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Introduction
Since oxidative stress is implicated in both human immunodeficiency 

virus, type 1 (HIV-1) expression [1,2] and the pathogenesis of AIDS [3], 
this pro-oxidant and antioxidant imbalance has been widely described 
among HIV-infected patients [4-7]. Overproduction of Reactive Oxygen 
Species (ROS) is thought to be the result of various cell activation and 
altered redox status, mostly phagocytic [5], inappropriately compensated 
by antioxidants or antioxidant enzymes [8] and is also augmented by highly 
active antiretroviral therapy (HAART) [7,9]. Exhaled H2O2 belongs to non-
invasive markers of ROS production in the airways [10,11]. Since H2O2 is a 
volatile compound, it is easily determined by breath analysis. Exhalation of 
H2O2 is elevated in respiratory tract disorders accompanied by an influx of 
activated inflammatory cells e.g. bronchial asthma [12,13], COPD [14,15] 
and pneumonia [16]. To date, this has not been described in HIV-infected 
patients. They typically show a marked decrease in the concentration 
of reduced glutathione (GSH) [17,18] and their alveolar macrophages 
spontaneously produce more superoxide anion [17] which undergo 
dismutation to H2O2. Moreover, progression of HIV-1 infection results 
in a decreased erythrocyte glutathione peroxidase (GSH-Px) activity and 
suppression of GSH plasma levels [19]. Since the GSH-GSH-Px system is 
involved in the decomposition of H2O2 one may suspect that HIV-infected 

subjects have increased H2O2 levels in the airways resulting in increased 
exhalation of H2O2. Nevertheless, any concomitant Opportunistic Lung 
Disease (OLD) can influence such measurements [20].

The mechanisms underlying changes in exhalation of H2O2 are likely 
multifactorial in nature. Exhaled H2O2 represents a pool of ROS derived 
from the NADPH-oxidase system and the mitochondrial chain that 
avoids decomposition by antioxidant systems, subsequently diffusing into 
the airway surface which is then blown out as vapor and or aerosolized 
respiratory fluid droplets released from the respiratory epithelial lining 
fluid finally collected as exhaled breathe condensate (EBC) [11]. Therefore, 

Abstract
Background: HIV-infected subjects present with decreased antioxidant defense and increased activation of 

inflammatory cells which may lead to overproduction of oxidants. This study determined whether HIV-infected patients 
without clinical signs and symptoms of opportunistic lung disease (OLD-negative) exhaled more H2O2 than healthy 
controls and whether there was association between the exhalation of H2O2 and whole blood chemiluminescence 
(CL) and clinical variables.

Methods: A cross-sectional study was conducted. H2O2 in exhaled breath condensate and CL, resting and
agonist-induced with N-formyl-methionyl-leucyl-phenylalanine (fMLP) were measured in 36 OLD-negative patients 
and 14 healthy controls. Univariate linear regression was used to summarize the average relationship and quantile 
regression analyzed the relationship at different points of the exhaled H2O2 distribution. Multivariate analyses were 
carried out using multiple linear regressions.

Results: The fold increase of the geometric mean exhaled H2O2 against healthy controls was 3.76-times higher 
in OLD-negative patients than in controls (95% CI: 2.65-5.33, p<0.001), whereas that of either resting or fMLP-
induced CL was 1.46 or 1.63, respectively (95%: 1.17-1.83 and 1.27-2.08, p<0.01). Exhaled H2O2 was not associated 
with CL, either resting or fMLP-induced. Linear regression detected positive relationship between the exhalation of 
H2O2 and viral load (R-squared 0.23, p<0.05). The effects of viral load were best revealed at a higher exhalation of 
H2O2 (quantiles 0.6 and 0.7; both Pseudo R-squared 0.21, p<0.05). In a multivariate model, the main independent 
contributors to the exhalation of H2O2 were viral load and highly active antiretroviral therapy (HAART), which together 
accounted for 35% of the variance in exhaled H2O2. If the analysis was limited exclusively to HAART-treated, a better 
model fit was obtained (R-squared 0.79), confirming that viral load is the main contributor to the exhaled H2O2.

Conclusion: Inordinate increase in exhaled H2O2 may reflect airway oxidative stress in HIV-1 infection which 
may be related to viral load.
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changes in antioxidant defense in the airway or modifications in the number 
and activity of pulmonary inflammatory cells may alter the concentration 
of H2O2 in EBC. In addition, possibly there is a relationship between 
exhaled H2O2 and the blood oxidant and antioxidant status as measured by 
luminol enhanced whole blood chemiluminescence. Szkudlarek et al. [21] 
found an association between increased exhalation of H2O2 and a greater 
light emission of whole blood in a cross-sectional study of 41 healthy 
subjects. This associative finding in HIV-infected patients would provide 
evidence of a shared mechanism in the oxidative response in the blood and 
the airways. Furthermore, since nucleoside reverse transcriptase inhibitors 
(NRTIs) have been shown to increase intracellular H2O2, treatment with 
NRTIs may also contribute to exhalation of H2O2 [22].

