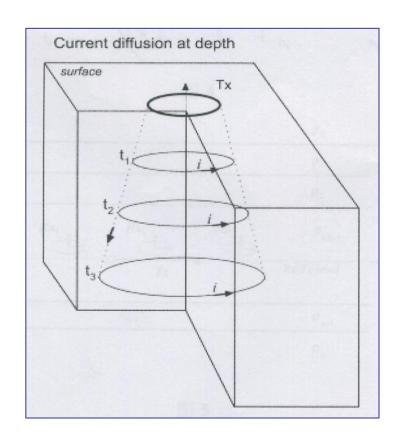
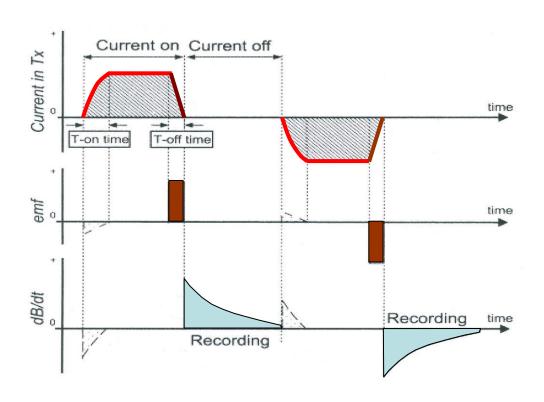
Journal of Geophysics & Remote Sensing

New technologies of TEM in China

Guoqiang Xue, Weiying Chen, Dongyang Hou


Institute of Geology and Geophysics, Chinese Academy of Sciences


OUTLINES

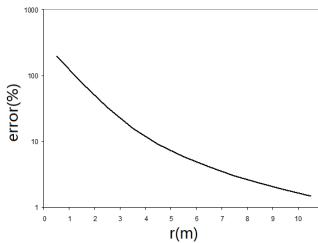
- 1. Introduction
- 2. new technology1-Infinitesimal point charge
- 3. new technology2-Electric source short-offset TEM
- 4. new technology3-Modified central loop TEM
- 5. new technology4-EM pseudo-seismic imaging
- 6. Reference

1. Introduction

1.1 TEM Introduction

Transient electromagnetic method (TEM) is a time domain method in electromagnetic exploration, which is sensitive to conductive targets and have been widely used in mineral source, coal, ground water, environment and engineering investigation(Nabighian,1991).

1. Introduction continued


1.2 Some vital issues in TEM exploration

- 1) Understand and calculate the TEM response base on its physical mechanism.
- 2) Greater investigation depth is needed to meet the need from deep mineral deposits and coal hydrogeology.
- 3) Higher precision and faster detection for both shallow and deep investigation.
- 4) Efficient processing method suitable to 2D and 3D data.

2. Infinitesimal Point Charge

- 2.1 Traditional approach to calculate TEM response due to a finite source
 - 1). Regard the source as a dipole(Kaufman, 1987)
 - 2). Regard the source as a superposition of many dipoles(Nabighian, 1991)

The relative error drops with the decrease of dipole dimension. The smallest and intrinsic source should be point charge

2. Infinitesimal Point Charge continued

2.2 Basis

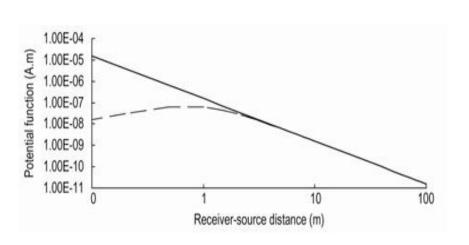
According to Maxwell equations so long as an electric charge varies with time it will excite electromagnetic wave .

