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Abstract
Since the introduction of nanotechnology there has been an increase in the use of nanoparticles (NPs) in the 

development of biosensors for the detection of bacterial pathogens. Consequently, research exploring their potential 
toxicity has also increased as some have been shown to be harmful depending on their size, shape, and chemical 
composition making it imperative that we understand their possible harm to humans and the environment. In this study 
we investigated the potential toxicity of three differently coated FeO Magnetic NPs (MNPs), amine, carboxyl, and 
polyaniline, on the Caenorhabditis elegans (C. elegans) nematode. Briefly, C. elegans were exposed to the singular 
coated-MNPs types at a concentration of 100 µg/mL and assessed for physiological effects on their metabolism, 
reproduction, longevity, and oxidative stress resistance. Exposure to singular coated-MNPs corresponded with a 
statistical decrease in their metabolic and acute oxidative stress resistance abilities, and revealed a trend towards 
lower reproduction and longevity. Taken together, these results add to the growing evidence that FeO coated-MNPs 
have an in vivo toxic effect on C. elegans. These findings advocate for a need to take safety precautions when 
discarding FeO coated-MNPs as they may pose a toxic health hazard to our environment and health.

Keywords: Coated-FeO nanoparticles; Nanotoxicity; Toxicity; C. 
elegans; Oxidative stress; Longevity; Metabolism; Fertility

Introduction
The introduction of nanotechnology has lead to an increase in 

the research and industrial application of NPs in fields related to 
energy, medicine, safety, and defense [1]. In particular, since the 
2001 distribution of Bacillus anthracis through the United States 
postal system, much attention has been directed towards the use 
of DNA or antibody based biosensors for the biological detection of 
pathogens that incorporate the use of NPs [2-5]. Consequently, the 
more these biosensors are synthesized and used, the larger impact 
they may have on our environment as they start to accumulate as 
waste and decompose. Hence, there is a growing need to investigate 
and monitor the potential nanotoxicity of NPs to both our health and 
environment. Towards that end, some studies have shown that NPs, 
such as platinum NPs, are beneficial in their ability to reduce oxidative 
stress [6], however many others have shown NPs to reduce this ability 
[7-9]. Conversely, some studies have shown that the NPs themselves 
can impart toxicity, increase cellular oxidative stress, and damage [10]. 
For instance, many toxicological studies have been conducted using the 
C. elegans soil nematode as they would most likely be in first contact
with decomposing NPs at waste sites. For example, using the C. elegans
animal model it has been revealed that NPs synthesized from various
materials, such as zinc, aluminum, titanium, silver, gold, and silica
to name a few, can cause harmful effects on living organisms such as
reduced egg production, number of off spring, and growth [11-14]. In
particular, a study comparing the toxicity of silver-NPs to silver ions,
found that while silver ion exposure did not impact growth, it resulted
in reduced reproduction potential as seen with silver-NP exposure,
although the silver-NP exposure had bigger reduction in reproduction
[11].

Another important NP that is increasingly used in the development 
of biosensors is the Magnetic Nanoparticle (MNP) [15]. Many of 
these MNPs are synthesized from FeO (i.e., iron III oxide or ferric 
oxide) and contain a shell coating that serves as a binding surface. 
Not only have the MNPs been shown to be toxic by both in vivo and 

in vitro studies [16], but also a recent study has demonstrated that 
the Dimercaptosuccinic Acid (DMSA) shell coating of a FeO MNP 
additionally had toxic properties [17]. Therefore, this study aims to 
investigate the toxic potential of three differently coated FeO -MNPs 
(amine-MNPs, carboxyl-MNPs, and polyaniline-MNPs) that have been 
used in the development of DNA and antibody based biosensors for 
the detection of bacterial pathogens [2-5,18,19]. Using the C. elegans 
model, that has been extensively studied in toxicological investigations 
from the molecular to organismal level [20,21], we will evaluate the 
potential toxicity of these three differently coated-MNPs by assessing 
their impact on the worm’s metabolism, reproduction ability, longevity, 
and resistance to oxidative stress. We hypothesize that similar to 
DMSA-coated FeO MNPs, C. elegans exposure to amine-MNPs, 
carboxyl-MNPs, and polyaniline-MNPs will result in overall lowered 
physiological health outcomes.