We conducted a cross-sectional study of HIV-infected men and women 
without clinical signs and symptoms of concomitant OLD (OLD-negative), 
accompanied by clinical signs and symptoms of concomitant respiratory 
tract infection (RTI) without a definite diagnosis of OLD (RTI-positive) 
and healthy control subjects to determine: 1) the respective amount of 
exhaled H2O2, 2) luminol enhanced whole blood chemiluminescence, 
either resting or agonist-induced, 3) whether exhaled H2O2 is associated 
with whole blood chemiluminescence and finally 4) whether exhaled 
H2O2 is associated with selected clinical variables, including HIV-infection 
duration, detectable viral load, treatment with HAART and HAART 
duration or a history of AIDS.

Materials and Methods
Study population

A total of 310 HIV-infected patients from the Acquired Immune 
Disorders Outpatient Clinic in Lodz, Poland were screened. The study 
included 36 OLD-negative subjects, 28 RTI-positive patients and 14 
healthy controls. Each patient enrolled had to meet an inclusion criteria: 
age ≥ 18 and ≤ 60 years, HIV-1 seropositivity, a chest X-ray performed 
within 10 days prior to the enrollment and a written informed consent. 
The exclusion criteria included: any episode of alcohol or illicit drug abuse 
within the last 2 to 6 months before the study, respectively, any history 
of bronchial asthma, COPD, bronchiectasis, cystic fibrosis, tuberculosis, 
malignancies, renal or liver damage, pregnancy or breast feeding, 
pharmacological treatment other than HAART within the last 2 months 
and regular ingestion of supplements with known antioxidant properties 
(e.g. vitamin C) within the last 3 weeks before the study. At admission, 
patients were screened for clinical signs and symptoms of OLD, including: 
cough, purulent sputum, dyspnea, chest X-ray findings and a history of 
past respiratory tract infections within the last 3 months. Ongoing HAART 
was administered to 23 of OLD-negative patients and 7 of RTI-positive 
subjects. Patients were treated with either lopinavir 600 mg+ritonavir 
150 mg twice-daily associated with stavudine 40 mg twice-daily and 
didanosine 400 mg once daily or lamivudine 150 mg+zidovudine 300 mg 
twice-daily in combination with efavirenz 600 mg once daily. Except HIV-
1 seropositivity, healthy control subjects also had to meet all inclusion and 
exclusion criteria. The study was approved by the Ethics Committee of the 
Medical University of Lodz, Poland (RNN/216/03/KE).

Study protocol

All subjects enrolled (HIV-1 infected patients and healthy controls) 
were asked to come to the laboratory between the hours of 8 am to 10 pm 
for EBC collection. Subsequently, 9 ml blood samples were drawn into 
EDTAK3 Vacuette tubes (Greiner Labor Technik, Austria) for whole blood 
chemiluminescence assay, blood cell count and HIV-1 RNA copy number.

Exhaled breathe condensate sampling

2-3 mL of exhaled breath condensate was sampled during 15 min of 
spontaneous tidal volume breathing (respiratory rate ranged 14-20 bpm), 
using EcoScreen-1 (Erich Jaeger GmbH, Hoechberg, Germany), with 
saliva trap. Subjects wore a noseclip and rinsed their mouth with distilled 
water just before and after 7 min of collection [23]. Immediately after the 
procedure, EBC specimens were stored at -80ºC [23,24], no longer than 7 
days until H2O2 measurement. No amylase activity was detected in EBC 
specimens (control of salivary contamination) [16]. Subjects who were 
current smokers refrained from cigarette smoking 12 hrs preceding EBC 
collection.

Measurement of H2O2

HVA method was used to assess the concentration of H2O2 in EBC 
[25], as previously described [23,26]. The detection limit of the H2O2 
assay was 0.05 µmol/L. The intra-assay variability did not exceed 2.5% 
for the standard 1 µmol/L of the H2O2 solution. The addition of catalase 
(30 U) to the EBC specimens of HIV-infected patients (n=4) and healthy 
subjects (n=3), which previously revealed that detectable exhaled H2O2 
levels completely abolished HVA oxidation, demonstrates that the H2O2 
assay is specific and other reactive compounds or oxygen species did not 
contribute to H2O2 readings. Individual results were means from duplicate 
measurements.

Whole blood chemiluminescence assay

The resting and fMLP-induced luminol enhanced whole blood 
chemiluminescence (CL) were measured as previously described [21,27]. 
Two CL parameters were assessed: resting CL prior to the addition of 
fMLP and peak light emission after the addition of an agonist to a final 
concentration of 20 µmol/L (fMLP-induced peak CL). Resting CL and 
fMLP-induced peak CL were expressed as mV per 104 phagocytes in the 
assayed blood sample. Individual results were obtained as a mean from 
triplicate measurements.

Other techniques

Blood cell count was performed using the 5-DIFF LH 750 Hematology 
Analyzer (Beckman-Coulter, Inc. USA). Blood CD4 count was determined 
with anti-CD4 monoclonal antibodies (Becton Dickinson, NJ, USA), 
following flow cytometry (Beckman Coulter Epics XL, USA). Serum anti-
HIV-1 antibodies were detected with enzyme linked immunosorbent assay 
(Bio-Rad, USA). HIV-1 seropositivity was confirmed by Western blot 
analysis (Calypte Biomedical, USA). HIV-1 RNA copies (viral load) were 
determined by COBAS Amplicor HIV-1 monitor test (Roche, Branchburg, 
NJ, USA), with detection limit of 50 copies/mL and expressed as a common 
logarithm of RNA copies per mL of plasma.

