HYPOTHESIS

Gradients of O_2 control skeletal development and homeostasis by regulating the HIF pathway
HIF-1α (Hypoxia Inducible Factor)

- PAS (PER-ARNT-SIM) subfamily of bHLH transcription factors
- heterodimer HIF-1α/ARNT; HIF-1α, the hypoxia-responsive component of the complex
- ubiquitously expressed and highly unstable
- another member in the family, HIF-2α
HIF-1α: A KEY FACTOR IN CELLULAR ADAPTATION TO HYPOXIA
HIF-1α: A KEY MEDIATOR OF CELLULAR ADAPTATION TO HYPOXIA

In normoxia, HIF-1α protein is rapidly degraded by the proteasome.

Modified from Nature Review Rheumatology 2012; 8:358-366
HIFs: A HOMEOSTATIC RESPONSE TO KEEP HYPOXIA “IN CHECK”

- **O₂ CONSUMPTION**
 - **MITOCHONDRIAL METABOLISM**
 - **CELL NUMBER /MATRIX RATIO**

- **BLOOD VESSELS**
 - **O₂ AVAILABILITY**

- **REDox STRESS**
 - **RED BLOOD CELLS**
 - **ROS METABOLISM**
HYPOTHESIS

The complex actions of HIFs on O$_2$ homeostasis are exploited to modulate development and homeostasis of skeletal elements.
OMICS International Open Access Membership

OMICS International Open Access Membership enables academic and research institutions, funders and corporations to actively encourage open access in scholarly communication and the dissemination of research published by their authors.
For more details and benefits, click on the link below:
http://omicsonline.org/membership.php