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Motivation 

• Intelligent Environments are aimed at improving the 
iŶhaďitaŶts’ eǆperieŶĐe aŶd task perforŵaŶĐe 
– Automate functions in the home 

– Provide services to the inhabitants 

• Decisions coming from the decision maker(s) in the 
environment have to be executed.  
– Decisions require actions to be performed on devices 

– Decisions are frequently not elementary device 
interactions but rather relatively complex commands 
• Decisions define set points or results that have to be achieved 

• Decisions can require entire tasks to be performed 



Automation and Robotics in Intelligent 

Environments 

 Control of the physical environment 

 Automated blinds 

 Thermostats and heating ducts 

 Automatic doors 

 Automatic room partitioning 

 Personal service robots 

 House cleaning 

 Lawn mowing 

 Assistance to the elderly and handicapped 

 Office assistants 

 Security services 



Robots 

• Robota (Czech) = A worker of forced labor 
Froŵ CzeĐh plaǇǁright Karel Capek's ϭ9Ϯϭ plaǇ ͞R.U.R͟ 

;͞Rossuŵ's UŶiǀersal Roďots͟Ϳ 
• Japanese Industrial Robot Association (JIRA) : 

͞A deǀiĐe ǁith degrees of freedoŵ that ĐaŶ ďe ĐoŶtrolled.͟  

– Class 1 : Manual handling device 

– Class 2 : Fixed sequence robot 

– Class 3 : Variable sequence robot 

– Class 4 : Playback robot 

– Class 5 : Numerical control robot 

– Class 6 : Intelligent robot 



A Brief History of Robotics 

• Mechanical Automata  
– Ancient Greece & Egypt 

• Water powered for ceremonies 

– 14th – 19th century Europe 
• Clockwork driven for entertainment 

• Motor driven Robots 
– 1928: First motor driven automata 

– 1961: Unimate 
• First industrial robot 

– 1967: Shakey 
• Autonomous mobile research robot 

– 1969: Stanford Arm 
• Dextrous, electric motor driven robot arm 

Maillardet’s Automaton 

Unimate 



Robots 

 Robot Manipulators 
 
 
 
 
 
 

 Mobile Robots 
 



Robots 

 Walking Robots 
 
 
 
 
 

 
 Humanoid Robots 

 



Autonomous Robots 

• The control of autonomous robots involves a 
number of subtasks 
– Understanding and modeling of the mechanism 

• Kinematics, Dynamics, and Odometry 

– Reliable control of the actuators 
• Closed-loop control 

– Generation of task-specific motions 
• Path planning 

– Integration of sensors 
• Selection and interfacing of various types of sensors 

– Coping with noise and uncertainty 
• Filtering of sensor noise and actuator uncertainty 

– Creation of flexible control policies 
• Control has to deal with new situations 



Traditional Industrial Robots 

• Traditional industrial robot control uses robot arms 
and largely pre-computed motions 

 PrograŵŵiŶg usiŶg ͞teaĐh ďoǆ͟ 

 Repetitive tasks 

 High speed 

 Few sensing operations  

 High precision movements 

 Pre-planned trajectories and  

 task policies 

 No interaction with humans 



Problems  

• Traditional programming techniques for industrial 

robots lack key capabilities necessary in intelligent 

environments 

 Only limited on-line sensing 

 No incorporation of uncertainty 

 No interaction with humans 

 Reliance on perfect task information 

 Complete re-programming for new tasks 

 



Requirements for Robots in Intelligent 

Environments 

• Autonomy 
– Robots have to be capable of achieving task objectives 

without human input 

– Robots have to be able to make and execute their own 
decisions based on sensor information 

• Intuitive Human-Robot Interfaces 
– Use of robots in smart homes can not require extensive 

user training 

– Commands to robots should be natural for inhabitants 

• Adaptation 
– Robots have to be able to adjust to changes in the 

environment 



Robots for Intelligent Environments 

• Service Robots 

– Security guard 

– Delivery 

– Cleaning 

– Mowing 

• Assistance Robots 

– Mobility 

– Services for elderly and  

 People with disabilities 



Autonomous Robot Control 

• To control robots to perform tasks autonomously a 
number of tasks have to be addressed: 
– Modeling of robot mechanisms 

