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Introduction
There is increasing attention paid to the contribution ofthe 

intrauterine environment to disease in adulthood. It has been 
suggested when maternal factors impact on foetal and/or infant 
growth and development, this predisposes individuals to subsequent 
environmental insults, rendering them more susceptible to developing 
various metabolic disorders, such as type 2 diabetes, hyperlipidemia, 
and hypertension [1-5]. As such, maternal smoking has been 
recognized as a significant intrauterine factor contributing to the onset 
of these diseases in offspring. However this review will focus on a less 
studied area, the link between maternal smoking and renal disorders 
in offspring.

Smoking and passive smoking during pregnancy are unfortunately 
still common in both developed and developing countries [6,7]. 
Maternal smoking has been recognized as an important perinatal factor 
that predispose offspring to not only metabolic disorders, but also 
respiratory and behaviour disorders (reviewed in [8-11]). Although 
smoking itself has been linked to increased risks of renal dysfunction 
and chronic renal disorders for many years [12], research on the direct 
impact of maternal smoking on renal disorders in offspring are scarce. 

Maternal smoking, particularly in the first trimester, imposes a 
significant adverse impact on fetal renal development that determines 
the future risk of chronic kidney disease. The functional unit of the 
kidney is the nephron: a structure that contains vascular loops of the 
glomerulus at the site of blood filtration and a tubular segment that 
reabsorbs and excretes components of the filtrate and ultimately 
connects to the collecting system. The number of glomeruli in the kidney 
significantly correlates with birth weight, in addition to non-modifiable 
factors, such as sex (men 17% higher than women), age (adults have 
significant less than children), and race [13-15]. Alterations in the 
intrauterine environment may affect renal development, including 
maternal malnutrition, infectious diseases, and toxins (including 
medication) can all lead to intrauterine growth retardation (IUGR) and 
low birth weight [1,16,17].

Therefore, renal developmental disorders due to intrauterine 

growth retardation may hold the key to the later onset of renal disorders 
in offspring of smoking mothers. Several mechanisms are proposed 
that may predict the susceptibility to future renal disease (Figure 1), 
including 1) epigenetic modification of fetal nuclear/mitochondrial 
DNA, 2) changes in fetal renal growth factors and 3) direct toxicity 
from the chemicals in the cigarette smoke. In addition, malnutrition 
due to the anorexigenic effect of smoking results in nutritional deficits 
in the fetus and impairs organ growth and development. Inherited 
genetic modification or epigenetic induced by environment may also 
promote the development of metabolic and renal disease later in life. 
Several studies have suggested potential candidate genes predisposing 
to a susceptibility to renal disease among particular ethnic groups 
[2]. It has long been suspected that many putative genetic variants 
only influence kidney disease progression in the presence of specific 
environmental factors. However, whether these genetic variants can 
also be affected by epigenetic mechanisms that predispose individuals 
to the development of kidney disease has not been confirmed. Family 
members are normally exposed to similar environmental conditions, 
which can interact with genetic factors to promote what has previously 
been considered as ‘polygenic inheritance [2]. The current review will 
discuss the detrimental impact of maternal smoking on fetal renal 
development and the known mechanisms involved.

Maternal Cigarette Smoking and Renal Development in 
Offspring

Despite the disadvantages of smoking due to the risk of various 
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Abstract
Smoking is a known risk factor for non-communicable illness including pulmonary disease, cardiovascular disease, 

and Type 2 diabetes. Smoking also contributes significantly to the rising ‘epidemic’ of chronic kidney disease. It is 
increasingly recognised that maternal programming of fetal development during pregnancy predisposes offspring to 
future disease. Maternal smoking, particularly in the first trimester, imposes a significant adverse impact on fetal renal 
development that determines the future risk of chronic kidney disease. Several mechanisms may contribute. Firstly, 
epigenetic modification of fetal nuclear or mitochondrial DNA, induced by intrauterine exposure to chemicals within 
the cigarette smoke, may result in an increased risk for metabolic and renal disorders. Secondly, nicotine and other 
chemicals within the cigarette smoke can cross the blood placental barrier concentrate in the fetus and result in direct 
toxicity. Thirdly, malnutrition due to the anorexigenic effect of smoking results in nutritional deficits in the fetus and 
impairs organ growth and development. 10-45% of pregnant women from diverse populations smoke during pregnancy. 
Hence it is considered a major and significant public health issue that imposes adverse health consequences not only 
to the pregnant women, but also inherited by their offspring, and potentially affecting future generations. 
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diseases including cancer, respiratory, and cardiovascular diseases, in 
the USA, UK and Australia, 19-25% adult woman smoke, and many are 
of childbearing age [18,19]. Despite the general education on the risks 
of smoking in pregnancy, smoking during pregnancy remains a major 
and significant public health issue. Socioeconomic status is known 
to affect attitudes towards smoking among pregnant mothers. Those 
with lower social status are more likely to smoke during pregnancy 
[20]. Passive smoking also has a significant impact on the health of 
the mothers and fetus (reviewed in [8]), as concentrations of harmful 
chemicals in second-hand smoke are potentially higher than those in 
the original smoke inhaled from the cigarettes [21,22].

