# **OMICS GROUP**



OMICS Group International through its Open Access Initiative is committed to make genuine and reliable contributions to the scientific community. OMICS Group hosts over **400** leading-edge peer reviewed Open Access Journals and organizes over **300** International Conferences annually all over the world. OMICS Publishing Group journals have over **3 million** readers and the fame and success of the same can be attributed to the strong editorial board which contains over **30000** eminent personalities that ensure a rapid, quality and quick review process. OMICS Group signed an agreement with more than **1000** International Societies to make healthcare information Open Access.

## **OMICS** Journals are welcoming Submissions

OMICS Group welcomes submissions that are original and technically so as to serve both the developing world and developed countries in the best possible way. OMICS Journals are poised in excellence by publishing high quality research. OMICS Group follows an Editorial Manager® System peer review process and boasts of a strong and active editorial board.

Editors and reviewers are experts in their field and provide anonymous, unbiased and detailed reviews of all submissions. The journal gives the options of multiple language translations for all the articles and all archived articles are available in HTML, XML, PDF and audio formats. Also, all the published articles are archived in repositories and indexing services like DOAJ, CAS, Google Scholar, Scientific Commons, Index Copernicus, EBSCO, HINARI and GALE.

For more details please visit our website: http://omicsonline.org/Submitmanuscript.php



#### **Editor-in-Chief**

#### **Journal of Geophysics & Remote Sensing**

**Dr. Filippos Vallianatos** 

Professor Technological Educational Institute of Crete Laboratory of Geophysics & Seismology University College London United Kingdom



# **Biography**

Dr. Filippos Vallianatos is a Professor of physics from Geophysics-Solid Earth Physics, Technology Educational Institute of CRETE, School of Natural Resources & Environment, Department of Geoenvironment, Laboratory of Geophysics & Seismology & Senior Research Fellow in Geophysics. He received his degree in Physics. With Honours, from University of Athens, Physics Department from 1981-1985. He has done his PhD in Geophysics-Solid Earth Physics (University of Athens, Physics Department). The title of my PhD thesis is "Magnetotelluric investigation of the electrical conductivity in the areas of Thiva and Ioannina (Greece)".1985-1989. He has done his Postdoctoral researcher, Department of Solid Earth Physics, University of Uppsala from 1989-1990. He collaborated with the Dept. of Seismology of the University of Uppsala for the installation of seismological and magnetotelluric stations at various sites in Greece (1986).

# **Research Interest**

Telluric & electromagnetic earthquake precursors, Electromagnetic wane propagation in geostructures with stochastic or fractal properties, Conductivity structure of the Earth using Electromagnetic waves, Thermodynamics of the Earth Interior, Seismic Hazard and Environmental Seismology, Non linear dynamics in seismology and geophysics, Environmental Geophysics and GeoHazards.

## **Environmental Geophysics and GeoHazards**

#### Geohazards take an increasing toll of lives, disrupt

#### livelihoods and cost more more money each year





### Natural and Human-Induced Extreme Events

#### GEOHAZARDS •Volcanoes

- •Earthquakes and Tsunamis
- Landslides/Mudslides

CLIMATIC HAZARDS •Floods

Drought

•Hurricanes/Cyclones

INDUSTRIAL/OTHER HAZARDS

•Oil Spills

Nuclear Accidents

Meteor Impacts



Phuket, Thailand: Before and after the 2004 tsunami

# **Cost Breakdown of Disasters**



#### Natural and Human-Induced Extreme Events

- Extreme events, whether natural or human-induced, can cause significant environmental change, not to mention their devastating impacts on peoples' lives
- In 2005, there was an 18% rise in disasters that killed 91
  900 people
- There were 360 natural disasters in 2005 compared to 305 in 2004: the number of floods increased by 57% in 2005 and droughts by about 47%
- The 2004 Indian Ocean tsunami accounted for 92%, and the 2005 South Asian earthquake, for 81% of the deaths in each respective year

### Volcanoes

- About 550 volcanoes have erupted in the Earth's recorded history and an equivalent number of dormant volcanoes have only erupted in the past 10 000 years
- On any given day, about ten volcanoes are actively erupting
- Explosive eruptions give little warning, while effusive eruptions, which send out gently flowing lava, allow time for people to escape



