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Introduction
Diabetes mellitus is a chronic metabolic disease, characterized by 

elevated blood glucose level–hyperglycemia, due to a deficient insulin 
secretion by pancreas or an inefficient insulin action in body tissues 
[1,2]. World Health Organization (WHO) estimated 3.4 million diabetes 
related deaths in 2004 and projected the incidence of diabetes to double 
between 2005 and 2030 [3,4]. Four types of diabetes mellitus have been 
identified: Type1, Type 2, “other specific types” and gestational diabetes 
[5]. Type 2 Diabetes (T2D) is the most prevalent form of diabetes 
characterized by decreased insulin sensitivity as opposed to deficient 
insulin secretion due to autoimmune destruction of pancreatic beta-
cells, the accepted causal factor for T1D [2,6]. Persistent hyperglycemia 
in diabetes leads to metabolic dysfunction and manifests in form of 
series of complications like retinopathy, neuropathy, nephropathy 
and cardiovascular disease [7]. Extensive research efforts have been 
invested in order to understand the metabolic signature of T2D that 
would augment early detection of the disease and the development of 
effective therapeutics [8]. Metabolite analysis in body fluids such as 
blood and urine is routinely practiced to assess diabetes risk [9,10]. 
Metabolomics is a powerful tool to study the complexities of T2D 
development and progression. Metabolic phenotype is a reflection 
of genetic makeup that reflects the changes induced by cellular and 
external environmental conditions that manifest in the form of diseases 
of altered metabolism such as T2D. Better understanding of metabolic 
status in T2D would aid clinical interventions to direct the metabolism 
in more favorable direction. This review summarizes the applications 
of metabolomics in diabetes research.

Metabolomics as a Tool for Diabetes Research
Metabolomics is defined as a comprehensive characterization of 

endogenous metabolites representing the “metabolome”. It provides 
global analysis of small molecules, which are either substrates or are 
products of metabolism. 

Metabolomics investigates the unique metabolic phenotype or 

fingerprint that provides a snapshot of all metabolic pathways in an 
organism at any given time. It is emerging as an important tool for the 
study of diseases of dysregulated systemic metabolism such as obesity, 
cardiovascular disease, diabetes mellitus and associated complications, 
as it focuses on identifying biochemical pathways and their interactive 
roles within systemic metabolism [11,12]. Metabolome, the quantitative 
complement of metabolites in a biological system, is traditionally placed 
at the lowest tier of the biochemical information flow, originating from 
genome transcriptome that translates to proteome to metabolome 
(Figure 1). 

Metabolome is considered a sensitive indicator of both genetic 
and environmental perturbations. Metabolic reconstructions suggest 
that the changes in the metabolome are usually greater than those 
observed at protein or gene level [13,14]. Each level of a biological 
system interacts with each other and elicits a characteristic response 
to intrinsic as well as intrinsic environmental challenges (diet, lifestyle, 
drug and disease) to determine the resultant phenotype. Metabolomics 
can be a top down study of a biological system, using a holistic approach 
involving the study of components and interactions of the complete 
system. Bottoms-up strategy on the other hand, refers to the study of 
specific components and interactions within the system. The study of 
metabolites provides insights into biological processes, facilitating the 
understanding and manipulation of complex biological systems for 
diagnostic, prognostic and therapeutic purposes. 
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Abstract
Diabetes mellitus is a multi-factorial disease associated with a dysregulated metabolism. A holistic approach 