A strong relationship between birth weight and renal size, nephron 
number, albuminuria, and systolic blood pressure has been shown in 
several racial groups [1,6,13,23]. It has been reported that newborns 
with low birth weight have 30% less nephron numbers compared with 
those with normal birth weight [1]. Additionally, low birth weight is 
also associated with large glomerular size (glomerulomegaly) [1] and 
retarded kidney growth during the first 18 months of life [24]. The 
decrease in nephron number is then associated with susceptibility 
to developing hypertension and chronic renal failure [25,26]. 
Approximately, 20% of babies with low birth weight arise from 
mothers who smoked during pregnancy [27,28]. A recent retrospective 
cohort study among 1,072 children confirmed that maternal smoking 
was associated with a reduction of fetal and infant kidney volumes [29]. 
The impact of low birth weight caused by maternal smoking on health 
outcomes is amplified if a rapid increase in body weight occurs after 2 
years of age [30]. In the offspring of smoking mothers, an accelerated 
increase in body mass index (BMI) has been observed after birth [31]. 

However, studies to date have not addressed renal disorders caused 
by maternal smoking, where the pathogenesis may be independent or 
additive to the known renal risks of IUGR and low birth weight [32]. 

In this study, a dose-dependent association between the number of 
cigarettes smoked during pregnancy and kidney volume in fetal life 
was reported. Smoking less than five cigarettes per day was associated 
with larger fetal kidney volume, considered be an adaptation to 
reduced kidney function [29]. Smoking more than ten cigarettes per 
day tended to be associated with smaller fetal kidney volume [29]. 
However, these correlations disappeared by age 2 [29]. Hence it is 
suggested that maternal smoking may directly lead to impaired renal 
function, due to a multiplicity of factors, including low numbers of 
nephrons, secondary hyperfiltration, and ultimately glomulosclerosis 
[29]. However, studies directly addressing the link between maternal 
smoking and renal dysfunction in offspring are scarce.

Maternal cigarette smoking is associated with congenital renal 
abnormalities in offspring, such as urinary organ malformation, 
bilateral renal agenesis and renal hypoplasia [33-35]. There is a twofold 
increased risk of congenital urinary tract anomalies in offspring from 
smoking mothers [35,36]. However, there remains a lack of studies 
investigating the underlying molecular and epigenetic mechanisms 
within the kidney, leading to future renal dysfunction.

Epigenetic and DNA Modifications
DNA methylation is an important regulator of gene expression and 

occurs primarily on cytosine residues in CpGdinucleotides [37]. About 
half of human genes contain CpG-rich regions (CpG islands). The 
majority of CpG islands are unmethylated, whilst individual CpGs are 
mostly methylated [38]. DNA methylation is established in utero, with 
the traditional view that this is mainly influenced by maternal genotype 
change induced by smoking even prior to gestation [39,40], with the 
methylation pattern being largely preserved during development. Hence 
smoking prior to pregnancy may influence the fetus even if cessation 
at gestation regardless of lifestyle after birth. However, environmental 

Figure 1: A flow-chart showing effects of maternal smoking related factors on fetal kidney development. Maternal smoking causes fetal growth retardation and 
underdeveloped kidney through multiple mechanisms, including fetal DNA modifications, direct impacts of chemicals in the cigarette smoke, changes in growth factors 
in the fetus and reduced fetal nutrition supply due to maternal under nutrition and placental blood flow restriction induced by cigarette smoke. Maternal genetic defects 
can also have a direct impact on fetal kidney development and the predisposition of kidney disorders later in life.
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and metabolic factors during the intrauterine period may also affect 
the establishment of cytosine and lysine methylation [41]. Indeed, it 
has been increasingly recognized that during development, DNA can 
be modified epigenetically to alter gene expression and transcription 
without a change in DNA sequence, primarily by DNA methylation 
and/or histone acetylation [42]. Thus, DNA modification may be 
the fundamental mechanism that drives the programming of fetal 
development by environmental factors, including intrauterine cigarette 
smoke exposure as a consequence of maternal smoking. 

