Middle East Respiratory Syndrome coronavirus (MERS-CoV)

Dr. Gamil S.G. Zeedan PhD Virology – Cairo University Researcher at National Research Center – Dokki –Giza- Egypt 2010-13, Assistant Professor at Collage of Medical and applied Medical Sciences – NBU- KSA

• Twelve years after the outbreak of Severe Acute Respiratory Syndrome

coronavirus (SARS-CoV) 2002-2003

Another threat to global public health.

• In September 2012, the virus discovered in Saudi Arabia,, causes infections with a

clinical manifestation similar to SARS-CoV.

This virus was identified as a novel human coronavirus

, Middle East respiratory syndrome coronavirus (MERS-CoV) or EMC/2012 (HCoV-

EMC/2012), is novel species of the genus Betacoronavirus.

Although certain aspects related to this novel virus have already been unraveled

But still knowledge of its source, pathogenesis and ways of transmission remains limited.

Source

What are Corona viruses?

PhD Virology

Coronavirus structure

large

A Crown-like Appearance by E/M

Kayser, Medical Microbiology © 2005 Thieme All rights reserved. Usage subject to terms and conditions of license.

Properties of cornavruses

- Morphology: "Crown-like" appearance under EM
- Genome: 80~160nm, ssRNA (+), 27-31 kb (longest RNA)
- Sensitive to acid, ether, chloroform, lipid solvents, drying, heating to 56°C/15-20 minutes, but some can through GIT (optimum temperature for virus:33~35°C).
- Inactivation within few minutes at room temperature in 1% formalin,1% cresol and 70% alcohol

They are difficult to isolate in cell culture so rarely diagnosed in clinical practice

Genome organizations

Nature Reviews | Microbiology

• The gene order for the proteins encoded by all coronaviruses is **PoI-S-E-M-N-3'**. Several open reading frames encoding nonstructural proteins and the HE protein differ in number and gene order among coronaviruses. The SARS virus contains a comparatively large number of interspersed genes for nonstructural proteins at the 3' end of the genome.

Journals.ASM.org CO This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported license.

Genetic variation & evolution of new strains

a high frequency of:

- deletion mutations
- high frequency of recombination during replication which is unusual for an RNA virus with unsegmented genome

Classification Coronaviruses

The International Committee on Taxonomy of Viruses (ICTV)

has divided the family Coronaviruses based on genome

sequence analysis, into four genera Alpha-, Beta-, Gamma-

and Delta coronavirusidae

- Sixth different currently known strains of Coronaviruses infect humans.
- SARS-Co V represents a new fourth antigenic group intermediate between groups I & III
- A sixth was discovered at 2012, known as Novel Coronavirus or MERS-CoV.

HOST RANGES AND DISEASE OF CORNVIRUSES

Geneti Group		Host Re			ion sites) <mark>Receptor</mark> Other Site
1	HCoV- 229E	human	X X		* APN
					CD 13
	TGEV	pig	(X)	X	
	PRCoV	pig	χ.		
	PEDV	pig		X	
	FIPV	cat	X	X	Systemic
	FCoV	cat		X	
	CCoV	dog		X	
2	HCoV- OC43	human	X	??	CEACAM1 CD66a
(HE)	MHV	mouse	X	X	CNS, systemic +
	RCoV	rat	X		Eye, GU
	HEV	pig		X	CNS
	BCoV**	cattle	X	X	
3	IBV	chicken	X	X	Kidney
	TCoV	turkey		X	
4	SARS- Cov	human	X	()()	(Kidney) ??
* APN (Aminopentidase N: CD13): Antigen processing & presentation					

* APN (Aminopeptidase N; CD13): Antigen processing & presentation

The three major antigenic groups of CoV

- Group I contains canine, feline, swine coronaviruses and a human corona virus HCoV 229E the prototype of the group
- Group II contains bovine, swine, rat and mouse CoV and the other human strain which is OC43
- Group III no human strains only Turkey and Avian CoV

Evolution of SARS 2002

 A novel human corona virus named SARS associated corona virus represents a new fourth antigenic group intermediate between groups I & III

A NOVEL FOURTH ANTIGENIC GROUP SARS

Middle East Respiratory Syndrome Coronavirus (MERS-CoV)

Novel coronavirus that emerged in 2012, Causes severe acute respiratory illness

Coronaviruses Replication

Copyright © 2006 Nature Publishing Group Nature Reviews | Microbiology

Different between SARS-CoV and MERS-CoV receptors

Due to the clinical similarity between MERS-CoV and <u>SARS-CoV</u>. Exopeptidase, Angiotensin converting enzyme 2 (<u>ACE2</u>) Neutralization of ACE2 by recombinant antibodies does not prevent MERS-CoV infection Dipeptyl peptidase 4 (<u>DPP4</u>; also known as <u>CD26</u>) as a functional cellular receptor for MERS-CoV.