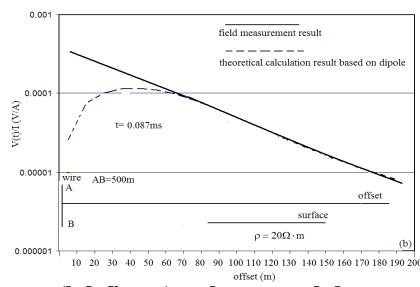
$$\nabla \times H = j + \frac{\partial D}{\partial t}$$

2.3 Mathematics

Based on point charge hypothesis, TEM field analytical solution has been derived by introducing time-domain Green function. Integral formula has been used to transform electromagnetic field damping wave equation into Green function integral form. Auxiliary path has been constructed for solving singularity problem. Four heavy generalized integral formula of time-domain electromagnetic field response has been arrived by using Jordan's lemma, the residue theorem and generalized function method. Direct-time-domain exact solution of D'Alembert equations firstly has been derived(Zhou,2013;Xue,2014).

$$E(\mathbf{x},t) = -$$

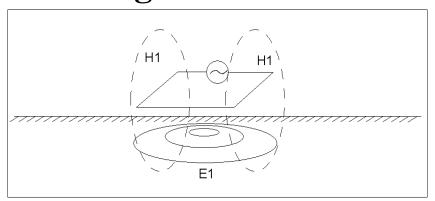

$$\int_{0}^{t} \int_{D} \left(\frac{1}{\sigma} \frac{\partial J(\mathbf{x}',\tau)}{\partial \tau} + \nabla \left(\frac{\rho(\mathbf{x}',\tau)}{\sigma \mu \varepsilon} \right) \right) T e^{-\frac{\sigma \mu |\mathbf{x}-\mathbf{x}'|^{2}}{4(t-\tau)}} d\mathbf{x}' d\tau$$

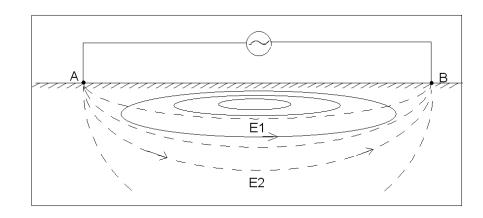

$$\int_{0}^{t} \int_{D} \left(\frac{1}{\sigma} \frac{\partial J(\mathbf{x}',\tau)}{\partial \tau} + \nabla \left(\frac{\rho(\mathbf{x}',\tau)}{\sigma \mu \varepsilon} \right) \right) T e^{-\frac{\sigma \mu |\mathbf{x}-\mathbf{x}'|^{2}}{4(t-\tau)}} d\mathbf{x}' d\tau$$

$$\int_{0}^{t} \int_{D} \left(\frac{1}{\sigma} \frac{\partial J(\mathbf{x}',\tau)}{\partial \tau} + \nabla \left(\frac{\rho(\mathbf{x}',\tau)}{\sigma \mu \varepsilon} \right) \right) T e^{-\frac{\sigma \mu |\mathbf{x}-\mathbf{x}'|^{2}}{4(t-\tau)}} d\mathbf{x}' d\tau$$

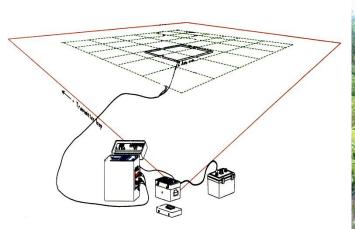
2. Infinitesimal Point Charge continued

2.4 Comparison with dipole

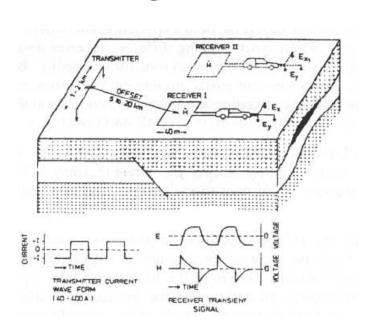


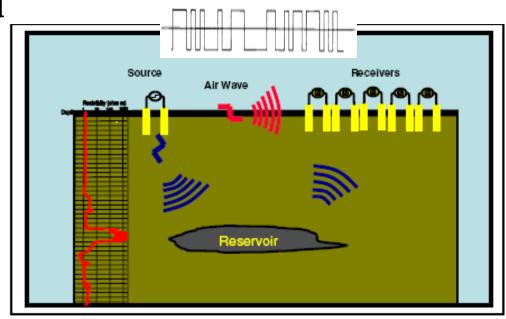

Solid line represents infinitesimal point charge (left figure) and measured data (right figure), dashed represents dipole (both figures)

It is shown that the field of the infinitesimal point charge in the near source zone is different from that of dipole, whereas the far-source zone fields of these two sources are identical. The comparison of real and simulated data shows that the infinitesimal point charge represents the real source better than dipole source.