- Worldwide, the number of major flood disasters has grown significantly, from 6 cases in the 1950s to 26 in the 1990s
- From 1971 to 1995, floods affected more than 1 500 million people worldwide
- In the most calamitous storm surge, a flood in Bangladesh in April 1991 killed at least 138 000 people and left 10 million homeless

#### Hurricanes and Cyclones

Scientists predict that global warming will cause warmer ocean temperatures and associated increased moisture in the atmosphere - two variables that work to power hurricanes. As a result, more intense hurricanes that can cause even more damage when they hit land are predicted

Large parts of densely populated coastal areas are subject to the inundation caused by hurricane storm surges; on numerous occasions, they have experienced heavy economic losses from these events

#### Earthquakes and Tsunamis

According to long-term records (since about 1900), we can expect about 18 major earthquakes (7.0 - 7.9 on the Richter scale) and one great earthquake (8.0 or above) in any given year

The number of earthquakes and tsunamis resulting in fatalities has increased approximately in proportion to global populations

- The growth of giant urban cities near regions of known seismic hazard is a new experiment for life on the Earth
- Tsunamis are a threat to life and property for all coastal residents

## Most destructive known earthquakes in the World

| Date              | Location                      | Deaths             | Μ   | Comments                                 |
|-------------------|-------------------------------|--------------------|-----|------------------------------------------|
| January 23, 1556  | China, Shansi                 | 830,000            |     |                                          |
| July 27, 1976     | China, Tangshan               | 255,000 (official) | 8   | Estimated death toll as high as 655,000. |
| August 9, 1138    | Syria, Aleppo                 | 230,000            |     |                                          |
| May 22, 1927      | China, near Xining            | 200,000            | 8.3 | Large fractures.                         |
| December 22, 856  | Iran, Damghan                 | 200,000            |     |                                          |
| December 16, 1920 | China, Gansu                  | 200,000            | 8.6 | Major fractures, landslides.             |
| March 23, 893     | Iran, Ardabil                 | 150,000            |     |                                          |
| September 1, 1923 | Japan, Kwanto                 | 143,000            | 8.3 | Great Tokyo fire.                        |
| October 5, 1948   | USSR (Turkmenistan, Ashgabat) | 110,000            | 7.3 |                                          |
| December 28, 1908 | Italy, Messina                | 70,000 to 100,000  | 7.5 | Deaths from earthquake and tsunami.      |
| September, 1290   | China, Chihli                 | 100,000            |     |                                          |
| November, 1667    | Caucasia, Shemakha            | 80,000             |     |                                          |
| November 18, 1727 | Iran, Tabriz                  | 77,000             |     |                                          |
| November 1, 1755  | Portugal, Lisbon              | 70,000             | 8.7 | Great tsunami.                           |
| December 25, 1932 | China, Gansu                  | 70,000             | 7.6 |                                          |
| May 31, 1970      | Peru                          | 66,000             | 7.8 | Great rock slide, floods.                |
| 1268              | Asia Minor, Silicia           | 60,000             |     |                                          |
| January 11, 1693  | Italy, Sicily                 | 60,000             |     |                                          |
| May 30, 1935      | Pakistan, Quetta              | 30,000 to 60,000   | 7.5 | Quetta almost completely destroyed.      |
| February 4, 1783  | Italy, Calabria               | 50,000             |     |                                          |
| June 20, 1990     | Iran                          | 50,000             | 7.7 | Landslides.                              |