Coronaviruses Infections in Humans

Pathogenesis

- Limited knowledge
- Highly species-specific
- Typically mild upper respiratory infections ("colds") that remain localized
- ("colds") that remain localized
 - **Exception: SARS**
- Immunity is not durable
 - Many people become resusceptible after a few years

Tissue tropism

Susceptibility studies testing the ability of MERS-CoV to infect cell lines derived from different organs provided indications about the tissue tropism of the virus. MERS-CoV was found to infect cells of the human respiratory tract, kidney, intestine and liver

Tropism of MERS-CoV for cells of the respiratory tract, kidney and intestine is correlated with the detection of the virus in respiratory swabs, tracheal aspirates, sputum, urine and stool of MERS

How are Novel Coronaviruses transmitted?

How are Novel Coronaviruses transmitted?

Airborne

Incubation period is 10-14 days

□Transmitted between family members or in a health care setting, the WHO said in an update.

Human-to-human transmission, the exact mode of transmission is unknown.

Clinical picture & epidemiology

- Upper respiratory infections, similar to "colds" caused by rhinoviruses, but with a longer incubation period (average three days).
 - 15-30% of respiratory illness in adults during winter months but lower respiratory infections were rare.
 - Antibodies appear early in childhood and are found in 90% in adults

SARS Corona Virus

This has a unique pathogenesis because it causes both upper and lower respiratory tract infections and can also cause

Gastroenteristis.

Recent History

 In 2003 The SARS epidemic resulted in over 8,000 infections, about 10% of which resulted in death.

MERS- CoV Symptoms

- A person will show the symptoms after a week
- Flu-like symptoms,

a heavy cough.

Some cases have had atypical presentations : Initially presented with abdominal pain and diarrhea and later developed respiratory complications

Signs and symptoms of MERS coronavirus infection

Epidemiological summary MERS-CoV Cases

- As of 16 April 2014, MERS-CoV cases have been reported in several countries, including ٠ Saudi Arabia, Malaysia, Jordan Qatar, the United Arab Emirates, France Germany Italy UK USA Tunisia, **Philippines.**
- The official WHO MERS count
- In 6 May 2014 there are 339 confirmed cases in Saudi Arabia, with 115 deaths.

MERS cases and deaths

Cases of Middle East respiratory syndrome coronavirus (MERS) worldwide as of today. United Kingdom

Immunity

As with other respiratory viruses, immunity develops but is not absolute.

Immunity against the surface projection antigen is probably most important for protection.

Resistance to reinfection may last several years, but reinfections with similar strains are common.

Most patients (>95%) with SARS developed an antibody response to viral antigens detectable by a fluorescent antibody test or ELISA.

It was important that the convalescent serum be collected more than 28 days after symptom onset.
Figure 5. Schematic representation of key responses to MERS-CoV related to outcome.

Faure E, Poissy J, Goffard A, Fournier C, et al. (2014) Distinct Immune Response in Two MERS-CoV-Infected Patients: Can We Go from Bench to Bedside?. PLoS ONE 9(2): e88716. doi:10.1371/journal.pone.0088716 http://www.plosone.org/article/info:doi/10.1371/journal.pone.0088716

Laboratory Diagnosis of coronaviruses

DIRECT DETECTION:

• Antigen detection in cells of respiratory secretions by IF or ELISA

• NA detection in respiratory secretions by RT-PCR

The detection of MERS-CoV in the first reported case was performed by a pan-coronavirus RT-PCR assay.This assay targets the gene of the RNA-dependent RNA polymerase

ISOLATION:

- CoV are difficult to grow in CC.
- Reliable isolation of the virus is accomplished using human embryonic tracheal organ cultures.
- These methods are not routinely available.

Serology:

Serologic tests are not routinely available.

