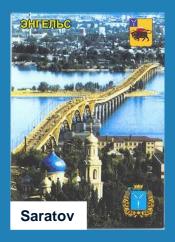
Journal of Molecular Imaging and Dynamics


Alexander A. Kamnev

OMICS GROUP

OMICS Group International through its Open Access Initiative is committed to make genuine and reliable contributions to the scientific community. OMICS Group hosts over 400 leadingedge peer reviewed Open Access Journals and organizes over **300** International Conferences annually all over the world. OMICS Publishing Group journals have over 3 million readers and the fame and success of the same can be attributed to the strong editorial board which contains over 30000 eminent personalities that ensure a rapid, quality and quick review process. OMICS Group signed an agreement with more than **1000** International Societies to make healthcare information **Open** Access.

OMICS Journals are welcoming Submissions

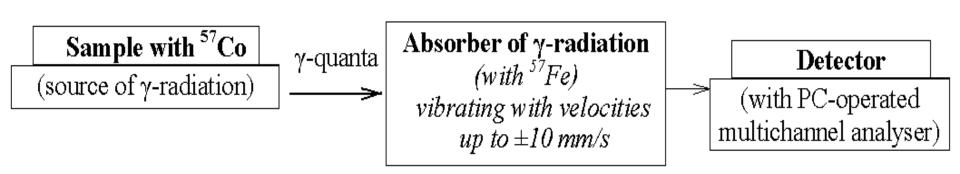
- OMICS Group welcomes submissions that are original and technically so as to serve both the developing world and developed countries in the best possible way.
- OMICS Journals are poised in excellence by publishing high quality research. OMICS Group follows an Editorial Manager® System peer review process and boasts of a strong and active editorial board.
- Editors and reviewers are experts in their field and provide anonymous, unbiased and detailed reviews of all submissions.
- The journal gives the options of multiple language translations for all the articles and all archived articles are available in HTML, XML, PDF and audio formats. Also, all the published articles are archived in repositories and indexing services like DOAJ, CAS, Google Scholar, Scientific Commons, Index Copernicus, EBSCO, HINARI and GALE.
- For more details please visit our website: <u>http://omicsonline.org/Submitmanuscript.php</u>

Emission Mössbauer spectroscopy: novel applications for probing structural organisation of metalloenzyme active centres

Alexander A. KAMNEV

Laboratory of Biochemistry,

Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia

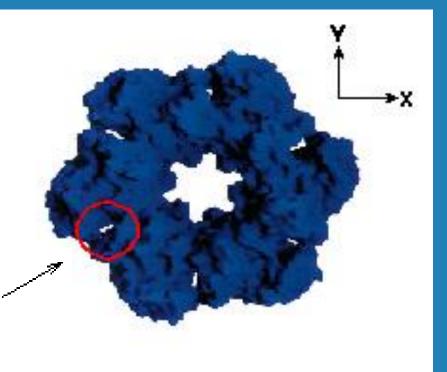

Test object:

 glutamine synthetase (GS; doped with ⁵⁷Co²⁺), <u>a key enzyme of nitrogen metabolism</u> in many organisms (isolated from Azospirillum brasilense, a plant-growth-promoting N₂-fixing rhizobacterium)

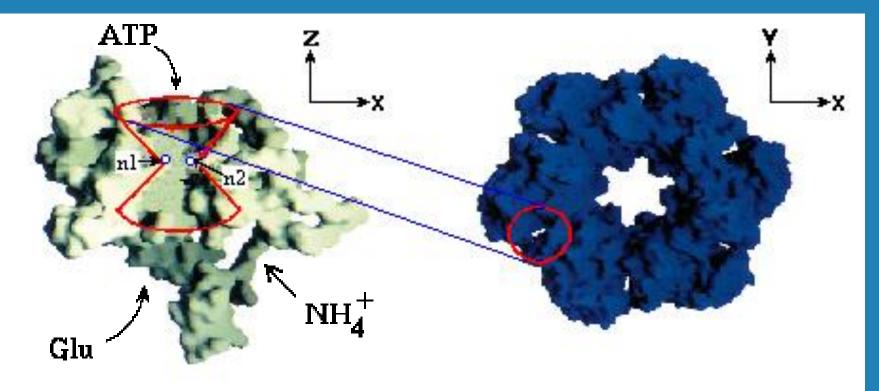
Methodology:

 ⁵⁷Co emission Mössbauer spectroscopy (in rapidly frozen aqueous solutions)

Emission (⁵⁷Co) Mössbauer spectroscopic study of ⁵⁷Co²⁺-doped GS active centres



(Kamnev A.A. // J. Mol. Struct. 744 (2005) 161.)