3. Electric Source Short-offset TEM

3.1 Background

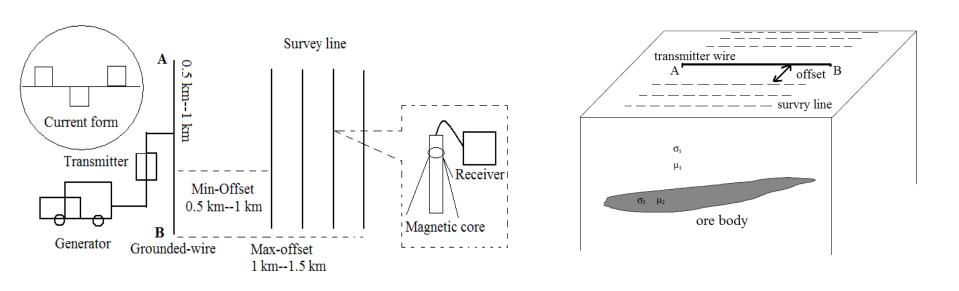

1) Loop source excites only horizontal induction current, while grounded wire source has both horizontal and vertical induction current. This leads to loop source TEM only sensitive to conductive targets.


- 2) Detection depth of loop source TEM usually is shallower than 1km.
- 3) Difficult to lay the transmitting loop at mountain areas.

3.1 Background Continued

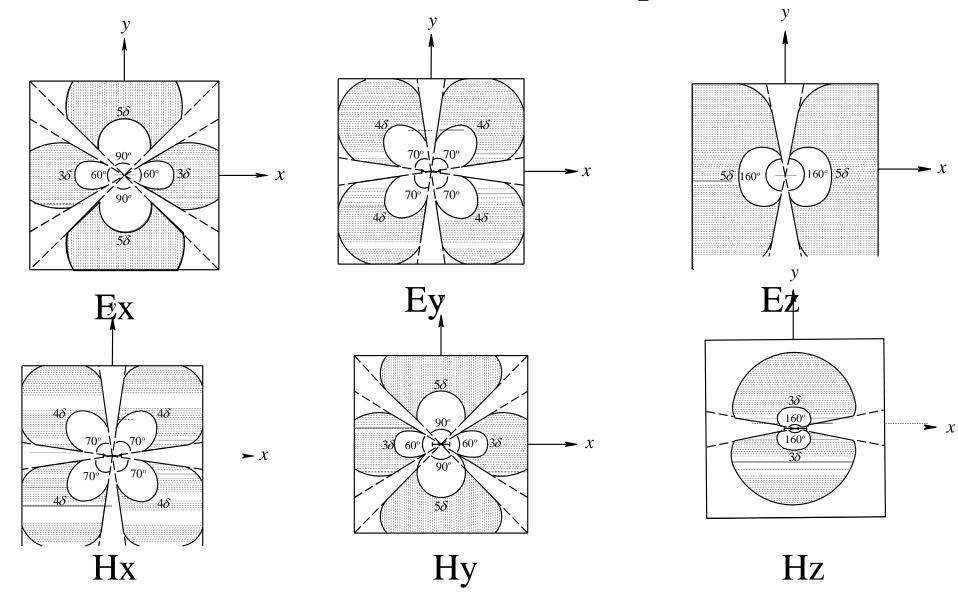
LOTEM(Strack,1992)

- **Advantage**: great detection depth (more than 10km)
- **Disadvantages**: great source-receiver distance (2~20Km), weak signal, volume effect, poor precision,

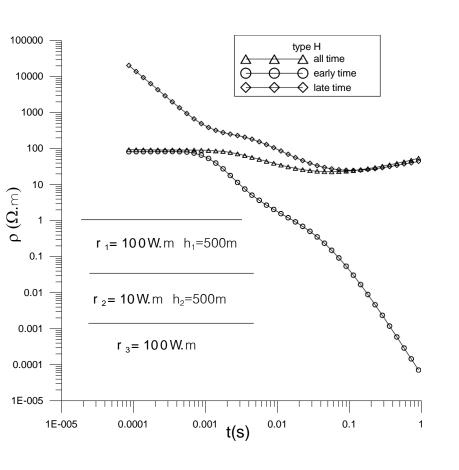

MTEM(Ziolkowski,2007)

