OMICS Journals are welcoming Submissions

OMICS International welcomes submissions that are original and technically so as to serve both the developing world and developed countries in the best possible way.
OMICS Journals are poised in excellence by publishing high quality research. OMICS International follows an Editorial Manager® System peer review process and boasts of a strong and active editorial board.

Editors and reviewers are experts in their field and provide anonymous, unbiased and detailed reviews of all submissions. The journal gives the options of multiple language translations for all the articles and all archived articles are available in HTML, XML, PDF and audio formats. Also, all the published articles are archived in repositories and indexing services like DOAJ, CAS, Google Scholar, Scientific Commons, Index Copernicus, EBSCO, HINARI and GALE.

For more details please visit our website: http://omicsonline.org/Submitmanuscript.php

NING LI

Department of Biochemistry Microbiology and Molecular Biology The Pennsylvania State University USA

Enzyme Mechanisms

CLASSIFICATION OF ENZYMES

Group of Enzyme	Reaction Catalysed	Examples
1. Oxldoreductases	Transfer of hydrogen and oxygen atoms or electrons from one substrate to another.	Dehydrogenases Oxidases
2. Transferases	Transfer of a specific group (a phosphate or methyl etc.) from one substrate to another.	Transaminase Kinases
3. Hydrolases	Hydrolysis of a substrate.	Estrases Digestive enzymes
4. Isomerases	Change of the molecular form of the substrate.	Phospho hexo isomerase, Fumarase
5. Lyases	Nonhydrolytic removal of a group or addition of a group to a substrate.	Decarboxylases Aldolases
 Ligases (Synthetases) 	Joining of two molecules by the formation of new bonds.	Citric acid synthetase

Two Models for Enzyme-Substrate Interaction

2. an anabolic enzyme controlled reaction

Induced Conformational Change in Hexokinase

Coenzymes

Coenzyme	Examples of some chemical groups transferred	Dietary precursor in mammals
Thiamine pyrophosphate	Aldehydes	Thiamin (vitamin B ₁)
Flavin adenine dinucleotide	Electrons	Riboflavin (vitamin B_2)
Nicotinamide adenine dinucleotide	Hydride ion (:H-)	Nicotinic acid (niacin)
Coenzyme A	Acyl groups	Pantothenic acid, plus other molecules
Pyridoxal phosphate	Amino groups	Pyridoxine (vitamin B ₆)
5'-Deoxyadenosyl- cobalamin (coenzyme B ₁₂)	H atoms and alkyl groups	Vitamin B ₁₂
Biocytin	CO2	Biotin
Tetrahydrofolate	One-carbon groups	Folate
Lipoate acid	Electrons and acyl groups	Not required in diet

Stereo specificity Conferred by an Enzyme

Copyright @ 2000 Benjamin/Cummings, an imprint of Addison Wesley Longman, Inc.

Catalytic Mechanisms

- Acid-base catalysis
- Covalent catalysis
- Metal ion catalysis
- Electrostatic catalysis
- Proximity and orientation effects
- Preferential binding to transition state (transition state stabilization)

Acid-Base Catalysis

Amino acid residues	General acid form (proton donor)	General base form (proton acceptor)
Glu, Asp	R—COOH	R—COO⁻
Lys, Arg	R ^{_+} H _H H	R—̈́NH₂
Cys	R—SH	R— S⁻
His	R—C=CH /\+ HN_C/NH H	R-C=CH / \ HN _C / N: H
Ser	R—OH	R—0⁻
Tyr		R

Keto-Enol Tautomerism: Uncatalyzed vs. Acid- or Base-Catalyzed

Copyright 1999 John Wiley and Sons, Inc. All rights reserved.

Covalent Catalysis: Nucleophiles and Electrophiles

Example of Covalent Catalysis: Decarboxylation of Acetoacetate

Example of Metal Ion Catalysis: Carbonic Anhydrase

Carbonic anhydrase catalyzes the reaction: $CO_2 + H_2O$ $HCO_3^- + H^+$

Enolase Mechanism

2-Phosphoglycerate bound to enzyme

Enolic intermediate

Phosphoenolpyruvate

Entropic and Enthalpy Factors in Catalysis

Copyright @ 2000 Benjamin/Cummings, an imprint of Addison Wesley Longman, Inc.

Proximity and Orientation Effects

Enzymes Are Complementary to Transition State

Serine Protease Mechanism: Multiple Catalytic Mechanisms at Work

Structure of the Serine Protease Chymotrypsin

Serine Protease Substrate Specificity and Active-Site Pockets

Substrate specificity in serine proteases through activesite binding of side chain of amino acid residue adjacent to amide bond that will be cleaved.

$$\begin{array}{c} 0 \\ \parallel \\ R_1 - C - NH - R_2 + H_2 O \xrightarrow{\text{trypsin}} R_1 - C - O^- + H_3 N - R_2 \end{array}$$

Polypeptide

Serine Nucleophile in Serine Proteases

Transition State in Proline Racemase Reaction and Transition State Analogs

Copyright 1999 John Wiley and Sons, Inc. All rights reserved.

Proline racemase preferentially binds transition state, stabilizing it, and is potently inhibited by transition state analogs.

Pyrrole-2-carboxylate

Copyright 1999 John Wiley and Sons, Inc. All rights reserved.

∆-1-Pyrroline-2-carboxylate

RNA-Based Catalysts (Ribozymes)

Cleavage of a Typical Pre-tRNA by Ribonuclease P

Ribonuclease P is a ribonucleoprotein (RNA- and protein-containing complex), and the catalytic component is RNA.

An even more complex example of an RNA- and proteincontaining enzyme system is the ribosome. The central catalytic activity of the ribosome (peptide bond formation) is catalyzed by an RNA component.

Copyright @ 2000 Benjamin/Cummings, an imprint of Addison Wesley Longman, Inc.

Catalysis by the Intervening Sequence in *Tetrahymena* Preribosomal RNA

RNA by itself without any protein can be catalytic.

Copyright @ 2000 Benjamin/Cummings, an imprint of Addison Wesley Longman, Inc.

Enzyme Regulation

Effect of Cooperative Substrate Binding on Enzyme Kinetics

Cooperative enzymes do not obey simple Michaelis-Menten kinetics.

Regulation of ATCase by ATP and CTP

ATP is a positive heterotropic allosteric effector of ATCase, while CTP is a negative heterotropic allosteric effector.

ATP and CTP effect the responses of ATCase to the substrate.

Detailed Structure of One Catalytic Subunit and Adjacent Regulatory Subunit of ATCase

Quaternary Structure of ATCase in T State and R State

X-Ray Structure of Aspartate Transcarbamoylase

References:

http://www.tutorvista.com/content/biology/biology-iii/cellularmacromolecules/enzymes-classification.php

http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Coenzy me.html

http://www.cliffsnotes.com/sciences/biology/biochemistryi/enzymes/chemical-mechanisms-of-enzyme-catalysis

Journal of Bioanalysis and Biomedicine Related journals

<u> Journal of Bioequivalence &</u> Bioavailability

Journal of Chromatography & Separation Techniques

Journal of Analytical & Bio analytical Techniques

Pharma Related Conferences

For more details please go through the link

Global Pharmaceutical Sciences Conferences

OMICS International **Open Access Membership**

Open Access Membership with OMICS International enables academicians, research institutions, funders and corporations to actively encourage open access in scholarly communication and the dissemination of research published by their authors. For more details and benefits, click on the link below:

http://omicsonline.org/membership.php

