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Introduction
Positron emission tomography (PET) is a functional imaging study 

that is now frequently used for staging, treatment planning and post-
treatment surveillance of malignant tumors including HNC due to the 
additional valuable biological information it provides over structural 
imaging [1,2]. It is a non-invasive technique that provides biological 
characteristics of the tumor “In-vivo”, which may be monitored and 
quantified before, during and following the treatment of head and 
neck (HNC). The most commonly used positron-emitting tracer in 
oncology is the glucose analog [18F]fluorodeoxyglucose (FDG), which 
accumulates in a wide variety of tumors due to the increased cellular 
metabolic demand and glucose avidity of cancer cells compared to 
most normal human tissues [2-4]. Malignant cells take up and entrap 
the radiolabelled glucose, which is not metabolized further and 
acts as a positron-emitting tracer. Although the use of FDG-PET in 
the evaluation of head and neck cancer is promising, its role in the 
treatment planning for HNC has not been completely elucidated. 
The purpose of the present review is to describe the current clinical 
evidence for the application of FDG-PET in radiotherapy planning for 
patients with HNC.

The impact of FDG-PET on the initial staging of head and 
neck cancer

The majority of patients with HNC present with locoregionally 
advanced disease, involving the cervical lymph node. Correct staging 
of the cervical lymph nodes is vital to determine the necessary extent 
of neck dissection and for precise delineation of radiotherapy target 
volumes and fields. 

Standard staging techniques used for HNC include clinical 
examination, computed tomography (CT) and magnetic resonance 
imaging (MRI). Characteristics used in the interpretation of CT and 
MRI in staging cervical lymph nodes include lymph node size, the 

presence of central necrosis, enhancement patterns, imprecise nodal 
margins and obliteration of fat or tissue planes [5-8]. FDG-PET appears 
to be at least as sensitive as or slightly more sensitive than conventional 
imaging for the initial staging of nodal metastases in patients with HNC 
[5]. Recent studies reported an average sensitivity of 87% to 90% and 
an average specificity of 80% to 93% for FDG-PET in the detection of 
nodal metastases, which compares favorably with the sensitivity (61% 
to 97%) and specificity (21% to 100%) of CT and MRI [5]. However, the 
impact of PET staging of cervical nodes on eventual clinical outcome 
is not well established. 

As MRI technology advances, MRI may equal or potentially 
surpass the accuracy of PET in the initial locoregional staging of HNC. 
Dammann et al. prospectively compared FDG-PET, CT and MRI for 
initial staging of HNC patients and reported that the sensitivity and 
specificity of MRI in detecting nodal metastases were 93% and 95%, 
respectively, compared to 85% and 98% for FDG-PET. In view of its 
higher sensitivity and superior anatomic detail, the authors of that 
report recommended MRI as the optimal initial imaging modality for 
HNC [6]. 

FDG-PET imaging techniques have evolved as well. In particular, 
the anatomic localization of hypermetabolic activity has been improved 
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Abstract
Objectives: The objective of the current review was to use published data to assess the role of [18F]

fluorodeoxyglucose-positron emission tomography (FDG-PET) as a complementary modality to computed-
tomography (CT) in radiotherapy target volume delineation for head and neck cancer (HNC).

Methods: Studies were identified by searching PubMed electronic databases. Both prospective and retrospective 
studies were included. Information regarding the role of FDG-PET for radiotherapy target volume delineation for 
HNC was analyzed.

Results: FDG-PET is a promising tool for improving radiotherapy target volume delineation by defining a 
metabolically active biological target volume (BTV). The use of novel PET tracers representing properties such as 
hypoxia, protein synthesis and proliferation remain to be better characterized. 

Conclusions: The role of FDG-PET for radiotherapy target volume delineation for patients with HNC is 
expanding and should be further evaluated in clinical trials. 
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with the introduction of FDG-PET/CT, which was shown to be more 
accurate than FDG-PET alone. Syed et al. reported that compared with 
FDG-PET alone, FDG-PET/CT downstaged disease and changed the 
recommended management in 17% of patients by correctly assigning 
areas of increased uptake to fat and muscle tissue. Furthermore, FDG-
PET/CT notably improved the confidence in anatomic localization 
and increased interobserver agreement in assigning lesions to specific 
anatomical regions [7]. 