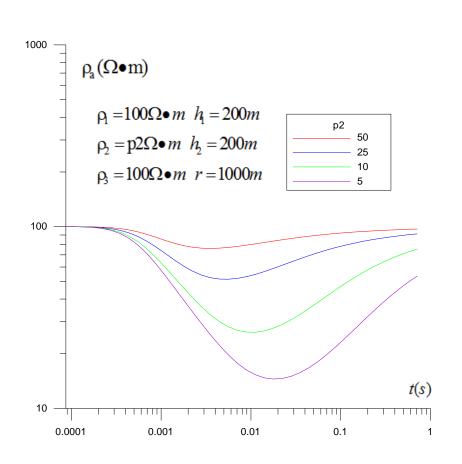
Advantage: great power, pseudorandom transmitting source; multi-channel array, multi component, 3D detection; Pseudoseismic imaging of data

Disadvantage: heavy, hard to conduct at mountain area; mainly used in marine; systemic and robust equipment have not been introduce to china


3.2 Definition

Short-offset TEM (abbreviated to SOTEM) means that the distance between transmitter and receiver is approximately equal to or less than the exploration depth(Xue,2013).




Typical SOTEM layout diagram

3.3 Observation area for each EM component

3. Electric Source Short-offset TEM continued 3.4 All-time apparent resistivity

Calculated by polynomial fitting method

Calculated by dichotomy method

3.5 Imaging

Electric field underneath the Tx

$$E_{x}(z,t) = \frac{Il\rho}{\pi z^{3}} \left[erf\left(\frac{u}{\sqrt{2}}\right) - \frac{1}{2} + \left(\sqrt{\frac{2}{\pi}}u - \frac{1}{2}\right) \left(1 + \frac{u^{2}}{2}\right) e^{-u^{2}/2} \right]$$

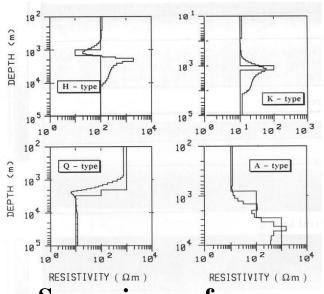
Time of maximum of Ex for a given depth

$$\left. \frac{dE_x(z,t)}{dt} \right|_{z=z_{image}} = 0$$

Image depth

$$z^2(t)_{image} = \frac{4t}{\mu_0 \sigma}$$

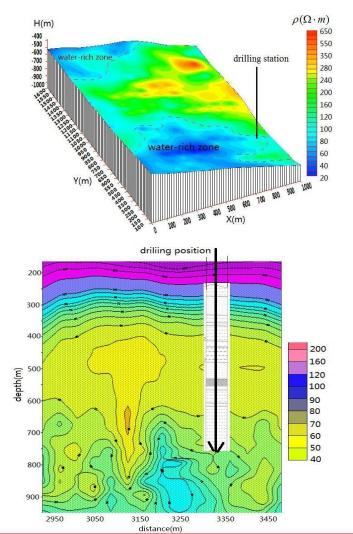
Hz from a current filament located at image depth

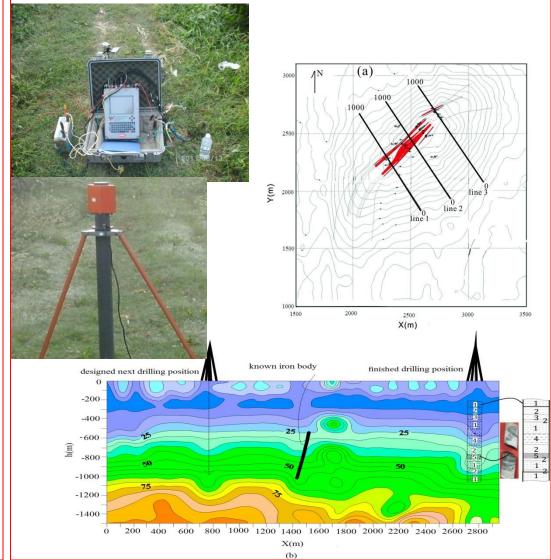

$$H_z = \frac{I}{4\pi} \frac{y}{y^2 + z^2} \frac{x + L}{((x+1)^2 + y^2 + z^2)^{1/2}} \frac{x - L}{((x-1)^2 + y^2 + z^2)^{1/2}}$$