emphasizing each of the individual factors with regards to complete pathophysiology of the disease is critical to our 
understanding of this heterogeneous disease. Several technical advances in the field of functional genomics such as 
metabolomics and proteomics aid in comprehending the state of the overall biological system and thus can be utilized 
to decipher the complex interactions among components of the metabolic system in human diabetes. Above-mentioned 
techniques combined with a set of bioinformatics tools and available databases aim to profile wide array of proteins and 
metabolites repertoire in humans. The accurate and comprehensive measurements of these molecules is employed to 
investigate complex interactions of metabolites and proteins not only among themselves but also with genes, transcripts 
and other small molecules to decipher cellular microenvironment and the effects due to drug intervention. This review 
provides an overview of the applications of metabolomics in human diabetes research. We also discuss the potential 
of combining different bioinformatics tools with the omics approach to advance the scientific knowledge towards 
discovery of biomarkers to monitor and regulate general human health with respect to the deregulated metabolic state, 
a characteristic of diabetes mellitus.
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Two major approaches are currently used in metabolomics: 
targeted and untargeted. Targeted studies focus on quantitative 
measurements of specific metabolites with high precision. These 
studies involve the use of biochemical and analytical tools for the 
quantification of known metabolites of biological interest. Targeted 
studies assist the investigator with hypothesis testing and require 
the addition/spiking of several stable isotope-labeled standards as 
appropriate internal standards to ensure accuracy and specificity of 
quantitation. Targeted, quantitative metabolomics have facilitated 
the characterization of known as well as novel metabolic changes in 
experimental diabetic mice as well as diabetes patients [15-17]. Recent 
studies using a targeted metabolomics approach revealed altered 
and modified metabolic phenotype in diabetes and drug treatment 
respectively [16,18,19]. Analysis of dysregulated metabolites associated 
with diabetes, provide a functional readout of the metabolic state of 
subject under study and helps identification of candidate markers of 
metabolic pathways affected by the disease and/or treatment. Pathway 
specific perturbations of metabolic homeostasis in individuals can help 
identify patients at high risk and can predict diagnosis and prognosis 
of the diseased state [18,20]. 

Non-targeted metabolomic profiling on the other hand, does 
not require prior knowledge and can thus be used to identify novel 
metabolic biomarkers of disease and drug efficacy besides analyzing 
the global metabolic profile of the whole system. Comprehensive 
biochemical profiling using metabolomics has provided insights into 
the pathophysiological progression of diabetes not only in clinical but 
also in per-clinical conditions [15]. The metabolome, can be analyzed 
from different matrices such as serum, urine, cerebrospinal fluid, breath 
and tissues. Metabolomics studies have revealed significant elevation 
of certain amino acids and their derivatives in serum that strongly 
correlate with fasting hemoglobin A1c (HbA1c). HbA1C is a clinically 
accepted form of hemoglobin that is measured primarily to identify 
the average plasma glucose concentration over prolonged periods of 

time [21]. Increased HbA1C values are strong indicators of developing 
diabetic complications [7]. Urine metabolome analysis across different 
species in diabetes have identified significant changes in nucleotide 
metabolism, including that of N-methylnicotinamide and N-methyl-
2-pyridone-5-carboxamide, which may provide unique biomarkers for 
following T2D mellitus progression [17,22,23]. 

Thus, metabolomics provides a comprehensive snapshot of the 
disease process and helps investigator to assess the disease status of the 
subject under study and inform therapeutic decisions. Metabolomics 
applied to diabetes research, helps to obtain an overview of the disease 
onset and progression. Several therapeutic targets have been discovered 
through metabolomics [12,24]. Cross-species mapping of the lipid 
profile using metabolomics have helped investigators develop models 
to investigate early disease pathophysiology of diabetes [25,26]. The 
understanding of lipid profile at a tissue-specific level further facilitates 
understanding of the etiology of different complications associated 
with diabetes [25,27]. 

Comprehensive analytical studies in multi-factorial diseases as 
T2D have an edge over isolated knowledge of individual components. 
This approach offers an accurate mechanistic understanding of the 
complex disease phenotype since integrated behavior of a system is 
likely to be different from that of a single component [11,12]. Global 
biochemical studies began in the mid-twentieth century with the 
use of gas chromatography-mass spectrometry (GC-MS) and were 
accentuated by the availability of non-magnetic resonance (NMR) 
spectrometers [28,29]. Eventually Mass spectrometry MS or NMR 
evolved as analytical instruments of choice to detect metabolic 
changes for diagnostic purposes. Advancements in computational 
technologies helped integrate and annotate the endogenous metabolite 
data quantitated through one of the existing analytical platforms such 
as MS, NMR and chromatographic systems helping the researchers 
investigate the effect of integrated metabolism on human health [30].