In humans, nephrogenesis starts at gestational week 6-8 [43], and 
most nephrons are formed by the third trimester, gestational week 28-40 
[2]. Nephrogenesis ends by 36 weeks of gestation in humans, therefore 
the final number of nephrons in each kidney is established at birth [44]. 
After birth the nephrons still undergo maturation until the age of 12 
years [2]. In rodents, nephrogenesis continues after birth for a short 
period of time [45]. Therefore, any changes in renal DNA methylation 
in utero may not only significantly affect nephrogenesis and nephron 
numbers at birth, but also disturb final nephron maturation.

The earliest recognition of nicotine induced DNA methylation was 
shown inhuman oesophageal cancer [24]. Differential methylation 
across the genome in relation to maternal smoking during pregnancy 
only addressed the genes that are methylated without linking to any 
specific adult diseases [46]. In the study by Joubert et al. the most 
frequent CpG sites methylation in the cord blood of babies from 
smoking mothers were found in the coding region of arylhydrocarbon 
receptor repressor (AHRR), coding region of growth factor 
independent 1 transcription repressor (GFI1), the upstream region of 
cytochrome P450 isoform CYP1A1, and within the coding region of 
myosin 1G (MYO1G) [46]. AHRR and CYP1A1 play a key role in the 
detoxification of tobacco smoke via the AhR signalling pathway; while 
GFI1 is involved in diverse developmental processes, which may affect 
renal development [46]. Other genes that were methylated on one 
CpGs cite include HLA-DPB2, ENSG00000225718, CNTNAP2, EXT1, 
TTC7B, and RUNX1 [46]. The impacts of gene methylation on renal 
developmental and functional change, as well as their contributions to 
the predisposition to renal disease in the future, are still unknown.

The Long Interspersed Nuclear Elements-1 (LINE-1s or L1 
elements) are active members of an autonomous family of non-LTR 
retrotransposons and occupy nearly 17% of the human genome. The 
LINE-1 (L1) gene products possess mRNA binding, endonuclease, 
and reverse transcriptase activity that enables retrotransposition. 
There is strong evidence suggesting that increasedLINE-1 activity is 
strongly linked to the development of cancer and aging process [47,48]. 
Normally LINE-1 methylation decreases with age and reduced LINE-
1 methylation is also linked to various cancer types, possibly due to 
chromosomal instability. Thus LINE-1 has been considered as an early 
indicator of disease [49,50]. Innewborns with low birth weight, there 
were significantly lower Long Interspersed Nuclear Elements (LINE)-
1 methylation levels in the cord blood compared to normal weight 
infants [51], suggesting increased susceptibility to diseases. However, 
the link between LINE-1 hypomethylation and the risk of developing 
renal functional disorders has not yet been reported. Maternal 
smoking commonly leads to low birth weight [32,52]. However direct 
measurement of renal DNA methylation in offspring from smoking 
mothers has not been reported to date.

Mitochondrial damage by maternal smoking may play a role in 
renal developmental disorder and determine future renal disease. 
Mitochondrion has been suggested as a regulator of DNA methylation, 
as cells deplete in mitochondrial DNA (mtDNA) showed altered DNA 

methylation of the nuclear genome, which was rescued upon the 
repletion of mtDNA [53]. The limited understanding of the contribution 
of mtDNA damage to human disease arises from cancer research. In 
vivo and in vitro evidence suggests that nicotine can induce oxidative 
stress and mtDNA damage in human tissue [54,55]. An increase in 
reactive oxygen species (ROS)has been shown to decrease mtDNA 
methylation, which has been suggested as a compensatory response to 
mtDNA damage [56]. However, the contribution of maternal mtDNA 
damage to renal dysfunction in offspring is unknown. Interestingly, 
nicotine can accumulate in the kidney [57]; whereas mtDNA functional 
damage following maternal administration of nicotine has to date only 
been reported in fetal pancreas [58]. Nevertheless, mtDNA dysfunction 
can result in reduced capacity of the mitochondria to regulate growth, 
tissue maintenance, and cellular metabolism, which are dysregulated 
in kidney disesase [59]. Indeed, mtDNA damage and deletion have 
been found in the kidneys of rats with type 1 diabetes [60]; yet the 
contribution to fetal renal development or it response to intrauterine 
cigarette smoke exposure remain unclear.