Materials and Methods
Nanoparticles

For these studies we used three different types of coated FeO -MNPs: 
amine-coated MNPs, carboxyl-coated MNPs, and polyaniline-coated 
MNPs. The MNPs were synthesized and provided by Dr. Evangelyn 
C. Alocilja (Michigan State University, East Lansing, MI, USA), which
have been characterized previously [18,19]. Briefly, coated iron-core
MNPs were determined to be approximately between 50 to 100nm in
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size by transmission electron microscopy. The electrical properties of 
the MNPs were investigated by four-point probe measurements and 
I-V measurements and had a resistivity of 0.385 Ωcm and showed 
ohmic behavior. MNPs were prepared for exposure to C. elegans in 
the following manner: the coated-MNPs were reconstituted in sterile 
water, and added to the C. elegans food source Escherichia coli OP50 
(OP50) at a concentration of 100 µg/mL (100 mg/L), as a previous study 
investigating the toxicity of coated FeO -MNPs demonstrated harmful 
effects using this concentration [17]. The prepared MNP-OP50 mixture 
was added to experimental 35mm plates containing solid Nematode 
Growth Media (NGM) seeded with a spot (20 µL) of MNP-OP50 food 
mixture (experimental plates).Control 35 mm plates consisted of NGM 
seeded with a spot of OP50 only. C. elegans were then placed onto these 
plates for all studies conducted. Each plate contained 25 worms, and 
worms were transferred to fresh plates every 3 days.

Maintenance of C. elegans

Wild type Bristol N2 C. elegans were obtained from the Caenorhabditis 
Genetics Center (University of Minnesota, Minneapolis, MN, USA) 
and maintained as frozen stock until needed. All synchronized cultures 
were grown on 60 mm solid NGM plates seeded with a spot (100 µl) 
of OP50 for food [22]. Reproductive adults were placed onto fresh 60 
mm NGM plates and allowed to lay eggs for 2-4 hrs, producing age-
synchronized groups. Working cultures were maintained at 22 ± 1°C. 

Fertility Assessment

Egg Production Assessment: Individual 1-day old adults, grown 
starting from the egg stage on experimental or control plates, were 
transferred into individual wells on a 96 well microtitier plate containing 
20% bleach (sodium hypochlorite, NaOCl) and incubated for 8 min, to 
dissolve the cuticle. Remaining eggs were counted at 50X magnification 
using a K400 Motic dissection microscope (Martin Microscope Co., 
Easley, SC, USA). Each group (experimental and control) contained 
a total of 24 worms, per trial. A total of 4 trials were conducted. All 
groups were maintained at 22 ± 1°C. 

Egg Laying Rate Assessment: Individual 1-day adults, grown 
starting from the egg stage on experimental or control plates were 
transferred to fresh 35 mm NGM plates seeded with 20 µL of OP50 
only, and allowed to lay eggs for 4 hrs. At the end of the 4 hr period, 
eggs released were counted at 50X magnification using a K400 Motic 
dissection microscope (Martin Microscope Co., Easley, SC, USA). 
Egg rate was calculated as eggs laid/hr. Each group (experimental 
and control) contained a total of 4 worms, per trial, and 4 trials were 
conducted. All groups were maintained at 22 ± 1°C. 

Defecation Assessment

Individual 2-day old adults, grown starting from egg stage on 
experimental or control plates, were transferred to fresh 35 mm NGM 
plates seeded with 20 µL of OP50 only, and allowed to acclimate for 
5 min. Observation of pBoc movements, the interval between the 
obvious posterior contractions that load the rectum for defecation [23], 
were recorded over a period of 10 minutes (600s) using a K400 Motic 
dissection microscope (Martin Microscope Co., Easley, SC, USA). 
Defecation rate was calculated as the average pBoc movements/600s. 
Each group contained a total of 4 worms, per trial, and a total of 4 trials 
were conducted. 

