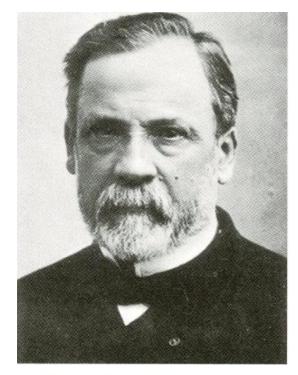
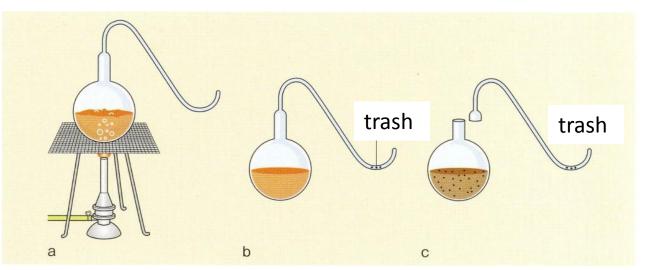
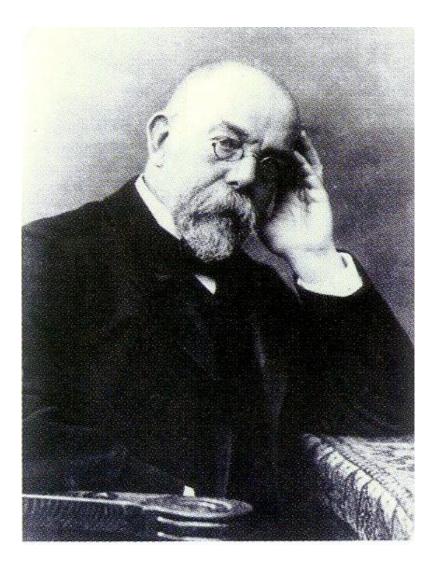

Research interests of Tetsuya Mine Professor and Chief Division of Gastroenterology and Hepatology,

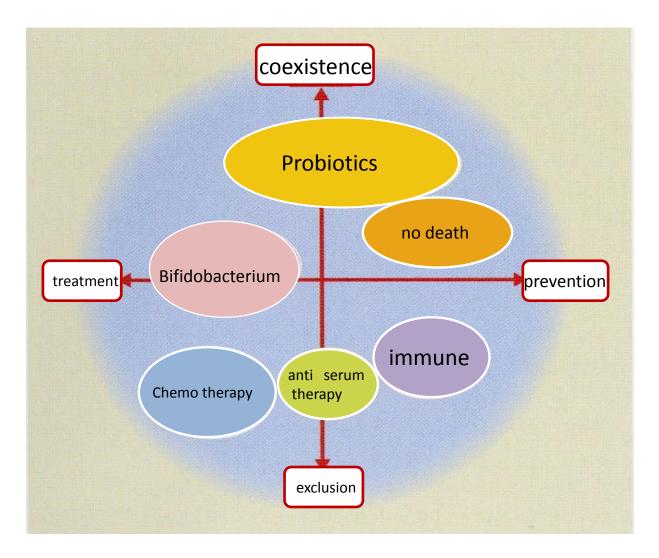
Japan


Department of Internal Medicine, University of Tokai School of Medicine



Ilya Mechnikov


no death due to yogurt



Louis Pasteur

Experiments by Pasteur

Robert Koch

Position of Probiotics

Intestional flora healthy volunteer (by culture)

High incidence (>60%)	middle (>30%>60%)	low incidence (<30%)
Bacteroides fragilis group		
B. vulgatus, B. uniformis,		B. ovatus, B. splanchnicus,
B. thetaiotaomicron		B. ureolyticus, B. putredinis
Parabacteroides distasonis		
Bacteroides spp.		
Prevotella spp.		P. veroralis
Faecalibacterium prausnitzii		
Fusobacterium russii		F. naviforme, F. nucleatum, F. mortiferum, F. varium
	Lactobacillus	Mitsuokella multiacida
	L. catenaforme	
Bifidobacterium		
B. adolescentis, B. longum,		B. breve
B. catenulatum, B. pseudocatenulatum		
Collinsella aerofaciens		
Eubacterium rectale		E. moniliforme
Eubacterium spp.		
Ruminococcus obeum		
Ruminococcus productus		
Ruminococcus spp.		
Peptostreptococcus spp.		P. anaerobius, P. prevotii
Clostridium		
C. innocuum, C. ramosum,	C. beijerinckii, C. coccoides,	
C. clostridioforme	C. butyricum	
	C. paraputrificum, C. perfringens	