Therefore, heritage of mtDNA damage and further DNA 
modification by epigenetic methylation due to intrauterine cigarette 
smoke exposure is likely to significantly increase the risk of kidney 
disease in susceptible populations. 

Direct Damage from Chemicals in the Cigarette Smoke
Studies have shown that smoking is a key cause of renal 

dysfunction in adults, due to the detrimental impact of smoking on 
renal hemodynamics, water diuresis, and electrolyte excretion [61,62]. 
As such, smoking is closely related to proximal tubular damage, kidney 
cancer, and end-stage kidney disease [12]. Tobacco smoke is a mixture 
of more than 4000 chemical substances [63]. Nicotine alone can cause 
renal dysfunction in humans and animal models [29,64], attributed to 
the vasoconstrictive effect of nicotine [29,64], increased activity of the 
renin-angiotensin-aldosterone (RAAS) system [65], and an increased 
ratio of the angiotensin type 1 receptor AT1 versus AT2 receptor 
density [29,64]. 

The chemicals in cigarette smoke inhaled by the pregnant mothers, 
such as nicotine, pass rapidly and completely across the placenta, with 
fetal concentrations generally being 15% higher than maternal levels 
[66-68]. It has been shown that nicotine infusion in rat dams lead 
to smaller kidneys in offspring compared to those from non-smoke 
exposed mothers [4,69]. An increase in glomerular size in response to 
reduced number is considered to compensate for low nephron numbers, 
in order to restore the total filtration surface and excretory homeostasis 
[70]. However, this adaptation can lead to adverse consequences in the 
long term. If glomeruli are overly enlarged, glomerular hypertension 
and hyperfiltration ensues, resulting in accelerated nephron loss [71]. 
Glomerulosclerosis ultimately ensues, further reducing the functional 
nephron capacity [72]. Further enlargement of remaining nephrons will 
occur, leading to a vicious cycle of nephron loss and renal dysfunction. 
As such, hypertension, and albuminuria will develop [29,64,73]. 

In humans, maternal blood cadmium during pregnancy is positively 
correlated with the risk of fetal growth restriction [74,75]. Tobacco 
smoking is the most important single source of cadmium exposure 
in the general population. It has been estimated that about 10% of 
the cadmium content of a cigarette is inhaled through smoking [76]. 
However, on average, smokers have 4–5 times higher blood cadmium 
concentrations and 2–3 times higher kidney cadmium concentrations 
than non-smokers [77]. It has been shown that environmental exposure 
to cadmium may cause kidney damage and tubular proteinuria, and 
end-stage renal disease [78,79]. 
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Polycyclic aromatic hydrocarbons are another group of chemicals 
in the cigarette smoke that has been suggested to be able to cause IUGR 
[80,81]. They bind to aryl hydrocarbon receptor, which is a ubiquitous 
transcription factor involved in renal development [82,83]. 

However, none of these human and animal studies on cadmium 
and polycyclic aromatic hydrocarbons have directly measured kidney 
weights in the new born, nor have renal structural and functional 
changes been measured in the short or long term. 

Growth Factors
Maternal smoking is implicated in IUGR; while IUGR results in 

reduced nephron number in the offspring, partially due to the alteration 
of signalling gene expression involved in fetal nephrogenesis. Glial-cell-
Derived Neurotrophic Factor (GDNF) is an important growth factor at 
the initiation of adult kidney formation, which determines the location 
and number of ureteric bud [84]. In a rat model of IUGR, GDNF and 
its downstream signalling pathway are significantly deregulated in 
the fetal and newborn kidneys, leading to underdeveloped kidneys 
[85,86]. However, the effect of smoking on GDNF and its downstream 
signalling pathway is unknown. 