Longevity Assessment

Synchronized worms at 3-days of age (L4 stage) were transferred to 
35mm experimental or control plates and then transferred daily to fresh 

plates until the cessation of egg laying to avoid confounding generations. 
All groups were maintained at 22 ± 1°C. Worms were monitored over 
a 20-day period and scored as dead if they did not respond to a touch 
stimulus. Animals that showed bagging, exploded or crawled off the 
plates were censored. Each group contained a total of 100 worms over 4 
plates (25 worms per plate), per trial. A total of 4 trials were conducted. 

Oxidative Stress Resistance Assessment

Temporary Oxidative Stress Resistance: Synchronized worms at 
3-days of age (L4 stage) were transferred to 35 mm experimental or 
control plates for 48 hrs, after which they were exposed to a temporary 
oxidative stress environment by being transferred to fresh 35 mm NGM 
plates containing a final concentration of 40 µM juglone (5-hydroxyl-1, 
4-naphthoquinone, Sigma-Adrich) within the 20 µL of OP50 and 
incubated for 24 hrs. Juglone is a quinone that generates superoxide 
anion (O2-) from molecular oxygen during metabolism [24]. The 
juglone was added to OP50, mixed, applied directly to the NGM 
plates which were then allowed to dry for 20mins, after which worms 
were transferred onto these plates for immediate exposure. Following 
the exposure, groups were transferred back to fresh corresponding 
experimental or control plates. Groups were transferred daily until 
the cessation of egg-laying to avoid confounding generations. Worms 
were monitored for the next 16 days and scored as dead if they did not 
respond to a touch stimulus. Animals that showed bagging, exploded 
or crawled off the plates were censored. All groups were maintained at 
22 ± 1°C. Each group contained a total of 100 worms over 4 plates (25 
worms/plate), per trial. A total of 3 trials were conducted.

Acute Oxidative Stress Resistance: Synchronized worms at 
3-days of age (L4 stage) were transferred to 35 mm experimental or 
control plates for 48 hrs after which they were exposed to an acute 
oxidative stress environment by transferring worms to 35 mm plates 
containing 472 µM juglone within the NGM. The plates were prepared 
by dissolving juglone in 100% ethanol and immediately mixing it into 
liquefied NGM at 54°C. The mixture was poured into plates and after 
solidification they were seeded with 20 µL of OP50 and allowed to dry 
in a fume hood. Plates were used within 3 hrs of preparation. Survival 
was monitored every 30 min for the next 4 hrs after the initial transfer 
and scored as dead if they did not respond to a touch stimulus. Animals 
that showed bagging, exploded or crawled off the plates were censored. 
Each group contained at total of 100 worms over 4 plates (25 worms/
plate), per trial. A total of 3 trials were conducted. 

Statistical Analysis
Two-tailed Student’s t-Test of equal variance was used for all 

experiments. A p-value ≤ 0.05 was considered to be statistically 
significant.

Results 
Impact on Metabolic Health

As a first step towards determining the potential physiological 
impact of differently shell coated-MNP exposure on C. elegans, we 
assessed their ability to defecate normally as previous studies have shown 
that the defecation rate is a good outcome measure for metabolic health 
[25-27]. The defecation rate was measured by counting the number of 
pBoc movements, which represent the second stage of the defecation 
motor program, over 10 minutes (600s). Our results revealed that while 
there was no difference in the defecation rate between the control and 
amine-MNPs groups, there was a statistical decrease in defecation 
within the carboxyl-MNPs and polyaniline-MNPs groups (Figure 1A) 
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Both the carboxyl-MNPs (p=0.003) and polyaniline-MNPs (p=0.04) 
exposed groups had a defecation rate of 8pBoc movements/600s, which 
was 11% below that of the control and amine-MNPs groups, 9 pBoc 
movements/600s. 

Impact on Reproductive Health

As previous mentioned, MNPs on their own have been shown 
to have toxic effects [16], and recent studies have also demonstrated 
their nanoparticles can negatively affect the reproductive abilities of 
various animal models [14,28,29]. Therefore, in order to determine if 
these differently coated-MNPs had any impact on reproductive health, 
we conducted two fertility assays on 1-day old adults: eggs produced 
within a single worms (Figure 1B) and the egg-laying rate (Figure 
1C). Exposure of coated-MNPs at 100 µg/mL to C. elegans was not 
associated with any impact on their ability to produce or lay eggs as 
compared to controls. MNPs-exposed worms on average contained 22 
eggs compared to 25 eggs in controls. Similarly, the average egg-laying 
rate was 6 eggs/hr for the control, amine-MNPs, and carboxyl-MPNs 
groups, while the polyaniline-MNPs had a rate slightly higher, but not 
significant, of 7 eggs/hr. 