Benno Y, et al

Intestinal flora (16SrDNA) in healthy volunteer

bacteria	healthy		vegetarian	elderly			
Dacteria	А	В	С	vegetarian	D	Е	F
Clostridium cluster I	0	1.1	0	0	0	0	0
Clostridium cluster IV (Clostridium leptum group)	22.7	12.4	11	13.1	34.7	16.1	9.5
Clostridium cluster IX	0	9.8	34	0	0	35.8	14.3
Clostridium cluster XI	0	0.4	0.8	0	0	1.2	0
Clostridium subcluster XIVa (Clostridium coccoides group)	58.8	23.7	29	59.6	25.3	2.5	3.6
Clostridium subcluster XIVb	0.5	0	0	0	0	0	0
Clostridium cluster XVI	0	4.1	0	1.7	4	0	0
Clostridium cluster XVII	0	8.3	0	0	0	2.5	0
Clostridium cluster XVIII	0	0	0.4	12	0	0	0
Bifidobacterium	0	0.4	5.3	0.5	0	0	0
Lactobacillus	0	0	0	0	0	1.2	0
Cytophaga-Flexibacter-Bacteroides	5	9.4	16.3	6	20	8.6	15.4
Streptococcus	3.7	28.8	0.4	0	2.7	1.2	0
Proteobacteria	0.5	0.8	1.6	0	5.3	17.3	54.8
others	8.8	0.8	1.2	7.1	8	13.6	2.4

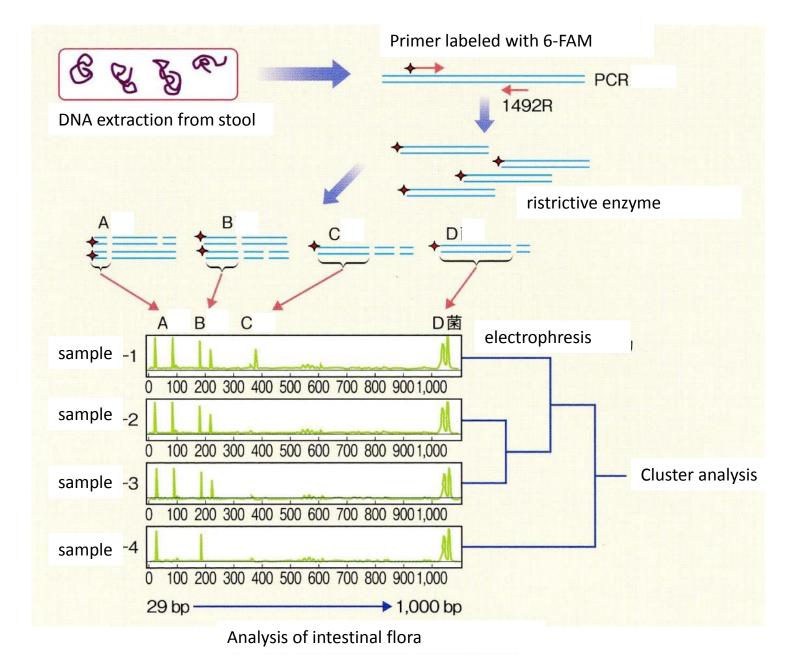
Hayashi H. et al.