As FDG-PET/CT, MRI and high-resolution CT continue to evolve, 
it is unclear which modality is currently the most accurate for the initial 
staging of locoregional disease in HNC. An advantage of FDG-PET/CT 
is undoubtedly its ability to detect contralateral nodal disease, distant 
metastatic disease and synchronous primary tumors [8-10]. Numerous 
studies have demonstrated that FDG-PET may detect occult distant 
metastases in as many as 10% of patients with locoregionally advanced 
HNC [5,9,11,13]. Furthermore, HNC patients have a high risk of 
synchronous malignancies, particularly in the upper aerodigestive 
tract. FDG-PET might be valuable in detecting such tumors, though 
its sensitivity in this situation is not clear as relatively few studies 
address this subject [13-15]. FDG uptake in tumors may also represent 
a prognostic marker; FDG uptake has been correlated with recurrence 
risk following surgery and/or radiotherapy [16]. FDG uptake may 
signify a need for intensification of therapy, but this requires further 
study. 

Radiotherapy target volume delineation

Radiotherapy is an integral part of treatment for many HNC 
patients. Treatment machines have evolved from orthovoltage 
X-ray devices to the state-of-the-art linear accelerators that deliver 
megavoltage radiation. Within the realm of megavoltage radiotherapy, 
treatment delivery techniques have progressed from two-dimensional 
open field techniques to three-dimensional conformal radiotherapy 
to intensity-modulated radiation therapy (IMRT). Each advance has 
allowed for more conformal radiotherapy dose delivery and increased 
the ability to spare normal tissues from high-dose irradiation. At the 
same time, the ability of the radiation oncologist to generate precise 
target volumes becomes increasingly critical [17]. 

The first step in radiotherapy planning is to define the target volumes 
and the organs at risk. Anatomical imaging modalities, such as CT and 
MRI, remain the most commonly used tools for target delineation in 
radiotherapy. Traditionally, CT has been used to delineate radiotherapy 
target volumes. Certain MRI sequences, especially T1-weighted and 
T2-weighed imaging, are more accurate than CT for determining the 
extent of soft tissue involvement, especially for tumors of the tongue 
and nasopharynx [18,19]. However, commercial radiotherapy planning 
platforms use CT data to create an electron density map for dose 
calculation [17]. Therefore, MRI or functional imaging studies like PET 
cannot be used independently for radiotherapy planning and must be 
fused with CT. CT, unfortunately, may be affected by artifacts from 
dense materials, such as dental fillings or prosthetic joints. This can 
make CT imaging inaccurate for the aforementioned dose calculations, 
unless appropriate corrections are made [17]. 

The role of FDG-PET in radiotherapy target delineation for 
head and neck tumors

Despite technological advances in radiation oncology, the 
locoregional recurrence rate for HNC patients is still significant [20]. 
As techniques for more accurate radiotherapy delivery to head and 
neck tumors such as IMRT have developed rapidly, improvements 

in localizing disease have been harder to achieve. Functional imaging 
studies, such as FDG-PET, promise to improve target volume 
delineation by allowing clinicians to define a metabolically active 
biological target volume (BTV) [17]. 

Gross tumor volume (GTV), is classically defined as the grossly 
visible tumor and metastatic lymphadenopathy based on physical 
examination and anatomic imaging studies. Radiotherapy target 
volumes, however, may be significantly modified when FDG-PET data 
are incorporated in the treatment planning process. FDG-PET may 
be utilized in radiation therapy planning by importing an FDG-PET 
study set into the treatment planning software and co-registering it 
with the treatment planning CT scan. Use of the same immobilization 
head mask for both planning CT and FDG-PET allow for precise 
co-registration. Modern studies have demonstrated the feasibility 
of successful co-registration between PET-CT and the CT planning 
imaging [21]. 

Radiotherapy target volumes defined on FDG-PET may be larger 
or smaller than volumes outlined using CT information alone [21-39] 
(Table 1 and Figure 1). The total target volume may increase when 
metabolically active tumor is detected in cervical lymph nodes that 
are not enlarged. On the other hand, an FDG-PET-based GTV may be 
smaller than a CT-based GTV in the case of a partially necrotic tumor. 
Studies have also demonstrated that FDG-PET/CT guided IMRT 
planning may selectively target and intensify the treatment of head 
and neck cancer while reducing the dose to critical normal structures. 
Moreover, FDG-PET can identify areas within the conventional target 
volume that are particularly hypermetabolic that may be possible 
biological target volumes for dose escalation studies in the future. 