Impact on Longevity 

As the exposure to carboxyl-MNPs and polyaniline-MNPs 

demonstrated an effect on the defecation rate, our next step was to 
investigate if the coated-MNPs would have any impact on the longevity 
of the C. elegans, which normally live to approximately 20 days [30]. 
Beginning at the L4-stage and continuing all they way through the 20-
day assay, our findings indicate that a continual exposure to coated-
MNPs at 100 µg/mL did not correlate with any significant change on 
longevity (Figure 2A). On average the survival rate at the end of the 
assay was 18% for control, 11% for amine-MNPs, 15% for carboxyl-
MNPs, and 14 % for polyaniline-MNPs (Figure 2B).

Impact on Oxidative Stress Resistance

Since oxidative stress is a strong contributor to reduced health, 
and previous studies have revealed opposing results in the ability of 
NPs to induce or suppress oxidative stress, we subsequently wanted 
to determine if exposure the differently coated-MNPs could affect 
the oxidative stress resistance of C. elegans. In order to create an 
oxidative stress environment, C. elegans were treated for 24 hrs with 
a low concentration of the chemical juglone, which has been shown 
to correlate with an increase in reactive oxygen species and oxidative 
damage [24].Worms were exposed to coated-MNPs or control 3-days 
prior to the juglone treatment and then placed back in the presence 
of coated-MNPs or control for the remaining 16 days of the assay. 
The control group had an average survival rate of 17%, the carboxyl-
MNPs 14%, the amine-MNPs 24%, and the polyaniline-MNPs 28%. 
The trend in increased survival rate can be seen throughout the last 
5 days of the assay, but is only significant on the last two days (Figure 
3A). Surprisingly, the short 24hr low level exposure to oxidative stress 
resulted in divergent outcomes, as it appears that exposure to amine-
MNPs (p=0.01) and polyaniline - MPNs (p=0.001) significantly aided 
C. elegans in resisting temporary oxidative stress, while those exposed 
to carboxyl-MNPs (p=0.08) had no effect when compared to the control 
group although the trend was similar to the other two MNPs up to day 
19 (Figure 3B). 

The increased ability of the C. elegans to resist a low level of 
oxidative stress exposure prompted us to further investigate if they 
would also respond in this positive manner to higher acute oxidative 
stress conditions when exposed to the coated-MNPs. For this assay 

Figure 1: C. elegans fertility and metabolism are not effected by coated-
MNPs exposure. (A) Defecation rate, pBoc movements per 600s interval. 
(B) Egg production per nematode. (C) Eggs laid/worm.  Each graph is the 
representative average of 4 different trials. Error bars represent the standard 
deviation of the average.  
 * represents p ≤ 0.05; ** represent p ≤ 0.01, compared with control.

Figure 2:  Coated-MNPs do not correlate with an impact on C. elegans 
longevity.  (A) Longevity curves; (B) mean longevity.  Each graph is the 
representative average of 3 different trials, n=100 worms per group. Error bars 
represent the standard deviation of the average.
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environment. Interestingly, the findings of this assay demonstrated an 
inverse correlation with coated-MNP exposure and oxidative stress 
resistance (Figure 4). It can be clearly seen that throughout the 4 hr 
exposure period the control group faired better at resisting the high 
oxidative stress environment which resulted in an overall significant 
improvement during the last two assessment points of the assay, 
as compared to the coated-MNP treated groups which showed a 
significantly decreased ability (Figure 4A). At the end of the assay on 
average the control group had a survival of 40% compared to the lower 
amine-MNPs (30%), carboxyl-MNPs (24%), and polyaniline-MNPs 
(22%) groups (Figure 4B). 