Statistical analysis

Statistical analysis was carried out using the Stata 12 (Stata Corp., 
College Station, TX, USA). Normally distributed continuous variables and 
variables of log 10-transformed toward normality were compared between 
groups using one-way ANOVA with post-hoc Bonferroni adjustment and 
unpaired Student’s t-test for equal variances; non-normally distributed 
data were compared using the Kruskall-Wallis rank test and the Wilcoxon 
rank-sum test. Categorical variables were compared between groups using 
the Pearson’s chi-squared test and the Fisher’s exact test. The one-way 
analysis of covariance (ANCOVA) was used for comparison of variables 
adjusted for covariate. Correlations between continuous variables were 
determined nonparametrically using Spearman’s rho. Univariate linear 
regression analyses were carried out with nonparametric bootstrap and 
10 000 replications (to avoid transformation of the dependent variables 
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where appropriate). Linear regression was used to summarize the average 
relationship while simultaneous quantile regression (sqreg function) was 
applied to analyze the relationship at different points of the distribution 
[28]. Multivariate analyses were performed using multiple linear regression 
with bootstrap estimates of coefficient standard errors and 10 000 
replications. Independent variables were manually implemented based on 
clinical judgment where appropriate. The stepwise estimation technique 
was used with p to enter and p to leave both equal to 0.15, and unitless 
standardized coefficients were presented. Statistical significance was set at 
p<0.05. No formal adjustments for multiple comparisons were made.

Results
A total of 36 OLD-negative adults and 14 healthy control subjects 

matched for gender, age and smoking habits were studied. Moreover, a 
group of 28 RTI-positive patients, of whom 15 had a cough, 19 had purulent 
sputum, 6 were dyspneic, 11 had the chest X-ray findings and 12 with a 
history of past RTI within the last 3 months, were included in the analysis 
(Table 1). EBC of H2O2 as well as resting and fMLP-induced whole blood 

chemiluminescence measurements was observed in all patients. Viral load 
was determined in 28 of OLD-negative patients and 10 of RTI-positive 
subjects. Viraemia measurement was solely dependent on test availability. 
Table 1 shows the clinical and demographic findings of HIV-infected 
subjects and healthy controls. Evaluation of white blood cell (WBC) count 
and polymorphonuclear leukocytes (PMNs) count revealed significantly 
lower values in OLD-negative patients as compared to healthy controls 
(Table 1). Moreover, WBC and lymphocyte counts were higher, estimated 
duration of HIV-infection was shorter and the number of HAART-treated 
was lower in RTI-positive subjects as compared to OLD-negative patients. 

Exhaled H2O2 and whole blood chemiluminescence

Old-negative vs. RTI-positive subjects: Increased oxidative status 
defined as elevated exhalation of H2O2 and enhanced whole blood 
chemiluminescence in comparison to healthy controls was a consistent 
feature of HIV infection, regardless of concomitant RTI (Table 2, Figures 
1A and 1B). The highest significant difference was seen in exhaled H2O2 
(Table 2, Figure 1B). Fold increase of the geometric mean exhaled H2O2 

Variable
(1)

Control (n=14)

(2)
HIV-infected

OLD-negative (n=36)

(3)
HIV-infected

RTI-positive (n=28)
p-value

post-hoc
p-value

Difference 95% CI

Male gender, n (%) 8 (57%) 20 (55%) 19 (68%) 0.591

Age [yrs], median 
(95% CI, range) 31 (25.6 to 36.4, 20-52) 28.5 (25.5 to 31.5, 23-54) 29.5 (25.9 to 33.1, 20-56) 0.626

Smokers, n (%) 7 (50%) 23 (64%) 23 (82%) 0.091

Cough/Sputum/Dys-
pnea/Chest X-ray/Past 
RTI, n

0 / 0 / 0 / 0 / 0 0 / 0 / 0 / 0 / 0 15 / 19 / 6 / 11 / 12

Hemoglobin [g/dL], 
mean (95% CI, range) 14.5 (13.8 to 15.3, 12.3-16.5) 14.3 (13.9 to 14.7, 11.4-16.7) 14.9 (14.4 to 15.5, 11.0-17.2) 0.183

White blood cells 
count [×103 cells/µL], 
geometric mean (95% 
CI, range)

6.61 (5.82 to 7.50, 5.10-11.0) 4.75 (4.25 to 5.30, 2.01-8.72) 5.83 (5.24 to 6.49, 4.03-11.40) <0.0013
0.0024  1 vs. 2 

0.0204  2 vs. 3

0.72

1.23

(0.58 to 0.89)

(1.03 to 1.47)

PMNs count [×103 
cells/µL], median (95% 
CI, range)

4.30 (3.65 to 4.95, 3.80-8.90) 3.14 (2.53 to 3.75, 1.06-7.66) 3.58 (2.76 to 4.40, 1.91-8.98) 0.0036 0.0017  1 vs. 2 -1.45 (-2.24 to 
-0.59)

Lymphocyte count 
[×103 cells/µL], mean 
(95% CI, range)