• Kinematics, Dynamics 

– Robot sensor selection 
• Active and passive proximity sensors 

– Low-level control of actuators 
• Closed-loop control 

– Control architectures 
• Traditional planning architectures 

• Behavior-based control architectures 

• Hybrid architectures 



Modeling the Robot Mechanism 

• Forward kinematics describes how the robots joint 
angle configurations translate to locations in the 
world 

 

 

 

• Inverse kinematics computes the joint angle 
configuration necessary to reach a particular point 
in space.  

• Jacobians calculate how the speed and 
configuration of the actuators translate into velocity 
of the robot 

(x, y, z) 1 

2 

(x, y, ) 



Mobile Robot Odometry 

• In mobile robots the same configuration in terms of 
joint angles does not identify a unique location 
– To keep track of the robot it is necessary to incrementally 

update the location (this process is called odometry or 
dead reckoning) 

 

 

 
• Example: A differential drive robot 
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Actuator Control 

• To get a particular robot actuator to a particular 
location it is important to apply the correct amount 
of force or torque to it. 
– Requires knowledge of the dynamics of the robot 

• Mass, inertia, friction 

• For a simplistic mobile robot:  F = m a + B v  

– Frequently actuators are treated as if they were 
independent (i.e. as if moving one joint would not affect 
any of the other joints). 

– The most common control approach is PD-control 
(proportional, differential control) 
• For the simplistic mobile robot moving in the x direction: 

     actualdesiredDactualdesiredP vvKxxKF 



Robot Navigation 

• Path planning addresses the task of computing a 

trajectory for the robot such that it reaches the 

desired goal without colliding with obstacles 

– Optimal paths are hard to compute in particular for robots 

that can not move in arbitrary directions (i.e. 

nonholonomic robots) 

– Shortest distance paths can be dangerous since they 

always graze obstacles 

– Paths for robot arms have to take into account the entire 

robot (not only the endeffector) 

 



Sensor-Driven Robot Control 

• To accurately achieve a task in an intelligent 

environment, a robot has to be able to react 

dynamically to changes ion its surrounding 

– Robots need sensors to perceive the environment 

– Most robots use a set of different sensors 

• Different sensors serve different purposes 

– Information from sensors has to be integrated into the 

control of the robot 



Robot Sensors 

• Internal sensors to measure the robot configuration 
– Encoders measure the rotation angle of a joint 

 

 

 

 

 

 

 

– Limit switches detect when the joint has reached the limit 



Robot Sensors 

• Proximity sensors are used to measure the distance or 
location of objects in the environment. This can then be used 
to determine the location of the robot. 
– Infrared sensors determine the distance to an object by measuring 

the amount of infrared light the object reflects back to the robot 
 

– Ultrasonic sensors (sonars) measure the time that an ultrasonic signal 
takes until it returns to the robot 

  

 

 
 

– Laser range finders determine distance by  

 measuring either the time it takes for a laser  

 beam to be reflected back to the robot or by  

 measuring where the laser hits the object  



Robot Sensors 

• Computer Vision provides robots with the capability 
to passively observe the environment 
– Stereo vision systems provide complete location 

information using triangulation 

 
 

 

 

 

 

– However, computer vision is very complex 
• Correspondence problem makes stereo vision even more difficult 

 



Uncertainty in Robot Systems 
Robot systems in intelligent environments have to 
deal with sensor noise and uncertainty 

 Sensor uncertainty 

Sensor readings are imprecise and unreliable 

Non-observability 

Various aspects of the environment can not be observed  

The environment is initially unknown  

 Action uncertainty 

Actions can fail 

Actions have nondeterministic outcomes 



Probabilistic Robot Localization 

Explicit reasoning about 
Uncertainty using Bayes             
filters: 

 

Used for: 

  Localization 

  Mapping 

  Model building 

1111 )(),|()|()(  tttttttt dxxbaxxpxopxb 



Deliberative  

Robot Control Architectures 

• In a deliberative control architecture the robot first 
plans a solution for the task by reasoning about the 
outcome of its actions and then executes it 

 

 

 

 

 
 

– Control process goes through a sequence of sencing, 
model update, and planning steps 



Behavior-Based 

Robot Control Architectures 

• In a behavior-ďased ĐoŶtrol arĐhiteĐture the roďot’s 
actions are determined by a set of parallel, reactive 
behaviors which map sensory input and state to 
actions.  