slowness

$$\frac{dt}{dz} = \frac{1}{2} z \mu_0 \sigma$$

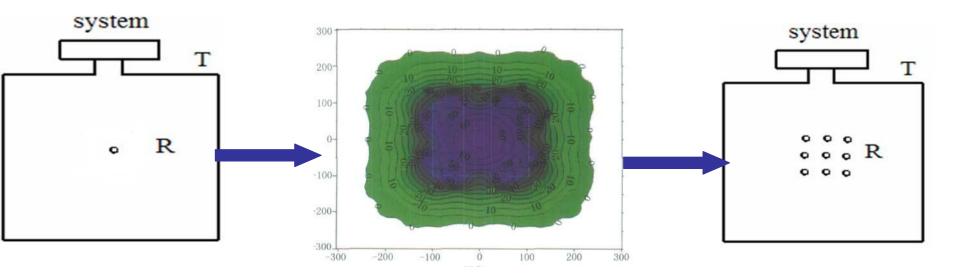
Conductivity of the image


$$\sigma = \frac{2}{\mu_0} \frac{\mathrm{d}^2 t}{\mathrm{d}z^2}$$


Source image for a three-layer model

3.6 Case study

Investigation of hydrous coal mine in Shandong Province

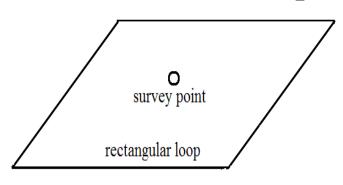


Discovery of Dawangzhuang Iron Ore in Anhui Province

4. Modified Central Loop TEM

4.1 Reasons

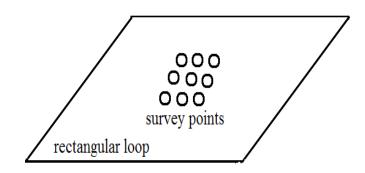
Regular central loop
TEM has only one
survey point at once
layout, which leads to
energy waste and low
work efficiency


The vertical magnetic response in the central part of loop is Approximately equal (Xue,2012)

The modified device utilize the signal from a bigger central part which about 1/3 of loop area.

4. Modified Central Loop TEM continued

4.2 Modified theory


Central loop

$$H_z(\omega) = \frac{I_0}{k_1^2 a^3} [3 - (3 + 3k_1 a + k_1^2 a^2) e^{-k_1 a}]$$

$$\rho_a^L(t) = \frac{\mu_0}{4\pi t} \left(\frac{2\pi I_0 a^2 \mu_0}{5t}\right)^{\frac{2}{3}}$$

Modified Central loop

$$H_{z}(a) = \frac{I_{0}}{k_{1}^{23}} [Z_{0}(r) - (Z_{1}(r) + Z_{2}(r)k_{1}a + Z_{3}(r)k_{1}^{22}a)e^{-k_{1}a}]$$

$$\rho_a^L(\frac{\partial B_z(t)}{\partial t}) = \frac{u_0}{\pi t} \left[\frac{Z_1(r)\pi I_0 \mu_0}{60t} \right]^{\frac{2}{3}}$$

4. Modified Central Loop TEM continued

4.3 Modified instruments

Air coil: heavy and with small Magnetic probe: portable and with great receive area

 $(10000m^2, 20000m^2)$

Significantly increase the signal strength

 $receive area (100 m^2)$

5. TEM Pseudo-seismic Imaging

5.1 Basic theory(Xue,2013)

Background

- 1). The precision in TEM prospecting is relative low compare with seismic method
- 2). Interpretation and judgment always be made based on experience of interpreter
- 3). 2D and 3D TEM inversion are time-consuming and expensive.

For the aim to improve the precision, can we interpret TEM data similar to seismic method?