# Earthquakes with 1,000 or more deaths from 1998 to 2001

| Date         | Location                                       | Latitude | Longitude | Deaths | Μ   | Comments                                                                                                                                 |
|--------------|------------------------------------------------|----------|-----------|--------|-----|------------------------------------------------------------------------------------------------------------------------------------------|
| Feb 04, 1998 | Afghanistan-<br>Tajikistan<br>Border<br>Region | 37.1 N   | 70.1 E    | 2,323  | 6.1 | 818 injured, 8,094 houses destroyed, 6,725<br>livestock killed.                                                                          |
| May 30, 1998 | Afghanistan-<br>Tajikistan<br>Border           | 37.1 N   | 70.1 E    | 4,000  | 6.9 | Many thousands injured and homeless.                                                                                                     |
| Jul 17, 1998 | Papua New<br>Guinea,<br>Near N.<br>Coast       | 2.96 S   | 141.9 E   | 2,183  | 7.1 | Thousands injured, about 9,500 homeless and about 500 missing as a result of a tsunami with maximum wave heights estimated at 10 meters. |
| Jan 25, 1999 | Colombia                                       | 4.46 N   | 75.82 W   | 1,185  | 6.3 | Over 700 missing and presumed killed, over 4,750 injured and about 250,000 homeless.                                                     |
| Aug 17, 1999 | Turkey                                         | 40.7 N   | 30.0 E    | 17,118 | 7.4 | At least 50,000 injured, thousands homeless.<br>Damage estimate at 3 to 6.5 billion USD.                                                 |
| Sep 20, 1999 | Taiwan                                         | 23.7 N   | 121.0 E   | 2,297  | 7.6 | Over 8,700 injured, over 600,000 homeless.<br>Damage estimate at 14 billion USD.                                                         |
| Jan 26, 2001 | India                                          | 23.3 N   | 70.3 E    | 19,988 | 7.7 | 166,812 injured, 600,000 homeless.                                                                                                       |

# Time trend of natural disasters, 1975-2005\*



UN International Strategy for Disaster Reduction (2006). 2005 Disasters in Numbers

#### **15 MOST COSTLY YEARS**

| Year | Total Losses<br>(\$ billions) | Fatalities |
|------|-------------------------------|------------|
| 2005 | 100.4                         | 399        |
| 1994 | 28.9                          | 245        |
| 2004 | 27.2                          | 337        |
| 1989 | 18.8                          | 358        |
| 1998 | 18.3                          | 672        |
| 1995 | 17.0                          | 1,526      |
| 1993 | 16.6                          | 216        |
| 1980 | 15.8                          | 864        |
| 2001 | 14.8                          | 445        |
| 1999 | 14.0                          | 912        |
| 1996 | 12.8                          | 533        |
| 1997 | 12.1                          | 582        |
| 1979 | 11.4                          | 316        |
| 2000 | 10.1                          | 478        |
| 2003 | 10.0                          | 422        |

Hazards & Vulnerabilty Research Institute (2006). 2005 U.S. Hazard Losses. University of South Carolina.

#### Kanto earthquake (Tokyo) 1.09.1923, M=8.2



#### Kobe earthquake (Japan) 16.01.1995, M=6.8



#### Spitak earthquake (Armenia) 7.12.1988, M=6.8



#### Izmit earthquake (Turkey) 17.08.1999, M=7.8



# Surface displacement for radar data

- Mantle convection theory, continent drift theory, as a base of horizontal and vertical movement of the earth surface.
- Earthquake mechanism theories: dilatancy theory, elastic rebound theory.
- Strong motion after the shock.



The model of ground displacement: **a** - dilatancy model; **b** - elastic rebound theory. 1- stress, 2- cleavage stress.

## Satellite and In-situ observations

| Satellite observations                             | In-situ observations           |
|----------------------------------------------------|--------------------------------|
| Ground displacement before the shock               | Tilt, strain, GPS, water level |
| Allweather surface temperature                     | Meteorological observations    |
| Ion density and temperature in F-layer, 180-300 km | EM ground observations         |
| Gas concentration                                  | Gas concentration              |
| Oxygen luminescence                                | Oxygen luminescence            |
| Atmospheric temperature,<br>pressure and humidity  | Meteorological observations    |
| Aerosol                                            | Aerosol                        |

# Geophysics & Remote Sensing Related Journals

- ISPRS Journal of Photogrammetry and Remote Sensing
- IEEE Transactions on Geoscience and Remote Sensing
- Applied Earth Observation and Geoinformation
- Photogrammetric Engineering and Remote Sensing

# Geophysics & Remote Sensing Related Conferences

- ✓ International Conference on Earth Science & Climate Change
- ✓ Asian Conference on Remote Sensing
- ✓ International Conference on Remote Sensing in Archaeology
- ✓ International Conference on Remote Sensing
- ✓ IEEE Conference on Aerospace and Remote Sensing Technology



**OMICS** Group Open Access Membership

OMICS publishing Group Open Access Membership enables academic and research institutions, funders and corporations to actively encourage open access in scholarly communication and the dissemination of research published by their authors. For more details and benefits, click on the link below: http://omicsonline.org/membership.php