Daisne et al. compared the GTVs of primary laryngeal tumors 
generated using CT, MRI, FDG-PET and surgical pathology in 9 HNC 
patients who underwent total laryngectomy. Nodal volumes were not 
delineated. Surgical specimens were significantly smaller (average: 12.6 
cm3), than they appeared on each imaging modality (average volume 
of 20.8 cm3 with CT, 23.8 cm3 with MRI and 16.3 cm3 with FDG-PET). 
Interestingly, each imaging modality failed to detect the superficial 
extent of the laryngeal tumors, underestimating the superficial tumor 
extension into the mucosa of the contralateral larynx and extralaryngeal 
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Figure 1: Comparison of Positron Emission Tomography (PET) and 
Computed Tomography (CT)-based Gross Tumor Volumes (GTVs) in series 
that provided patient-level data.  Using simple linear regression, PET-based 
GTVs are, on average, approximately 25% smaller than CT-based GTVs. 
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extension. Furthermore, there was a high tendency for geographic 
mismatch both between the imaging modalities and with the surgical 
specimen. Since eight of nine patients in that series were diagnosed 
with T4 laryngeal tumors, its results may not apply to earlier stages of 
laryngeal cancer or other HNC sites [39].

One major source of difference in GTV delineation is the 
interobserver variability. Breen et al. studied 10 patients with HNC. For 
each patient, the GTV of the primary tumor was delineated by a total 
of 8 specialists (6 head and neck radiation oncologists and 2 head and 
neck neuroradiologists) on CT, PET-CT and contrast-enhanced CT 
imaging. Metastatic lymph nodes were excluded from these volumes. 
The analysis demonstrated a high concordance between volumes 
delineated by experienced radiation oncologists. Furthermore, 
the addition of PET-CT for HNC primary tumor delineation did 
not change the GTV [36]. In contrast, Riegel et al. evaluated GTV 
delineation variability among multiple physicians on CT and PET-
CT fusion for 16 HNC patients. A significant interobserver variability 
was reported not only between all the physicians, but also between the 
radiation oncologists [37]. 

Although the use of FDG-PET is gaining acceptance for target 
volume delineation for HNC in the radiation oncology community, 
techniques for contouring GTV using FDG-PET have not been 
standardized. Target volumes may be significantly overestimated or 
underestimated, depending on the windowing level, when contours 

are generated manually [24,25]. The lack of widely validated protocols, 
which introduces a significant source of heterogeneity across studies, 
may explain the inconsistencies in published reports. Differences in 
imaging acquisition techniques may introduce additional elements 
of heterogeneity. Studies have not yet demonstrated the impact of 
using FDG-PET for radiotherapy target volume delineation on clinical 
outcomes for HNC patients. 

The role of novel PET tracers for HNC 

Despite significant research efforts and widespread clinical 
use of FDG-PET, the optimal manner in which FDG-PET should 
be implemented in the management of HNC patients remains 
undefined. Less clear still is the role of novel PET tracers, designed 
to depict biological characteristics such as hypoxia, protein synthesis, 
cell proliferation and apoptosis, in HNC patient care. One or more 
of these tracers may one day facilitate functional imaging-based 
individualization of treatment strategies [40-55].

Hypoxia has been recognized as an adverse prognostic factor 
for HNC patients treated with definitive radiotherapy [44-46]. 
18-F-fluoromisonidazole (FMISO) has been the most studied 
hypoxic PET tracer and FMISO uptake in imaging studies has been 
correlated with treatment outcome in HNC [40,41,47]. A newer agent, 
fluorine-18 fluoroazomycin arabinoside (18FAZA), has the advantage 
of a faster blood clearance than FMISO, resulting in improved target-
to-background contrast and should be further studied in clinical trials 

FDG-PET, [18F]Fluoro-Deoxy-Glucose-Positron Emission Tomography,  CT, Computed Tomography, MRI, Magnetic Resonance Imaging, PET-CT, Positron Emission 
Tomography-Computed Tomography, CE-CT, Contrast Enhanced Computed Tomography, GTV, gross tumor volume, CTV, Clinical Target Volume, PTV, Planning Target 
Volume

Table 1: FDG-PET for radiotherapy target volumes delineation for head and neck cancer.