1.79 (1.55 to 2.04, 1.30-2.30) 1.49 (1.30 to 1.68, 0.31-2.46) 1.86 (1.60 to 2.12, 0.26-3.30) 0.0393 0.0434  2 vs. 3 0.37 (0.02 to 0.72)

CD4 count [cells/µL], 
mean (95% CI, range) N/A 361.6 (287.1 to 436.0, 6-1063) 391.7 (320.8 to 462.6, 90-822) 0.565

HIV-infection duration 
[yrs], median (95% CI, 
range)

N/A 4.2 (1.9 to 6.5, 0.2-12.0) 2.1 (0.7 to 3.6, 0.1-9.2) 0.0038 -1.8 (-3.3 to -0.7)

Viral load assays, 
n (%) N/A 28 (78%) 10 (36%) 0.0012

Detectable viral loada, 
n (%) N/A 19 (68%) 6 (60%) 0.712

Viral load [×103 RNA 
copies/mL], geometric 
mean (95% CI, range)

N/A 1.08 (0.26 to 4.42, 0-935) 1.33 (0.07 to 23.71, 0-41.9) 0.885

Treatment with 
HAART, n (%) N/A 23 (64%) 7 (25%) 0.0032 -39%

 Treatment duration 
[mths], geometric 
mean (95% CI, range)

N/A 17.4 (10.9 to 28.0, 1-84) 7.9 (1.7 to 36.0, 1-62.5) 0.155

History of AIDSb, n (%) N/A 14 (39%) 5 (18%) 0.102

p-values: 1Pearson’s chi-squared test; 2Fisher’s exact test; 3one-way ANOVA; 4post hoc ANOVA test with Bonferroni adjustment; 5unpaired Student’s t-test (equal variances); 
6Kruskal-Wallis rank test; 7Wilcoxon rank-sum test with Bonferroni adjustment; 8Wilcoxon rank-sum test.
HAART, highly active anti-retroviral therapy; PMNs, polymorphonuclear leukocytes.
aDetectable viral load defined as  ≥50 copies of HIV-1 RNA/mL. bAIDS defined as a history of CD4 count <200 cells/µL or AIDS-defining illness.
Table 1: Comparison of demographic and clinical variables between healthy controls vs. HIV-infected patients without clinical signs and symptoms of opportunistic lung 
disease (OLD-negative) or with clinical signs and symptoms of concomitant respiratory tract infection without a definite diagnosis of OLD (RTI-positive).
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against healthy controls was about 2 to 3-times higher than that of either 
resting or fMLP-induced CL, respectively (post hoc ANOVA against 
healthy controls; all p<0.05) (Table 2, Figure 1B). Moreover, there were no 
significant differences between OLD-negative patients and RTI-positive 
subjects (post hoc ANOVA against OLD-negative; all p>0.05) (Table 1, 
Figure 1A). Adjustment of CL variables for the significant difference on 
PMNs count with ANCOVA changed the conclusion concerning the 
significant difference in resting and fMLP-induced CL (Table 2, Figure 
1B). While controlling for the effect of PMNs count in OLD-negative 
patients, there were no significant differences in the PMNs-adjusted means 
of CL variables (ANCOVA testing against healthy controls with PMNs 
as covariate; all p>0.05 in OLD-negative patients). For the exhaled H2O2 
the assumptions for ANCOVA with PMNs as a covariate were not met. 
Regardless of that, the strong increase in exhaled H2O2 was also highly 
significant in terms of 95% CI (the entire 95% confidence interval for the 
ratio of geometric means was well over 2-times that of HIV-infected to 
control geometric means ratio) (Figure 1B).

To recapitulate, there exist a highly significant difference in the 
exhalation of H2O2 between HIV-infected patients and healthy controls; 
what is more, exhaled H2O2 was the most prominent marker of oxidative 
stress in HIV-infected individuals, regardless of concomitant RTI.

HAART-naive vs. HAART-treated subjects: A total of 23 OLD-
negative patients commenced aggressive antiretroviral treatment regimens 
with HAART and 13 OLD-negative subjects remained off therapy until 
clinically indicated (Table 3). Viral load assays confirmed a significant 
decrease in the number of HIV-1 RNA copies associated with antiretroviral 
treatment (p<0.05) (Table 3). Along with suppression of viral load no 
further differences occurred between HAART-naive and HAART-treated 
arms (post hoc ANOVA against HAART-naive; all p>0.05) (Table 3, Figure 
2A). The analysis confirmed an elevated exhalation of H2O2 in comparison 
to healthy controls, regardless of HAART and no significant difference 
in resting and fMLP-induced CL after adjustment of CL variables for a 
difference in PMNs with ANCOVA (Table 3, Figures 2A and 2B).

Relationship between exhaled H2O2 and whole blood 
chemiluminescence: Spearman’s rank correlations were calculated 

between exhaled H2O2 and CL variables. Exhaled H2O2 did not significantly 
correlate with resting CL and fMLP-induced peak CL in OLD-negative 
patients (all Spearman’s rho p>0.05; detailed data not shown). This was 
in agreement with no significant associations between exhaled H2O2 
and either resting CL or fMLP-induced peak CL in healthy controls (all 
Spearman’s rho p>0.05; detailed data not shown).