bacteria	primer	Specific array	size	
Bifidobacterium	g-Bifid-F	CTCCTGGAAACGGGTGG	549~563	
	g-Bifid-R	GGTGTTCTTCCCGATATCTACA		
B. adolescentis	BiADOg-1a	CTCCAGTTGGATGCATGTC	279	
	BiADOg-1b	TCCAGTTGACCGCATGGT		
	BiADO-2	CGAAGGCTTGCTCCCAGT		
B. angulatum	BiANG-1	CAGTCCATCGCATGGTGGT	275	
	BiANG-2	GAAGGCTTGCTCCCCAAC		
B. bifidum	BiBIF-1	CCACATGATCGCATGTGATTG	278	
	BiBIF-2	CCGAAGGCTTGCTCCCAAA		
B. breve	BiBRE-1	CCGGATGCTCCATCACAC	288	
	BiBRE-2	ACAAAGTGCCTTGCTCCCT		
B. catenulatum	BiCATg-1	CGGATGCTCCGACTCCT	285	
	BiCATg-2	CGAAGGCTTGCTCCCGAT		
B. longum	BiLON-1	TTCCAGTTGATCGCATGGTC	831	
	BiLON-2	GGGAAGCCGTATCTCTACGA		
B. infantis	BiINF-1	TTCCAGTTGATCGCATGGTC	TC 828	
	BiINF-2	GGAAACCCCATCTCTGGGAT		
B. dentium	BIDEN-1	ATCCCGGGGGGTTCGCCT	387	
	BIDEN-2	GAAGGGCTTGCTCCCGA		
B. gallicum	BiGAL-1	TAATACCGGATGTTCCGCTC	303	
	BiGAL-2	ACATCCCCGAAAGGACGC		

Matsuki T. et al

Specific primer for Bifidobacterium

Numbers of bacteria in stool of healthy volunteer


bacteria	M ±SD	Positive(%)
Bifidobacterium	9.4 ± 0.7	100
B. adolescentis	9.1 ± 0.9	82.6
B. angulatum	6.6±0.2	10.9
B. bifidum	8.3±0.8	28.3
B. breve	7.3 ± 0.7	17.4
B. catenulatum	8.9 ± 0.8	89.1
B. longum	8.1±0.7	95.7
B. infantis	6.9 ± 0.7	4.3
B. dentium	7.2 ± 0.5	8.7

Matsuki T, et al.

Analysis of bacteria in healthy volunteer

bacteria	M± SD	positive(%)
Clostridium coccoides	10.3 ± 0.3	100
Clostridium leptum	9.9 ± 0.7	100
Bacteroides fragilis	9.9 ± 0.3	100
Bifidobacterium	9.4 ± 0.7	100
Atopobium -	9.3±0.7	100
Prevotella	9.7±0.8	45.7