The intrinsic diversity in chemical structure, size, abundance and 
reactivity of the pool of metabolites in any biological samples makes it 
challenging to identify and quantify all metabolites simultaneously in a 
single, highthroughput platform. Majority of the reported studies apply 
MS or NMR spectroscopy as the analytical instrument of choice [31-34]. 
However, many other techniques including Fourier transform infrared 
and Raman spectroscopy have also been used [35-37]. Electrochemical 
detection for identification and quantification of electrochemically 
active metabolites from redox pathways has also been reported [38,39]. 
The use of different analytical platforms provides complimentary 
information that can be integrated for deeper metabolome coverage 
[40]. 

Overview of Metabolomics Work Flow
Typically, metabolomics studies are investigative in nature involving 

delineation of biomarkers of a disease [6,19,41]. These can further be 
subdivided as metabolic profiling, using an untargeted approach or 
metabolite identification and quantitation using a targeted approach. 
It is critical that the samples from each group under investigation 
are collected, stored and processed in standardized manner. A 
combination of analytical methods, 1H NMR spectroscopy and LC-MS 
have been used to provide information on metabolic pathways known 
to be altered by insulin deficiency in diabetes [11,15,26,32]. In absence 
of a single common platform to identify and quantitate all metabolites 
in the same sample simultaneously, the comprehensive metabolic 
changes are assembled by consolidating data from different platforms. 

 

Figure 1: Deciphering the outcome of complex interplay between extrinsic and 
intrinsic factors in biological systems using metabolomics. Different functional 
levels in a biological system such as genome, transcriptome, proteome 
and metabolome interact with each other via complex flow of bi-directional 
information. Each level is influenced by environmental factors such as diet, drug, 
disease, lifestyle and age, which in turn dictate the phenotype of the biological 
system. Metabolomics uses untargeted profiling to discover alterations in 
metabolome arising out of complex interactions. A targeted profiling approach 
is instrumental in verifying alterations known to exist due to complex interplay 
of different factors thus providing tools for hypothesis testing in a diabetes 
research.
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Raw data collected from different analytical platforms are pre-
processed to remove inconsistencies resulting from instrument 
performance or sampling. QTOF Mass spectrometry is capable of 
resolving thousands of molecules in a single experiment and making 
accurate mass assignments. Greater sensitivity allows for the detection 
of low abundance metabolites missed by NMR [42,43]. The MS spectral 
data is further filtered and is de-convoluted. Standard publicly available 
tools like XCMS, Metalign, MZmine and MathDAMP help data pre-
processing [44,45]. The conversion of continuous NMR data into a 
segmented version by bucketing or binning corrects data for peak shifts 
due to pH or ionic strength variations across different samples as well as 
reduces the data significantly simplifying the subsequent data analysis 
[46,47]. Another approach involves de-convolution of NMR spectra 
into individual components allowing identification and quantitation of 
individual components from a complex NMR spectrum [48]. 

The pre-processed metabolomics data can be further analyzed 
using supervised and unsupervised algorithms. Supervised methods 
include partial least squares discriminate analysis (PLS-DA), support 
vector machines (SVM) and discriminant function analysis (DFA) and 
univariate ANOVA and median fold change (MFC). Unsupervised 
methods include principal component analysis (PCA), supervised 
and self-organized maps. Schematic of a typical metabolomics study 
workflow is illustrated in Figure 2. These tools help the researcher 
delineate candidate markers that are significantly dysregulated in the 
experimental data set. A select panel of candidate markers is then 
further validated using independent cohorts or by repeating the study.

Metabolomics for Diabetes Research
Mass Spectrometry (MS) has been successfully employed to 

investigate different processes central to diabetes, such as non-
enzymatic protein glycation where different hexose sugars would 
modify the proteins leading to their altered or diminished functions 
[49] or to obtain metabolic profiles in T2D patients [32,50-53] and for 
diabetes risk assessment [18]. Due to sensitivity and diverse chemical 
identification capabilities, MS is the tool of choice for obtaining broad 
metabolic profiles in conjunction with gas or liquid chromatography 
[54,55].

Gas chromatography-mass spectroscopy (GC-MS)

GC-MS is the oldest and a robust tool for qualitative metabolic 
profiling. GC-MS provides high chromatographic resolution and 
allows for non-targeted profiling for the discovery of novel metabolites 
and metabolic pathways [56,57]. GC-MS involves electron impact 
ionization wherein the GC column eluants are introduced into 
the source, ionized and fragmented to generate a characteristic 
fragmentation pattern and mass spectrum that is typically used for 
chemical identification. GC-MS has been extensively used as a discovery 
tool in steroid characterizations for clinical purposes [56,58,59]. 