Factors determining exhaled H2O2 in OLD-negative subjects

Univariate analyses: When exhaled H2O2 was established as dependent 
variable linear regression by nonparametric bootstrap did not find any 
evidence of significant association with any demographic or clinical 
variables except a detectable viral load being revealed as a significant and 
positive predictor for exhaled H2O2 (R-squared=0.23, p=0.014) (Table 
4, Figure 3A). On the contrary, the linear regression by nonparametric 
bootstrap did not show any significant relations between CL variables, 
either resting CL or fMLP-induced peak CL and viral load (all p>0.05, 
detailed data not shown).

Moreover, quantile regression was employed to estimate the 
relationships between exhaled H2O2 and viral load for a large part of the 
exhaled H2O2 distribution. We present results by simultaneous bootstrap 
analysis narrowed to a range from 0.2 to 0.8 quantiles, as justified by the 
small sample (n=19) and large sampling variation for upper quantiles 
(Figure 3B). Quantile regression estimates indicated some significant and 
positive relations between exhaled H2O2 and viral load. The effects of viral 
load on exhaled H2O2 were best revealed at higher H2O2 exhalation as 
shown for quantiles from 0.6 to 0.7 (Figure 3B). There was a significant 
increase in exhaled H2O2 in response to viral load at quantile 0.6 (Pseudo 
R-squared=0.21, p=0.043) and at quantile 0.7 (Pseudo R-squared=0.21, 
p=0.042).

Insofar as it can be ascertained, the estimated effects of viral load were 
well represented by changes in exhaled H2O2.

Multivariate analysis: In order to determine the factors contributing to 
exhaled H2O2 (to generate hypotheses regarding the causes in variation of 
the exhalation of H2O2), a multivariate analysis was carried out with exhaled 
H2O2 as the dependent variable together with smoking habits, duration of 
HIV-infection (in years), a detectable viral load (in log10 of RNA copies/
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Figure 1: Exhaled H2O2 as marker of oxidative stress in HIV-infected patients without signs and symptoms of opportunistic lung disease (OLD-negative) and with signs 
and symptoms of concomitant respiratory tract infection without definite diagnosis of OLD (RTI-positive). (A - top) Dot plot of individual results in healthy controls and 
HIV-1 infected patients. Box plot shows the geometric mean as a solid line and 95% confidence intervals as a rectangle. (B - bottom) Fold increase of geometric mean 
exhaled H2O2, resting and fMLP-induced peak whole blood chemiluminescence (CL) in OLD-negative patients against healthy controls. Raw data vs. adjusted for 
differences in polymorphonuclear leukocytes count (PMNs) among groups with ANCOVA (not applicable for exhaled H2O2 - assumptions not met).
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mL), treatment with HAART and a history of AIDS as possible explanatory 
factors. In this model, the main contributors to exhaled H2O2 as described 
by a multiple linear regression equation were viral load and treatment with 
HAART. The standardized coefficients indicated that viral load contributed 
most considerably to the model, followed by treatment with HAART. 
Together, they accounted for 35% of the variance in exhaled H2O2 (Table 
4). If the analysis was limited to HAART-treated only and CD4 count (in 
cells/mL) was added as a possible predictor, then a better model fit was 
obtained (R-squared=0.79). The analysis confirmed that viral load is the 
main contributor to the exhaled H2O2; it also suggests that CD4 count has 
slightly more influence than the duration of HIV-infection in the HAART-
treated subgroup. Figure 3C shows a scatter graph with the predicted values 
of exhaled H2O2 on the X-axis from the multiple regression equation and 

the observed values of exhaled H2O2 on the Y-axis. Since the points fall 
close to the diagonal line, this illustrates the fit of the multiple regression 
model for prediction of H2O2 exhalation.

Discussion
Whereas systemic oxidative stress is a common feature of HIV-

1 infection, the lungs are one of the major targets of HIV-1 attack. 
Accumulation of ROS induces airway inflammation that can be 
deteriorated by opportunistic lung diseases. Exhaled H2O2 is a known 
noninvasive inflammatory marker of the respiratory tract which has 
not been previously reported in HIV-1-infected patients. Moreover, the 
relationship between exhaled H2O2 and whole blood chemiluminescence 
has not been established. In this cross-sectional study, we found a high 

Variable (1)
Control (n=14)

(2)
HIV-infected 

OLD-negative (n=36)

(3)
HIV-infected 

RTI-positive (n=28)
p-value post-hoc

p-value Difference 95% CI

Exhaled breath H2O2 
[µmol/L], geometric mean 
(95% CI, range)

0.21 (0.15 to 0.31, 0.05-0.63) 0.80
(0.67 to 0.95, 0.30-2.20)

0.90
(0.75 to 1.09, 0.31-2.20)

 <0.0011 <0.0012  1 vs. 2
<0.0012  1 vs. 3
1.002        2 vs. 3

3.76
4.24

(2.53 to 5.58)
(2.81 to 6.40)

Resting CL [mV/104 cells],
geometric mean (95% CI, 
range)

0.59
(0.50 to 0.70, 0.28-0.84)

0.84
(0.74 to 0.95, 0.48-1.35)

0.71
(0.61 to 0.83, 0.35-1.28)

0.0081 0.0062  1 vs. 2
0.0422  1 vs. 3
1.002    2 vs. 3

1.46
1.36

(1.10 to 1.94)
(1.02 to 1.83)

fMLP-induced peak CL 
[mV/104 cells],
geometric mean (95% CI, 
range)