Matsuki T, et al

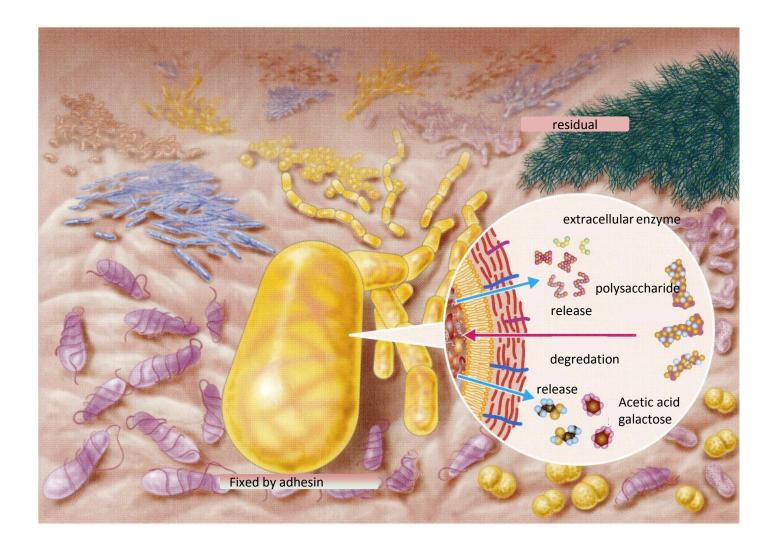
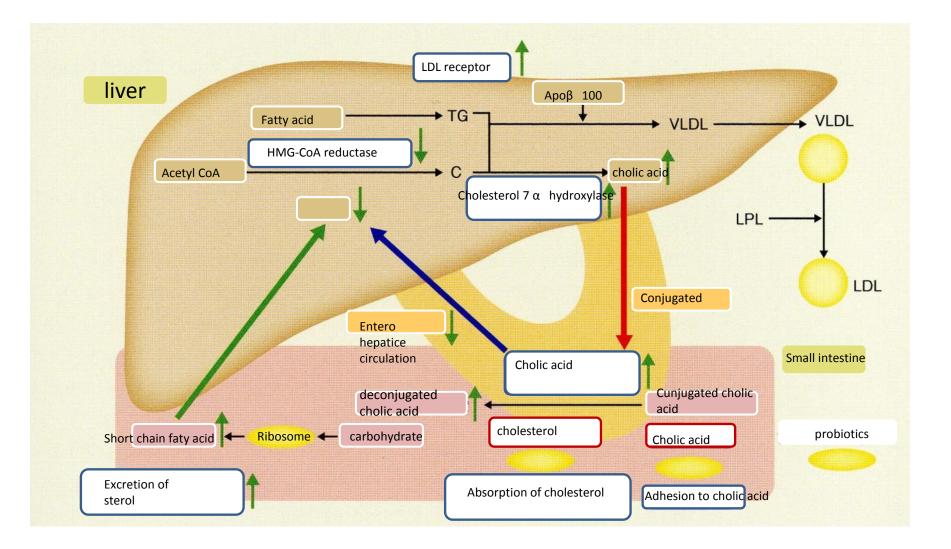
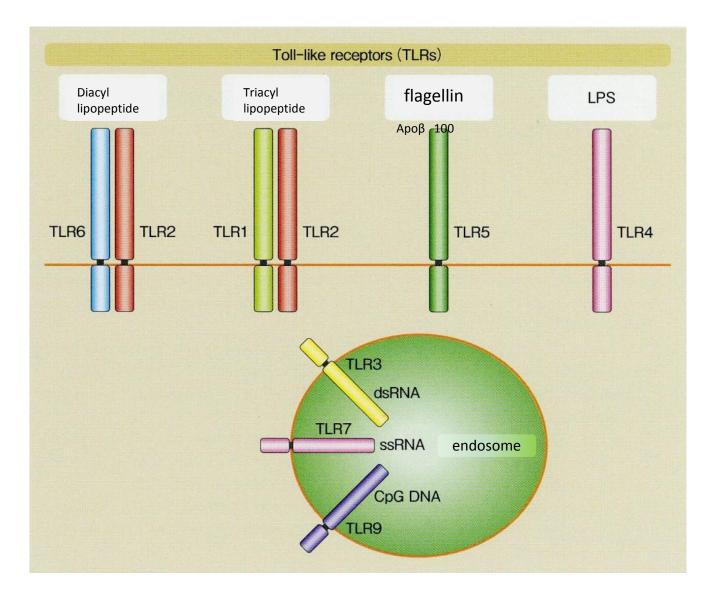
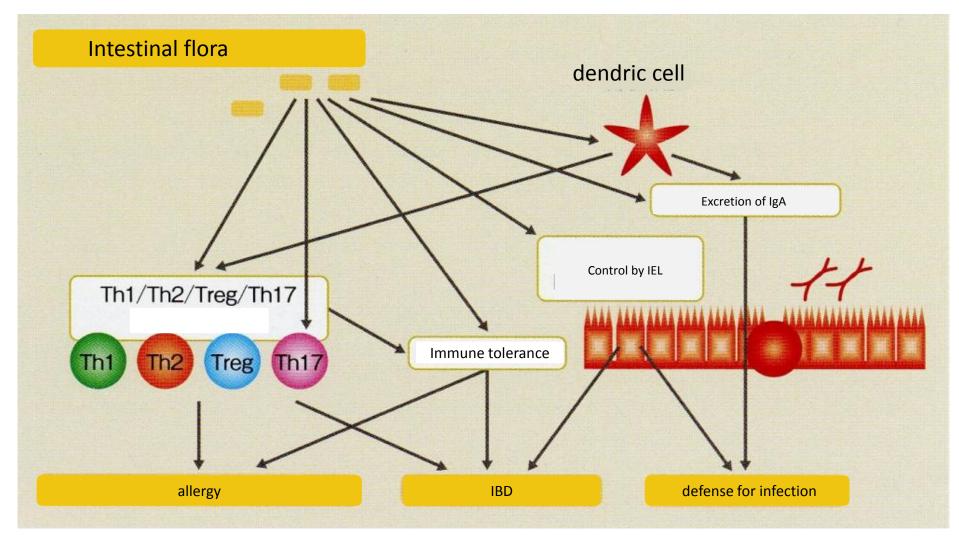
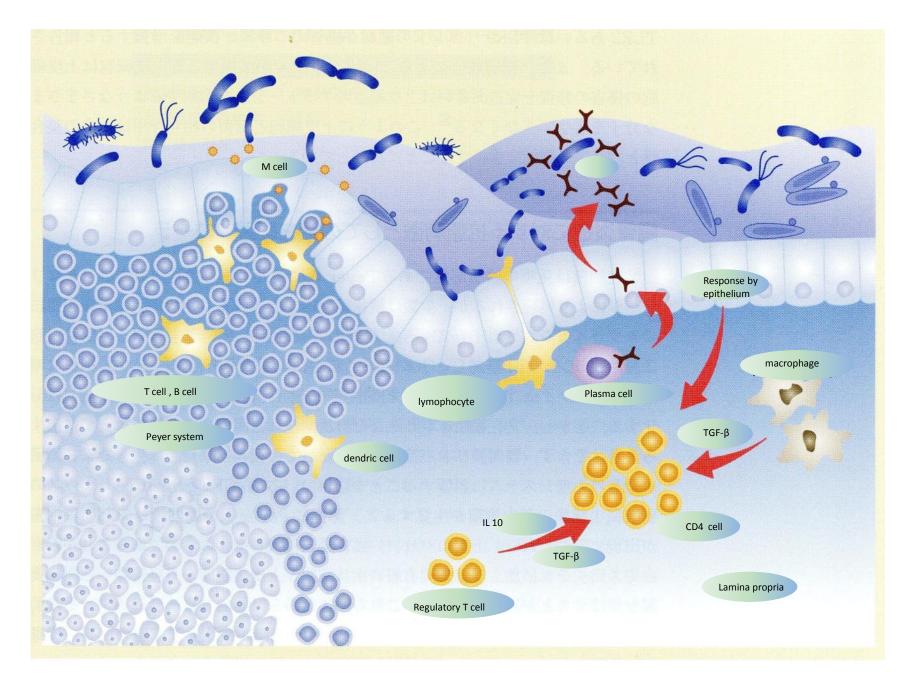