Complex Behavior from Simple 

Elements: Braitenberg Vehicles 

• Complex behavior can be achieved using very simple 
control mechanisms 
– Braitenberg vehicles: differential drive mobile robots with 

two light sensors 

 

 

 

 

 

 

 
• Complex external behavior does not necessarily require a 

complex reasoning mechanism 

+ + 

“Coward” “Aggressive” 

+ + - - 

“Love” “Explore” 

- - 



Behavior-Based Architectures: 

Subsumption Example 

• Subsumption architecture is one of the earliest 
behavior-based architectures 
– Behaviors are arranged in a strict priority order where 

higher priority behaviors subsume lower priority ones as 
long as they are not inhibited. 



Subsumption Example 

• A variety of tasks can be robustly performed from a 
small number of behavioral elements 

© MIT AI Lab 

http://www-robotics.usc.edu/~maja/robot-video.mpg 
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Reactive, Behavior-Based  

Control Architectures 

• Advantages 

– Reacts fast to changes 

– Does not rely on accurate models 

• ͞The ǁorld is its oǁŶ ďest ŵodel͟ 

– No need for replanning 

• Problems 

– Difficult to anticipate what effect combinations of 
behaviors will have 

– Difficult to construct strategies that will achieve complex, 
novel tasks 

– Requires redesign of control system for new tasks 

 



Hybrid Control Architectures 

 Hybrid architectures combine 

reactive control with abstract 

task planning 
 Abstract task planning layer 

 Deliberative decisions 

 Plans goal directed policies 

 Reactive behavior layer 

 Provides reactive actions 

 Handles sensors and actuators 



Hybrid Control Policies 

Task Plan: 

Behavioral  
Strategy: 



Example Task:  
Changing a Light Bulb 



Traditional Human-Robot 
Interface: Teleoperation 

Remote Teleoperation: Direct 
operation of the robot by the 
user 

User uses a 3-D joystick or an 
exoskeleton to drive the robot 

 Simple to install 

 Removes user from dangerous areas 

 Problems: 

 Requires insight into the mechanism 

 Can be exhaustive   

 Easily leads to operation errors 



Example: Minerva the Tour 
Guide Robot (CMU/Bonn) 



Learning Sensory Patterns 

Chair 

 Learning to Identify Objects 
 How can a particular object be recognized ? 

 Programming recognition strategies is 
difficult because we do not fully 
understand how we perform recognition 

 Learning techniques permit the robot 
system to form its own recognition 
strategy 

 Supervised learning can be used by giving the 
robot a set of pictures and the corresponding 
classification  

 Neural networks 

 Decision trees 

: 
: 

: : 



Example: Reinforcement  
Learning in a Hybrid Architecture 

  Policy Acquisition Layer  

 Learning tasks without 
supervision 

  Abstract Plan Layer 

 Learning a system model 

 Basic state space compression 

  Reactive Behavior Layer 

 Initial competence and 
reactivity 



Example Task:  
Learning to Walk 



Example: Learning to Walk 



Conclusions 

• Robots are an important component in Intelligent 
Environments 
– Automate devices  

– Provide physical services 

• Robot Systems in these environments need particular 
capabilities 
– Autonomous control systems 

– Simple and natural human-robot interface 

– Adaptive and learning capabilities 

– Robots have to maintain safety during operation 

• While a number of techniques to address these 
requirements exist, no functional, satisfactory solutions 
have yet been developed 
– Only very simple robots for single tasks in intelligent environments 

exist 
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