Discussion
To our knowledge, this is only the second study ever conducted that 

investigates the toxicity potential of coated-FeO -MNPs using the C. 
elegans nematode model. The findings of this study suggest that amine-
coated, carboxyl-coated, and polyaniline-coated FeO -MNPs can 
impart toxicity to the living C. elegans nematode when administered 
at a concentration of 100 µg/mL (100 mg/L). In particular, the reduced 
defecation rate demonstrated in this study suggests that the carboxyl-
MNPs and polyaniline-MPNs are having a harmful effect on the C. 
elegans. Interestingly, a 2012 study by Wu et al. investigating the toxicity 
of DMSA-coated FeO -MNPs on C. elegans also found an effect on 
defecation rate, but unlike our reduction in rate their study showed 
that the coated-MNPs resulted in an increase in defecation rate [17]. 
We hypothesize that the reduction achieved in our study might be 
occurring through the accumulation of coated-MNPs and eventual 
blockage within the intestinal cavity as has been previously shown by 
other studies investigating nanotoxicity of NPs [11,31].Moreover, our 
assessment of the impact on reproductive health fall in line with similar 
studies exploring the toxicity of NPs on reproduction health [32-34], 
as a recent study revealed that while the initial NP exposure was not 
harmful, the subsequent generations had decreased reproductive health 
that took as long as the fourth generation to show signs of recovery [35]. 

The assessment on longevity, although not significant, also displayed 
a trend towards reduced longevity that can be seen in the amine-
MNPs group, which was also unexpected, as these coated-MNPs had 
not shown any impact with our previous assays. We posit that the 7% 
difference in longevity between the amine-MNPs group and control did 
not result in a significant difference, as this difference can be attributed 
to the seemingly large deviation within worms of all groups, as similar 
studies have shown [14,31-33]. Lastly, our study also demonstrated 
that when C. elegans are exposed to coated-FeO -MNPs this correlated 
with a statistical reduction in their ability to resist oxidative stress. 
This outcome has also been shown in a similar study investigating 
the nanotoxicity of ceria NPs in C. elegans, which also demonstrated 
a reduced oxidative stress response when challenged with an acute 
oxidative stress environment induced by juglone administration [36]. 
Therefore, the outcomes of our temporary oxidative stress assay were 
unexpected, as past studies have shown either no effect or a reduction 
in oxidative stress resistance [14,32].

Taken together, our results demonstrating a statistical reduction 
in defecation rate and acute oxidative stress resistance, along with 
downward trends in egg production and longevity, indicate that 
precautions should be taken during the disposal of these NPs. 
Additionally, future efforts should focus on determining the mechanism 
through which these coated-MNPs are leading to a reduction in 
defecation rate, as well as explore the effect that they might have on 
multigenerational reproductive health. Equally, it would be a great 

we exposed the worms to coated-MNPs or control starting at the L4 
stage until they were 2-day old adults, at which time they were treated 
to a high concentration of juglone to induce an acute oxidative stress 

Figure 3: The ability of C. elegans to resistance temporary oxidative stress 
is statistically impacted by exposure to coated-MNP exposure.  (A) Survival 
curves; (B) mean survival.  Each graph is the representative average of 3 
different trials, n=100 worms per group. Error bars represent the standard 
deviation of the average.  
* represents p ≤ 0.01; ** represent p ≤ 0.001, compared with control.

Figure 4: The ability of C. elegans to resistance acute oxidative stress is 
statistically decreased by exposure to coated-MNP.  (A) Survival curves; (B) 
mean survival.  Each graph is the representative average of 3 different trials, 
n=100 worms per group. Error bars represent the standard deviation of the 
average.   
* represents p ≤ 0.01;    ** represent p ≤ 0.001, compared with control. 



Citation: Callaway MK, Ochoa JM, Perez EE, Ulrich PE, Alocilja EC, and Vetrone SA, et al. (2013) Investigation of the Toxicity of Amine-coated, 
Carboxyl-coated and Polyaniline-coated FeO Magnetic Nanoparticles in Caenorhabditis elegans. J Biosens Bioelectron 4: 145. doi: 
10.4172/2155-6210.1000145

Page 5 of 5

Volume 4 • Issue 5 • 1000145
J Biosens Bioelectron
ISSN: 2155-6210 JBSBE, an open access journal 

benefit to explore the impact of multiple nanoparticle exposure, as it is 
most likely that in a waste environment, these soil nematodes would be 
in direct contact with more than just one NP type.
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