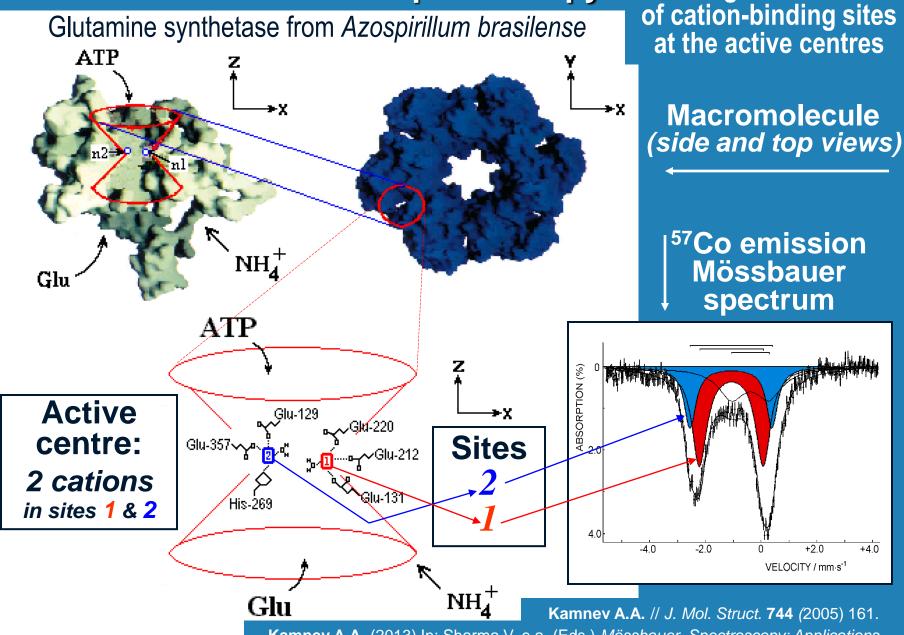

Characterisation of bacterial GSs

One of two hexameric rings located face-to-face, with total 12 subunits (D. Eisenberg e.a., 2000)

Location of one of the 12 active centres (between subunits)

Characterisation of bacterial GSs

Distance between the cation-binding sites: $n1 \leftarrow 6 \text{ \AA} \rightarrow n2$ (no bridging residues): the two sites are 'spectroscopically independent' Emission (⁵⁷Co) Mössbauer spectroscopic study of ⁵⁷Co²⁺-doped GS active centres


PREREQUISITES:

1. Possibility to remove strongly bound cations from the native enzyme (treatment with 5 mM EDTA \rightarrow reversible loss of activity)

2. Possibility to insert Co²⁺ into the active centres (addition of Co²⁺ \rightarrow regain of activity)

3. Specific [⁵⁷Co²⁺]:[GS] molar ratio ($12 \le x \le 24$) (to avoid multiple binding of ⁵⁷Co²⁺ beyond active centres)

⁵⁷Co Emission Mössbauer Spectroscopy:

Kamnev A.A. (2013) In: Sharma V. e.a. (Eds.) *Mössbauer Spectroscopy: Applications in Chemistry, Biology, and Nanotechnology*, Wiley, N.Y., Chapter 17, pp. 333-347.

Probing the structure

Emission Mössbauer spectroscopy: novel applications for probing structural organisation of metalloenzyme active centres

Basic conclusions:

- EMS allows different cation-binding sites in ⁵⁷Co-doped metalloproteins to be characterised.
- EMS data on ⁵⁷Co²⁺-doped bacterial glutamine synthetase (GS) reveal two different cation-binding sites at each GS active centre.
- Isostructural substitution of ⁵⁷Co²⁺ for other cations (e.g. for Zn²⁺) expands the EMS applicability and importance.

Thank you