 0.92
(0.74 to 1.13, 0.42-2.24)

1.49
(1.30 to 1.71, 0.62-2.97)

1.67
(1.34 to 2.09, 0.63-4.71)

<0.0011 0.0042    1 vs. 2
<0.0012  1 vs. 3
0.982      2 vs. 3

1.63
1.83

(1.20 to 2.19)
(1.27 to 2.63)

Adjusted variables for significant difference on PMNs count:
Exhaled breath H2O2 
[µmol/L], geometric mean 
(95% CI)

N/A N/A N/A N/A3

Resting CL [mV/104 cells], 
geometric mean (95% CI)

0.71 (0.63 to 0.81) 0.75
(0.70 to 0.81)

0.81
(0.75 to 0.88)

 0.184

fMLP-induced peak CL 
[mV/104 cells], geometric 
mean (95% CI)

1.03 (0.82 to 1.31) 1.40
(1.21 to 1.62)

1.71
(1.45 to 2.00)

0.0044 0.0035 1 vs. 3 1.65 (1.17 to 2.33)

p-values: 1one-way ANOVA; 2post hoc ANOVA test with Bonferroni adjustment; 3one-way ANCOVA (assumptions not met); 4one-way ANCOVA (assumptions met); 	 5p o s t 
hoc ANCOVA test with Bonferroni adjustment.
CL, whole blood chemiluminescence; fMLP, N-formyl-methionyl-leucyl-phenylalanine; N/A, not applicable; PMNs, polymorphonuclear leukocytes.
Table 2: Comparison of exhaled H2O2 and whole blood chemiluminescence between healthy controls vs. HIV-infected patients without clinical signs and symptoms of op-
portunistic lung disease (OLD-negative) or with clinical signs and symptoms of concomitant respiratory tract infection without a definite diagnosis of OLD (RTI-positive).
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Figure 2: Exhaled H2O2 as marker of oxidative stress in HIV-infected patients without signs and symptoms of opportunistic lung disease (OLD-negative) and either 
HAART-naive or HAART-treated. (A - top) Dot plot of individual results in healthy controls and HIV-1 infected patients. Box plot shows the geometric mean as a solid 
line and 95% confidence intervals as a rectangle. (B - bottom) Fold increase of geometric mean exhaled H2O2 (H2O2), resting (rCL) and fMLP-induced peak whole blood 
chemiluminescence (pCL) in OLD-negative patients either HAART-naive or HAART-treated against healthy controls. Raw data vs. adjusted (adj.) for differences in 
polymorphonuclear leukocytes count (PMNs) among groups with ANCOVA (not applicable for exhaled H2O2 - assumptions not met).
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Variable
(1)

Control (n=14)

(2)
HIV-infected 

OLD-negative 
HAART-naive (n=13)

(3)
HIV-infected 

OLD-negative 
HAART-treated

(n=23)

p-value
post-hoc
p-value Difference 95% CI

Viral load assays, 
n (%)

N/A 5 (39%) 23 (100%) <0.0011

Detectable viral 
loada, n(%)

N/A 5 (100%) 14 (61%) 0.141

Viral load [x103 
RNA copies/mL],
geometric mean 
(95% CI, range)

N/A 13.65 (0.43 to 436.13, 0.84-935) 0.53 (0.11 to 2.47, 0-625) 0.0472 0.04 (0.002 to 0.95)

Exhaled breath 
H2O2 [µmol/L],
geometric mean 
(95% CI, range)

0.21 (0.15 to 0.31, 0.05-0.63) 0.77 (0.54 to 1.10, 0.42-2.20) 0.81 (0.66 to 1.00, 0.30-1.80) <0.0013 <0.0014  1 vs. 2
<0.0014  1 vs. 3
1.004    2 vs. 3

3.64
3.83

(2.18 to 6.07)
(2.44 to 6.01)

Resting CL 
[mV/104 cells],
geometric mean 
(95% CI, range)

0.59 (0.50 to 0.70, 0.28-0.84) 0.79 (0.66 to 0.94, 0.47-1.22) 0.87 (0.73 to 1.04, 0.43-2.14) 0.0043 0.0704  1 vs. 2
0.0044  1 vs. 3
1.004    2 vs. 3

1.51 (1.14 to 2.01)

fMLP-induced 
peak CL [mV/104 
cells],
geometric mean 
(95% CI, range)

0.92 (0.74 to 1.13, 0.42-2.24) 1.61
(1.29 to 2.02, 0.90-2.97)

1.42 (1.19 to 1.70, 0.62-2.87) <0.0013 0.0014  1 vs. 2
0.0054  1 vs. 3
1.004    2 vs. 3

1.76
1.55

(1.23 to 2.52)
(1.13 to 2.13)

Adjusted variables for significant difference on PMNs count:
Exhaled breath 
H2O2 [µmol/L]
geometric mean 
(95% CI)

N/A  N/A N/A N/A5

Resting CL 
[mV/104 cells],
geometric mean 
(95% CI)

0.75 (0.68 to 0.83) 0.73 (0.67 to 0.80) 0.77 (0.72 to 0.83) 0.636

fMLP-induced 
peak CL [mV/104 
cells],
geometric mean 
(95% CI)

