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Challenges in Genetic Association Studies
It is well known that complex diseases are caused by a network 

of interacting factors and therefore statistically it makes more sense 
to consider multiple predictors (genetic variants and environmental 
covariates) simultaneously than to consider a single SNP (single-
nucleotide polymorphism) [1,2]. Such joint analyses not only improve 
the power for detecting causal effects by explaining a substantial fraction 
of trait variation but also potentially lead to increased understanding 
about the genetics of the underlying traits or diseases [3]. The dramatic 
increase in genetic discoveries involving complex diseases has provided 
great opportunities for statisticians to contribute critical concepts and 
methods to the field [2,3]. However, analysis and interpretation of 
genetic association studies for jointly handling multiple genetic and 
environmental variables involves interesting statistical challenges [4-6]. 
First, with multiple SNPs and environmental factors, there are many 
possible main effects and interactions, most of which are likely to be 
null or at least negligible, leading to high-dimensional sparse models 
[7]. In addition, there are many more possible interactions than main 
effects, requiring different modeling and parameterization for main 
effects and interactions [2]. Second, genetic association studies usually 
genotype SNPs with strong linkage disequilibrium (LD), introducing 
highly correlated variables [7]. Third, SNP data often include genotypes 
with low frequencies that create predictors with near-zero variation 
[7]. Finally, separation, which arises when a predictor or a linear 
combination of predictors is completely aligned with the outcome, is 
a common phenomenon in case–control genetic association studies 
[7-9]. These complications result in challenges in terms of statistical 
modeling and computation and thus sophisticated techniques are 
required to handle them.

Why Hierarchical Models?
Recent years have seen an affluence of new methods for genetic 

and genomic research. As Allison et al. [10] states, “Many of these are 
wonderfully creative and useful”.  Among them, a potentially attractive 
approach, which has revolutionized modern genetic research, is 
Bayesian hierarchical modeling. Many papers have shown the practical 
and theoretical advantages of using Bayesian methods for genetic 
association studies [6]. Hierarchical models, which are more easily 
interpreted and handled in the Bayesian framework, are no exceptions. 
They provide a rational and quantitative way to incorporate biological 
information facilitating fitting of a large number of variables and a 
range of possible genetic models in a single analysis [6]. Thus, using 
appropriate prior information on the coefficients hierarchical models 
attempt to solve the aforementioned problems by providing stable, 
regularized estimates unlike non-hierarchical models, which generally 
cannot handle many variables simultaneously and often tend to overfit 
[2]. 

Key Concepts in Bayesian Hierarchical Models
Continuous shrinkage priors

For genetic models with a large number of potential genetic variants 

and environmental covariates, it is reasonable to assume that most 
of the variables have null or weak effects on the phenotype, whereas 
only a few have noticeable effects [11]. Bayesian hierarchical models 
incorporate this idea by setting up shrinkage prior distributions on the 
coefficients that give each effect a high probability of being near zero.  
The shrinkage prior distributions usually have very heavy tails, which 
enable strong shrinkage of small coefficients while minimally shrinking 
large coefficients. A variety of continuous shrinkage priors have been 
proposed in literature and many of them have been adopted to QTL 
mapping and genetic association analysis [7,12]. Two most commonly 
used continuous shrinkage priors are Student’s t-distribution and the 
double exponential distribution. With these shrinkage priors, the 
posterior mode estimates of the coefficients are the ridge-penalized 
estimate [13] and the lasso-penalized estimate [14] respectively.

Scale mixtures of normals

Both the double exponential distribution and the Student’s 
t-distribution can be presented as a two level hierarchical model
[12,15]. The first level assumes that the coefficients follow independent
normal distributions with mean zero and unknown variances whereas
the second level assigns independent prior distributions on the
variances which themselves depend on the hyperparameters. The two-
level hierarchical formulation has several advantages. First, it allows
easy and efficient computation facilitating MCMC and EM algorithms;
conditional on the variances the coefficients can be easily estimated
[2]. Secondly, it offers easy interpretation of the model; the coefficient-
specific variances result in different shrinkage amounts for different
coefficients [7]. Thirdly, it is flexible enough to encompass most popular 
penalized regression procedures and new hierarchical models can be
defined by using new priors for the variances or further modeling the
hyperparameters [16].

Algorithms for Fitting Hierarchical Models
Estimating posterior modes
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A variety of methods for computing the posterior mode have 
been developed using the EM (expectation–maximization) algorithm 
which takes advantage of the two- level hierarchical formulation [17]. 
These algorithms have been adapted to multiple QTL mapping and 
genetic association analysis [11,18-20]. In a generalized linear model 
framework, given the variances, the prior distributions can be included 
as additional ‘data points’ in the normal approximation of the likelihood 
function. Therefore, the coefficients can be estimated using the 
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Sampling from continuous posterior distribution

On the other hand, taking advantage of the scale mixture 
representation of the shrinkage priors, various MCMC algorithms have 
been developed, many of which have recently been adapted to multiple 
QTL mapping and genetic association analysis [1,12,16,21-27].  Since 
all the priors for regression coefficients are conditionally Normal, a 
simple and unified scheme can be developed to update the coefficients 
regardless of the specific prior distributions on the variances [2]. For 
the Student-t and double exponential priors, the conditional posterior 
distributions of the variances have standard forms and thus can be 
easily sampled using MCMC [2,12]. Also, the hyperparameters can be 
assigned appropriate hyperpriors so that they can be updated along with 
other parameters or estimated based on empirical Bayes using marginal 
maximum likelihood [16].  These methods can simultaneously fit many 
correlated variables and can distinguish important effects from a large 
number of correlated variables [2,7]. 

Software Implementation
The above-mentioned algorithms for fitting Bayesian hierarchical 

models for genetic association studies can be carried out in a freely 
available R package BhGLM, which can be downloaded at http://
www.ssg.uab.edu/bhglm/. The package provides a unified framework 
for setting up and fitting Bayesian hierarchical GLMs, for numerically 
and graphically displaying the results, with special emphasis on genetic 
association studies and QTL mapping. The functions in BhGLM are 
particularly useful for complicated genetic data analysis, e.g., QTL 
mapping in experimental crosses, genetic association studies for rare 
and common variants, prediction of complex diseases and traits, gene-
set and pathway analysis, haplotype association analysis, gene-gene 
(GXG) and gene-environment (GXE) interactions, etc.  Moreover, the 
methods can be used for general data analysis as well as for analyzing 
high-dimensional and correlated data arising from other disciplines. 
Some important functions in the package include but not limited to 
bglm (for fitting Bayesian hierarchical GLMs), bglm.ex (extensions of 
Bayesian hierarchical GLMs), bglm.selection (variable selection for 
Bayesian hierarchical GLMs), bpolr (Bayesian hierarchical ordered 
logistic or probit regressions for ordinal response), make.haplo (for 
creating a design matrix for haplotypes), make.inter (for making design 
matrix of interactions (GXG and GXE)), make. main (to make design 
matrix of main effects from genotypic data of genetic markers), plot.
bglm (for graphically summarizing Bayesian hierarchical GLMs fits), 
predict.bglm (to make predictions for Bayesian hierarchical GLMs), 
summary.bglm (to summarize Bayesian hierarchical GLMs fits), etc. 
Other functions and additional details can be found at http://www.ssg.
uab.edu/bhglm/.

Concluding Remarks
Although we have discussed continuous shrinkage priors due 

to their natural computational advantages, other shrinkage priors 
such as the spike and slab priors (discrete, two-component mixture 
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