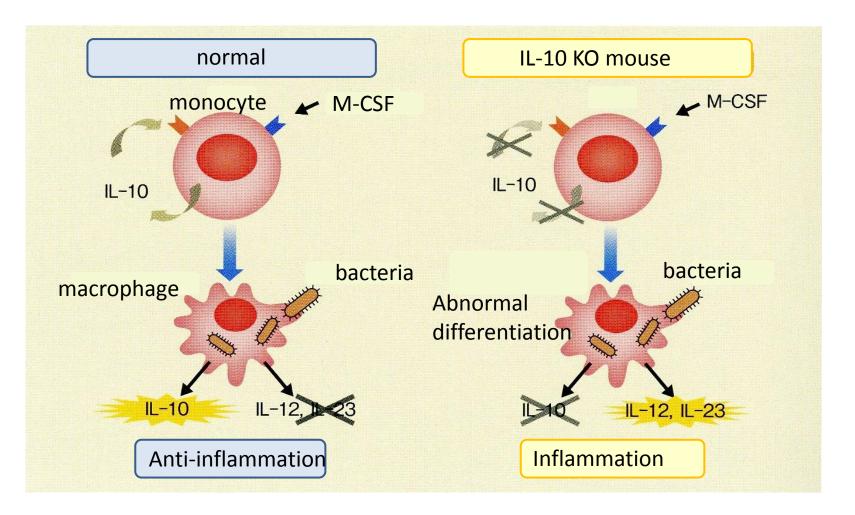
Image of Intestinal flora



Decrease of serum cholesterol by probiotics



TLR and Ligands


Immune system in mucosa

Immune system by intestinal flora

Defense system in mucosa

Production of cytokine

OMICS International Open Access Membership

OMICS International Open Access Membership enables academic and research institutions, funders and corporations to actively encourage open access in scholarly communication and the dissemination of research published by their authors.

For more details and benefits, click on the link below: http://omicsonline.org/membership.php