growth delay in vivo. The in vitro experiments indicated that 
of these prodrugs, RFUdR was the most potent compound with the 
broadest spectrum of anticancer activity. RFUdR has been shown to be 
a bio-labile double-barreled prodrug releasing two active drugs in vivo 
with cytotoxic-differentiation synergism. RFUdR is potentially useful 
in cancer chemotherapy for its relatively low toxicity, broad spectrum 

of anticancer activity, potent induction of cell apoptosis and improved 
pharmacokinetics compared to either FDU or RA [25,26]. 
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