Notch homolog protein (Notch) 2 is a growth factor required for 
normal development of the proximal nephron (epithelia of glomeruli 
and proximal tubules) [29,87]. In fetuses with IUGR, the co-activators 
and downstream target of Notch2 are also down-regulated [85]. The 
direct impact of smoking on Notch expression in the kidney is not 
clear. However, It has been shown that nicotine can significantly 
increase the expression of Hes1, the downstream effector of Notch, 
in human embryonic stem cells [88]. Increased Hes1 can lead to 
epithelial to mesenchymal transition in renal tubular epithelial cells 
[89]. In addition, the renal growth hormone (GH)–insulin-like growth 
factor (IGF) axis is critical for renal organogenesis, which is also low 
in the fetus and newborn with IUGR [90,91]. The binding affinity of 
growth hormone to its receptor was also significantly lower in babies 
with IUGR [92,93]. It has been shown that deregulated GH, IGFs 
and vascular endothelial growth factors are closely associated with 
diabetic kidney diseases [94]. Cigarette smoke exposed mice displayed 
a phenotype of increased albumin excretion in the urine, which was 
associated with a moderately increased glomerular collagen type 
IV deposition compared with the control mice [95]. They also had a 
two-fold increase in glomerular IGF-I receptor mRNA expression 
compared with the control mice [95]. In addition, the cord blood 
level of IGF-I was also shown to be 3-fold lower compared to that in 
newborns from non-smoking mothers [96]. It will be interesting to 
investigate whether abnormal IGF-I receptor expression can affect 
renal genesis in the offspring of cigarette smoke exposed mothers. 
Indeed, changes in growth factors may be a critical contributor linked 
to renal underdevelopment and later renal functional disorders by 
intrauterine smoke exposure.

Leptin, encoded by the ob gene, is an important growth hormone in 
the developing fetus and new born, which plays a critical role in growth 
and maturation [97,98]. Leptin in the fetus is mainly sourced from 
the maternal circulation, placenta, and foetal organs. It is involved in 
the induction of mitosis in different cells through regulating growth 
hormone production [98,99] and affecting mitochondrial proteins 
synthesis and function [97]. Low blood leptin levels have been shown 
to lead to foetal growth retardation [97]. Human studies have shown 
that leptin concentrations in the cord blood of the newborns from 
smoking mothers are significantly decreased compared to those 

from non-smoking mothers [100]. Similarly in the primate, serum 
leptin levels are reduced by 50% in newborns by intrauterine nicotine 
exposure [101]. 

Clearly this data does not suggest causation but rather an 
association between smoking, which is known to result in IUGR and 
a reduction in factors known to regulate normal fetal nephrogenesis. 
Similarly the direct modification of maternal smoking on these growth 
factors in offspring developing kidneys remains unknown. 

Nutritional Factors
Maternal smoking is related to a poor nutritional status in the 

mothers [102]. This was proposed to be due to the anorexigenic effect 
of chemicals in the cigarette smoke, such as nicotine and carbon 
monoxide (reviewed in [8,9]). Nicotine can also directly reduce the 
nutrition supply to the fetus by causing blood vessel constriction that 
limits blood flow to the placenta and fetus (reviewed in [8,9]). Foetal 
development is thus affected, leading to IUGR and low body weight as 
reviewed previously [8].

Substantial intrauterine protein or caloric restriction has been 
shown to be linked to reduced glomerular number, glomerular 
enlargement, increased blood urea and urinary albumin excretion in 
resulting offspring [103-106]. Hence developmental abnormalities 
induced by altered maternal nutrition can predispose newborns to 
kidney diseases and hypertension at adulthood [17,107]. In addition, 
it has been further shown that protein supply is also important to 
support fetal renal development. Renin-angiotensin-aldosterone 
system (RAAS) is up-regulated during renal development and in 
the perinatal period. It has been suggested that angiotensin (Ang) II, 
signalling through both AT1 and AT2 receptors, are involved in the 
development of the nephron [108]. It has been well demonstrated that 
suppression of the RAAS in neonatal rats significantly affects renal 
maturation leading to renal malformation [109]. Protein restriction 
inhibits the renal renin and AngII expression in offspring, leading to 
renal underdevelopment [110]. Unfortunately, changes in Ang II and 
AT1/2 in rodents exposed to nicotine during perinatal periods have 
only been measured at mature age or in the brain and aorta [64,111], 
but not in the fetal or new born kidneys.

Conclusion
Although it is already known that maternal smoking or nicotine 

treatment during pregnancy is linked to kidney underdevelopment in 
offspring, the renal functional change and underlying mechanism is 
not fully understood. Currently available data suggests a link between 
smoking-induced dysregulation of growth factors that are critical 
for renal development. In addition to the direct impact of cigarette 
smoke to modify fetal genome at DNA level, smoking can also change 
maternal methylation prior to gestation, which is inheritable by the 
fetus. The consequence of maternally derived epigenetic changes on 
the development of chronic kidney disease in progeny is yet to be 
determined, Smoking cessation prior to or at early stage of pregnancy 
is critical to promote not only a healthy start to life, but also to prevent 
potential epigenetic modifications of genome that lead to chronic 
disease in adulthood, an objective shared by all communities.
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