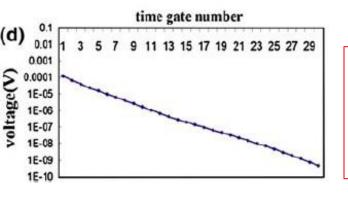
Basic equation construction

Diffusion equations for TEM

$$\nabla \times \nabla \times \mathbf{H}_{m}(\mathbf{r},t) + \mu \sigma(\mathbf{r}) \frac{\partial}{\partial t} \mathbf{H}_{m}(\mathbf{r},t) = 0$$
Diffusion equations for seismic

$$\nabla \times \nabla \times \mathbf{U}(\mathbf{r}, \tau) + \mu \sigma(\mathbf{r}) \frac{\partial^{2}}{\partial \tau^{2}} \mathbf{U}(\mathbf{r}, \tau) = 0$$

Inverse Laplace transform
$$\mathring{\mathbf{H}}(\mathbf{r}, p^2) = \mathring{\mathbf{U}}(\mathbf{r}, p)$$

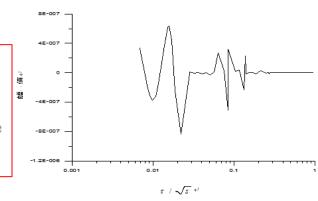

$$H_m(t) = \frac{1}{2\sqrt{\pi t^3}} \int_0^\infty \tau e^{-\tau^2/4t} U(\tau) d\tau$$
Discrete

$$H_{i} = \frac{1}{2\sqrt{\pi t^{3}}} \left(\tau_{1} e^{\frac{-q_{1}^{2}}{t_{i}}} (\tau_{2} - \tau_{1}) U_{1} + 2 \sum_{i=2}^{n-1} \tau_{j} e^{\frac{-q_{j}^{2}}{4t_{i}}} (\tau_{j+1} - \tau_{j-1}) U_{j} + \tau_{n} e^{\frac{-q_{n}^{2}}{4t_{i}}} (\tau_{n} - \tau_{n-1}) U_{m}\right)$$

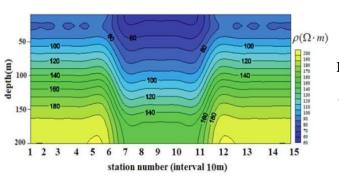
5. TEM Pseudo-seismic Imaging continued

5.2 Key techniques

Wavelet extraction

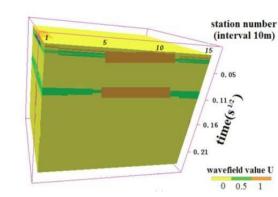

$$(\mathbf{A}^T \mathbf{A} + \alpha(\delta)\mathbf{I}) \cdot \mathbf{U} = \mathbf{A}^T \mathbf{F}.$$

----main idea of calculation

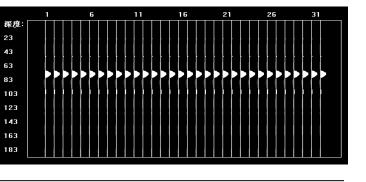

1). normalize method has been adopted,

2). optimizing normalizing parameter have been selected by deviation theory

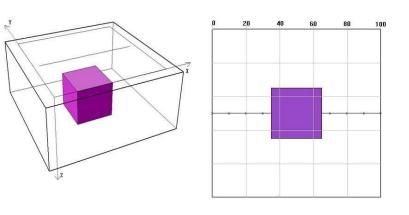
3). Newton iterative form to be used to make the transformed wave field stable and reliable.

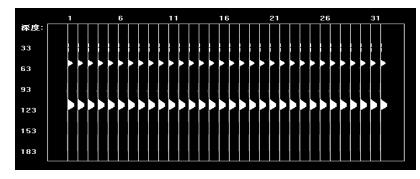


Migration imaging


Kirchhoff integral function

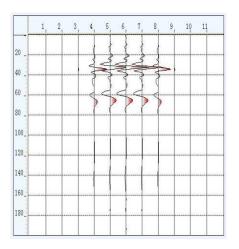
$$u(x, y, z, t) = -\frac{1}{4\pi} \left[\iint\limits_{Q} \left\{ [u] \frac{\partial}{\partial n} (\frac{1}{r}) - \frac{1}{r} [\frac{\partial u}{\partial n}] - \frac{1}{vr} \frac{\partial r}{\partial n} [\frac{\partial u}{\partial t}] \right\} dQ + \frac{F}{r_0} \right]$$