An alternative diagnostic approach is the detection of an antibody response against MERS-CoV, by immunofluorescence microscopy

Practical means to confirm coronavirus infection using paired sera to detect rising or stationary high antibody level by:

- PASSIVE HAEMAGGLUTINATION TEST
- ELISA

TREATMENT

- TREATMENT TRAILS
- TRAILS FOR PRODUCTION OF MERS-COV VACCINE

VACCINE STUDIES IN MICE.

Compounds that have been suggested as possible drug candidates against MERS-CoV infections

Drug candidate	Observed effect	Study
INF-α	Reduction of MERS-CoV replication in pseudo-stratified HAE cultures	Kindler <i>et al.</i> (2013) ₅₀
pegylated IFN-α	Inhibition of MERS-CoV-induced CPE and reduction of the viral RNA levels in human lung epithelial and monkey kidney cell lines	de Wilde <i>et al.</i> (2013) ₅₂
INF-β	Reduction of the viral load in MERS-CoV-infected human lung epithelial and monkey kidney cell lines	Zielecki <i>et al.</i> (2013) ₄₈
INF-λ3	Reduction of MERS-CoV replication in pseudo-stratified HAE cultures	Kindler <i>et al.</i> (2013)50
INF-α2b	Reduction of the MERS-CoV-induced CPE and the viral protein levels in monkey kidney cell lines (more efficient when combined with Ribavirin)	Falzarano <i>et al.</i> (2013)72
Ribavirin	Reduction of the MERS-CoV-induced CPE and the viral protein levels in monkey kidney cell lines (more efficient when combined with INF- α 2b)	Falzarano <i>et al.</i> (2013)72
Corticosteroids	Significant improvement of the respiratory condition of a MERS-CoV patient (no direct effect has been proved)	Guberina <i>et al.</i> (2013) ₆₅
Cyclosporin A	Inhibition of the MERS-CoV-induced CPE in monkey kidney and a human liver cell lines	de Wilde <i>et al.</i> (2013) ₅₂
SB203580	Reduction of the viral load in a human lung epithelial cell line	Josset et al. (2013)54
ADS-J1	Inhibition of MERS-CoV pseudo-virus infection in human liver and mink lung cell lines	Zhao <i>et al.</i> (2013) ₂₉
HP-HAS	Inhibition of MERS-CoV pseudo-virus infection in human liver and mink lung cell lines	Zhao <i>et al.</i> (2013) ₂₉
MDL28170	Inhibition of MERS-CoV-S-mediated transduction of a human fetal lung fibroblast cell line	Gierer <i>et al.</i> (2013) ₂₅
NH4Cl	Inhibition of MERS-CoV-S-mediated transduction of a human fetal lung fibroblast cell line	
Camostat	Inhibition of MERS-CoV-S-mediated transduction of a human colon cell line	Gierer et al. (2013)25
N3	Inhibition of the proteolytic activity of MERS-CoV 3CLpro	Ren et al. (2013)73
CE-10	Inhibition of the proteolytic activity of MERS-CoV 3CLpro	Kilianski <i>et al.</i> (2013)74
MERS-CoV RBD	Reduction of the viral load in a MERS-CoV-infected monkey kidney cell line	Chen

YET STOPPING THE SPREAD OF INFECTION WAS POSSIBLE THROUGH

EFFECTIVE CONTROL MEASURES

KEY POINTS IN CONTROL OF ANY COMMUNICABLE DISEASE

- Early case detection
- Swift isolation
- Thorough control of infection measures
- Vigorous identification and management of close contacts
- Public information for those at risk of infection
- Education of health care professionals

Prevention Measures

✓ Because there are no treatments and no vaccine ,

✓ Keep away from someone with a heavy cough, use a tissue to cover the nose/mouth when coughing

✓ Sneezing, wiping and blowing noses, if a tissue isn't available, cough or sneeze into the inner elbow rather than the hand

✓ Wash hands with hot water and soap at least six or seven times a day

✓ Disinfect common surfaces as frequently as possible.

✓ Wash hands or use a sanitizer when in contact with common surfaces like door handles.

MERS Resources

- MERS overview: <u>http://www.cdc.gov/coronavirus/mers/index.</u> <u>html</u>
- Case definitions and guidance: <u>http://www.cdc.gov/coronavirus/mers/case-def.html</u>
- Additional MERS resources: <u>http://www.cdc.gov/coronavirus/mers/related</u> <u>-materials.html</u>

MERS-COV RESOURCES