1.13 (0.95 to 1.35) 1.52 (1.28 to 1.79) 1.30 (1.14 to 1.47) 0.0786

p-values: 1Fisher’s exact test; 2unpaired Student’s t-test (equal variances); 3one-way ANOVA; 4post hoc ANOVA test with Bonferroni adjustment; 5one-way ANCOVA (as-
sumptions not met); 6one-way ANCOVA (assumptions met).
CL, whole blood chemiluminescence; fMLP, N-formyl-methionyl-leucyl-phenylalanine; HAART, highly active anti-retroviral therapy; N/A, not applicable; PMNs, polymorpho-
nuclear leukocytes.
Table 3: Comparison of viral load, exhaled H2O2 and whole blood chemiluminescence between healthy controls vs. HIV-infected patients without clinical signs and symp-
toms of opportunistic lung disease (OLD-negative) and either HAART-naive or HAART-treated.

Type Model Dependent Variable Independent Variable Regression Type R-squared Coefficient (95% CI) Standardized
Coefficient p-value

Univariate 1 Exhaled H2O2 [µmol/L]
(n=19)
(detectable viral load 
subgroup)

Log10 (detectable viral 
load) [RNA copies/mL]

Linear 0.23 0.180 (0.037 to 0.323) 0.014

Multivariate 2 Exhaled H2O2 [µmol/L]
(n=19)
(detectable viral load 
subgroup:
HAART-naive and 
HAART-treated)

Log10 (detectable viral 
load) [RNA copies/mL] 
Treatment with HAART
Constant

Linear, stepwise 0.35 0.229 (0.080 to 0.377)
0.401 (0.010 to 0.791)
-0.189 (-0.818 to 0.440)

0.608
0.365

0.003
0.044
0.56

3 Exhaled H2O2 [µmol/L]
(n=14)
(detectable viral load 
subgroup:
HAART-treated only)

Log10 (detectable viral 
load) [RNA copies/mL]
CD4 count [cells/µL]
HIV-infection duration 
[yrs]
HAART duration [mths]
Constant

Linear, stepwise 0.79 0.464 (0.270 to 0.659)
0.0017 (0.0003 to 0.0031)
0.155(0.011 to 0.298)
-0.015 (-0.035 to 0.003)
-1.50 (-2.56 to -0.44)

1.16
0.938
0.932
-0.944

<0.001
0.015
0.035
0.11
0.005

HAART, highly active anti-retroviral therapy
Table 4: Summary of regression models in HIV-infected patients without clinical signs and symptoms of opportunistic lung disease (OLD-negative).

level of exhaled H2O2 among HIV-infected patients as compared to 
healthy controls, regardless of concomitant respiratory tract infection 
and despite treatment with HAART. This was accompanied by greater 

luminol enhanced light emission of the whole blood, either resting or 
agonist-induced, even though an increase in the exhalation of H2O2 was 
more evident. Nevertheless, elevated exhalation of H2O2 and appreciable 
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chemiluminescence result from enhanced activity of phagocytes and 
may be a compensatory mechanism in response to the underlying 
immunodeficiency [29]. We found that the observed differences in CL 
variables were explained by an adjustment to a lower whole blood PMNs 
count. Elbim et al. confirmed that PMNs counts in HIV-infected patients 
were significantly decreased, though circulating PMNs were activated 
producing more H2O2 [30]. Interestingly, there was no association between 
exhaled H2O2 and whole blood chemiluminescence in HIV-infected 
patients. This associative finding had been previously reported in a study of 
41 healthy subjects using the same methods to measure both the exhalation 
of H2O2 and light emission of blood phagocytes [21]. These results indicate 
that exhalation of H2O2 in HIV-infected patients does not dependent on 
ability of blood phagocytes to generate ROS, to a higher extent, this may 
involve phagocytes within the lungs.

In addition, increased exhalation of H2O2 in OLD-negative patients was 
associated with detectable viral load. The association was more evident at 
higher levels of exhaled H2O2 as revealed by quantile regression analysis. The 
mechanism underlying the observed associations aims to uncover direct 
casual pathway between viral load and exhaled H2O2. Numerous studies 
have shown that H2O2 strongly activates HIV long terminal repeat (LTR), 
containing sequences required for the initiation of HIV-1 transcription via 
a post-translational control of NF-kappaB [2,31-33]. Moreover, alveolar 
macrophages are susceptible to HIV-1 virus infection and can be recognized 
as latent viral reservoir [34]. These cells isolated from asymptomatic HIV-1 
positive subjects exhibited a constitutive activation of phosphatidylinositol 
3-kinase pathway [35]. The Nef (Negative Regulatory Factor) protein of 
the HIV-1 virus could be one of the activators in the signal transduction 
pathway leading to stimulation of the NADPH oxidase complex [36] and 
increased oxidants release from macrophages [37]. Additionally, Tat protein 
has been shown to induce the release of cytokines, thereby enhancing the 
production of H2O2 in a variety of cells, including macrophages [38,39]. In 
fact, a study by Buhl showed that alveolar macrophages isolated from the 
lungs of HIV-infected subjects presented with an increased spontaneous 
release of oxidants [40]. In all, these can favor conditions for increased H2O2 
activity in the airways, rendering an augmentation in viral replication. This 
is in agreement with the findings of Elbim et al. who reported that basal 
production of H2O2 in whole blood monocytes is correlated with viral load 
[41]. These observations point towards the existence of a positive feedback 
interplay between the production of H2O2 in the airways and HIV-1 viral 
load. Possibly, this may be a leading mechanism responsible for increased 
exhaled H2O2 levels in HIV-infected patients.