5. TEM Pseudo-seismic Imaging continued


5.3 Models simulation

$$\rho_1 = 5\Omega \cdot m, \quad h_1 = 80m$$

$$\rho_2 = 500\Omega \cdot m$$

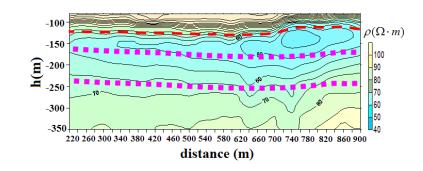


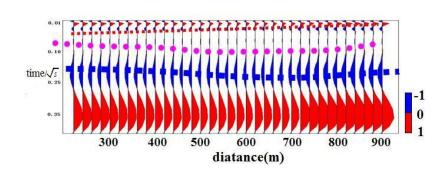
$$\rho_1 = 1\Omega \cdot m, \quad h_1 = 60m$$

$$\rho_2 = 10\Omega \cdot m, \quad h_2 = 60m$$

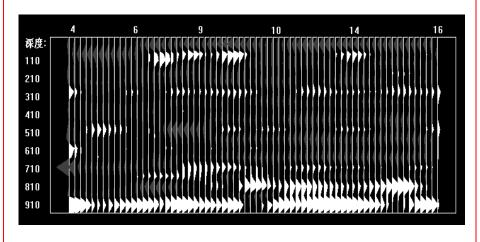
$$\rho_3 = 100\Omega \cdot m$$

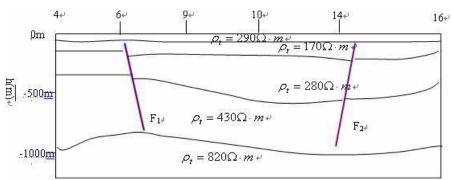
$$\rho_1 = 10\Omega \cdot m$$


$$\rho_2 = 300\Omega \cdot m$$


$$h = 70m$$

5. TEM Pseudo-seismic Imaging continued


5.4 Case study


Recognizing electrical interface in Shanxi province

Detecting deep electric structure and distribution in Guangdong province

6. Reference

- G.Q. Xue, Gelius, L.Xiu 3-D Pseudo-seismic Imaging of TEM data—a Feasibility Study. Geophysical Prospecting, 2013, 61(S1), : 561–571doi:10.1111/j.1365-2478.2012.01109.
- Guo-Qiang X, Wei-Ying C, Nan-Nan Z, Hai L, Hua-Sen Z (2013) Understanding of Grounded-Wire TEM Sounding with Near-Source Configuration. J Geophys Remote Sensing 2:113. doi: 10.4172/2169 0049.1000113
- Kaufman, A.A., and Keller, G.V., 1983, Frequency and transient sounding: Methods in geochemistry and geophysics: Elsevier Publ. Co, 1–32.
- Nabighian, M.N., and Macnae, J.C., 1991, Time-domain electromagnetic prospecting methods: in Nabighian, M.N. (ed.), Electromagnetic methods in applied geophysics—Theory volume II, Part A, Society of Exploratio Geophysicists, Tulsa,
- Strack K M.Exploration with deep transient electromagnetic method[M], Elsevier,1992
- Xue, G.Q., Bai, C.Y., and Yan, Y., 2012, Deep sounding TEM investigation method based on a modified fixed central-loop system: Journal of Applied Geophysics, 76(2012) 23–32.
- Xue, G.Q., Wang, H.Y., Yan S., Zhou N.N. 2014, Time-domain Green function solution for transient electromagnetic field. Chinese Journal geophysics, 57(2:671-678)
- Zhou Nan-nan, Xue Guo-qiang, Wang He-yuan. Comparison of the time-domain electromagnetic field from an infinitesimal point charge and dipole source. Applied Geophysics, 2013,10(3):349-356
- Ziolkowski A, Hobbs B. A, Wright D (2007) Multi-transient electromagnetic demonstration survey in France. Geophysics 72: 197-209.

OMICS International Open Access

Membership enables academic and research institutions, funders and corporations to actively encourage open access in scholarly communication and the dissemination of research published by their authors. For more details and benefits, click on the link below: http://o micsonline.org/member_ship.php