Study Number of patients CT/MRI/PET/PET-CT radiotherapy target volumes

Ciernik et al. [21] 39 (12 patients with head and neck 
cancer)

> 25% GTV increase with PET-CT vs CT
> 25% GTV decrease with PET-CT vs CT

Heron et al. [23] 21 Mean GTV 42.7 cm3 with PET vs 65 cm3 with CT
Scarfone et al. [24] 6 Mean GTV primary tumor 22.2 cm3 with CT vs 19.9 cm3 with PET
Paulino et al. [27] 40 Median GTV 20.3 cm3 with PET vs 37.2 cm3 with CT

Newbold et al. [32] 18 (9 unknown primary tumors)

Median  6.1 cm3 increase in GTV (combined primary and nodal) with PET-
CT vs CT for known primary tumors
Median 10.1 cm3 increase in CTV with PET-CT for known primary site
Median 6.3 cm3 increase in GTV with PET-CT vs CT for unknown primary 
tumors
Median 155.4 cm3 increase in CTV with PET-CT vs CT for unknown 
primary tumors

Guido et al. [33] 38 Mean GTV for CT 34.54 cm3 vs 29.38 cm3 for PET-CT

Breen et al. [36] 10 Mean GTV primary tumor 26.9 cm3 with CT vs 27.7 cm3 with CE-CT vs 
26.5 cm3 with PET/CT

Wang et al. [35] 28 Mean GTV 68.8 cm3 with CT vs 61.8 cm3 with PET-CT

Deantonio et al. [34] 22

Mean GTV with PET/CT 26.0 cm3 (composite volume between PET and 
CT)
Mean GTV 5.5 cm3 with PET
Mean GTV 8.1 cm3 with CT
Mean GTV 11.2 cm3 with CT&PET (the common volume of the two imaging 
modalities)

El-Bassiouni et al. [38] 25

Median GTV for CT 29.6 cm3, mean GTV for CT 41.6 cm3 
Median GTV for PET 23.0 cm3, mean GTV for PET 34.2 cm3

Median PTV for CT 171.5 cm3, mean PTV for CT 204.1 cm3

Median PTV for PET 127.7 cm3, mean PTV for PET 165.9 cm3

Daisne et al. [39] 29 (9 with total laryngectomy)

Oropharyngeal tumors:
Mean GTV 32.0 cm3 with CT
Mean GTV 27.9 cm3 with MRI
Mean GTV 20.3 cm3 with PET
Laryngeal and hypopharyngeal tumors:
Mean GTV 21.4 cm3 with CT
Mean GTV 21.4 cm3 with MRI
Mean GTV 16.4 cm3 with PET
Mean surgical GTV 12.6 cm3 
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[43,44]. Furthermore, recent results have suggested a potential benefit 
of the hypoxic radiosensitizer tirapazamine for selected HNC patients 
who were at high risk for locoregional failure (smokers and patients 
with HPV negative tumors), had evidence of hypoxia on functional 
imaging and received high-quality radiotherapy [47-49]. 

Accelerated repopulation is a well-known mechanism of HNC 
radioresistance [50]. “In-vivo” measurement of cellular proliferation 
by functional imaging using tracers such as 32-deoxy-32-(18)F 
fluorothymidine (FLT) may provide valuable information in the 
setting of early tumor response assessment [51,52] and possibly guide 
focal intensification of therapy to tumor regions that demonstrate 
accelerated repopulation. 

Besides high glucose metabolism, most epithelial tumors also 
exhibit high levels of protein synthesis. Based on this principle, tracers 
such as 11C-methionine (MET), which are markers of high protein 
metabolism, may provide clinical utility. The role of MET-PET in 
evaluation of early tumor response to radiotherapy for HNC and 
delineation of radiotherapy target volumes remains to be determined 
[53-55].

Conclusions
The use of PET is gaining acceptance for radiotherapy target 

volume delineation in HNC. Addition study is required to demonstrate 
the impact of PET in this role on the clinical outcome of HNC patients. 
Recent data suggest that novel hypoxia and cell proliferation tracers, 
such as FMISO and FLT, could allow early response evaluation and 
potentially identify subvolumes for targeted radiotherapy dose 
escalation.
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