Moreover, instead of an association with viral load there was a 
weaker association between increased exhaled H2O2 and treatment with 
HAART as revealed by a multiple regression analysis. This concurs with 
study by Mandas et al. showing oxidative imbalance in HIV-1 infected 
patients treated with antiretroviral therapy [7], and report by Ngondi et 
al. demonstrating enhancing (pro-oxidant) effect of HAART on systemic 
lipid peroxidation [9]. Although, in the latter study, the majority of HIV-
1 infected patients were diagnosed relatively late and presented with 
an increased severity in clinical status along with active opportunistic 
infections [9].

When the analysis was narrowed exclusively to HAART-treated, we 
found other positive associations with CD4 count and HIV-1-infection 
duration. Bucy et al. showed evidence that increase in CD4 lymphocytes 
after HIV antiretroviral therapy reflects redistribution from lymphoid 
tissues [42]. The link between the increased exhalation of H2O2 and the 
duration of HIV-infection is likely complex, resulting from disease factors, 
such as decrease in the GSH concentration over time in the alveolar lining 

A.A

1 2 3 4 5 6

Ex
ha

le
d 

H
2O

2 
[µ

m
ol

/L
]

0,0

0,5

1,0

1,5

2,0

Log10 (Viral Load) [RNA copies/mL]

0.25

OLS

0.66

R-squared = 0.23
p = 0.014

B

0,0 0,2 0,4 0,6 0,8 1,0

In
te

rc
ep

t (
µ0 ,

 b
0)

-1,0

-0,5

0,0

0,5

1,0

Quantile of exhaled H2O2

Pseudo R2:
0.001 0.04 0.11 0.17 0.21 0.21 0.19

Predicted Exhaled H2O2 [µmol/L]

0.25

OLS

0.66

R-squared = 0.79
p<0.001 

0.464*A + 0.0017*B + 0.155*C - 0.015*D - 1.50

0,0 0,5 1,0 1,5 2,0O
bs

er
ve

d 
Ex

ha
le

d 
H

2O
2 

[µ
m

ol
/L

]

0,0

0,5

1,0

1,5

2,0

R-squared = 0.79
p<0.001

C

Figure 3: Regression models in HIV-infected patients without signs and 
symptoms of opportunistic lung disease (OLD-negative). Linear regression 
(A - top) to estimate changes in exhaled H2O2 (y) as a function of log10-
transformed detectable HIV-1 viral load (x). Solid line: slope (β1); long 
dashed lines: 95% confidence intervals. Quantile regression (B-middle) 
to estimate relationships between exhaled H2O2 and log10-transformed 
detectable HIV-1 viral load for the exhaled H2O2 distribution from 0.2 to 
0.8 quantiles. Solid line: slopes for quantiles (b1), connected with white 
circles (non-significant) or black circles (significant at p<0.05) and with 
error bars corresponding to 95% confidence intervals (bolded if p<0.05). 
Linear regression slope β1 is shown as solid line with long dashed lines. 
corresponding to 95% confidence intervals. Multiple linear regression 
(C - bottom) in HAART-treated subgroup only, with exhaled H2O2 as the 
dependent variable and log10-transformed HIV-1 detectable viral load (A), 
CD4 count (B), HIV-infection duration (C) and HAART duration (D) as the 
independent variables. Predicted values of exhaled H2O2 from the multiple 
regression equation are graphed on the X-axis and the observed values of 
exhaled H2O2 are plotted on the Y-axis.
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fluid [18], decreased erythrocyte GSH-Px activity [43], interactions with 
HAART [9] and patient factors including genetically based susceptibility. 
For example, Delanghe et al. reported that HIV-seropositive patients with 
the antioxidant protein haptoglobin 2-2 phenotype, known to bind free 
hemoglobin more slowly, had a higher mortality and worse prognosis than 
patients with other phenotypes, suggesting enhanced hemoglobin-driven 
oxidative stress [44].

Our study has several limitations. Given our small sample size, which 
necessitates testing in larger groups, we were unable to fully explore all the 
hypotheses. Secondly, the cross-sectional study design makes the assessment 
of casual relationships difficult. Finally, we enrolled OLD-negative patients, 
which included normal chest X-rays, to avoid opportunistic infections, 
though asymptomatic presentations of OLD could not be excluded. 
Despite these limitations, the findings in our study should encourage an 
answer to the question of whether or not the increased exhalation of H2O2 
in HIV-1 infected subjects evinces clinical significance. Implications for 
further studies are HIV associated pulmonary emphysema [45], since H2O2 
is linked to breakdown of elastic fibers [46] and Kaposi’s sarcoma [47], 
as H2O2 mediates herpesvirus reactivation from latency. Therefore, it is 
possible that determination of exhaled H2O2 can be helpful in the selection 
of patients with a higher risk of some HIV-1 associated diseases.
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