GC-MS has been used for the study of pathways of oxidative 
stress activated in diabetic macrovascular disease, both in primate and 
rodent models [60-62]. These studies emphasize the role of oxidized 
amino acids as potential markers for the assessment of oxidative 
damage. The chromatographic resolution capacity of the conventional 
GC has been further enhanced by a more recent technique known as 
Comprehensive GC X GC-MS that has been applied successfully in 
metabolomics [63,64]. This technique uses an additional column for 
two dimensional separation that significantly increases the analytical 
performance by improving the chromatography thereby expanding 
metabolome coverage [65,66]. 

Liquid chromatography-mass spectrometry (LC-MS)

LC-MS involves interfacing of liquid chromatography platforms 
with mass spectrometers. LC provides metabolite separation by 
equilibration between a mobile liquid phase and a stationary solid (or 
liquid) phase. The coupling of liquid systems to mass spectrometry 
is facilitated by the use of electrospray as the commonly applied 
ionization technique. Application of LC-MS as a reliable technology 
has increased during the previous decade [18,67-69]. LC-MS metabolic 
profiling of 20 non-obese and obese individuals showed a strong 
correlation between fasting concentrations of branched-chain and 
aromatic amino acids and serum insulin [70]. A strong correlation 
has also been reported between branched-chain amino acid (BCAA) 
catabolism and insulin resistance [71]. LC-MS was used to generate 
metabolic profiles from 2,422 normo-glycemic individuals followed 
over a period of twelve years of which 201 eventually developed 
diabetes [18]. This study reported a panel of more than 60 metabolites 
including branched-chain and aromatic amino acids as predictors of 
development of diabetes over the standard risk factors such as fasting 
glucose, body mass index (BMI) etc.

 

Figure 2: Schematic representation of a metabolomics experimental workflow.  
Based on the study design, biological samples are collected and processed 
and subsequently analyzed using various analytical platforms. The different 
analytical platforms such as Gas chromatography-mass spectroscopy (GC-MS), 
Liquid chromatography-mass spectroscopy (LC-MS), Capillary Electrophoresis-
mass spectroscopy (CE-MS) and Nuclear Magnetic Resonance Spectroscopy 
(NMR) are used for data acquisition. The raw data is pre-processed, reduced 
and subjected to statistical analysis using ANOVA, SVM, and/or student’s t-test. 
The results help to establish a correlation with the phenotype and can also be 
utilized to confirm or generate hypothesis.
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Capillary electrophoresis- mass spectrometry (CE-MS)

Capillary Electrophoresis- Mass Spectrometry (CE-MS) is yet 
another analytical tool utilized for metabolite separation and detection. 
Metabolites are first separated by CE based on charge and size, and 
then selectively detected using MS by monitoring a large range of m/z 
values. CE is particularly suited for the separation of polar and charged 
compounds and can provide complementary information to LC-MS 
on the biological composition of sample [72]. It has been successfully 
used in different studies to detect and quantitate cationic and anionic 
metabolites not only across different species but also across different 
sample types as bio-fluids, cells and tissues [73-78]. Cross-platform 
analysis utilizing CE-MS fingerprinting augmented the identification 
of metabolites galactosylhydroxylysine, l-carnitine, among others 
which markedly increased in urine from diabetic rats as compared to 
control animals [79]. 

Nuclear magnetic resonance spectroscopy (NMR)

NMR spectroscopy is a quantitative, highly reproducible and 
non-selective analytical technique for metabolic profiling [80]. It is 
independent of the hydrophobicity or pKa of the compounds being 
analyzed. It has been extensively used for metabolic profiling for more 
than 20 years. This technique interrogates all the molecules present 
in the sample simultaneously by using the active NMR of hydrogen 
(1H) or carbon (13C)-the so called common magnetic nuclei [81]. The 
qualitative limitation of NMR lies in its inherent insensitivity and is 
hence suitable only for detection and quantification of metabolites 
present in relatively high concentration [12]. Alternative strategies are 
being currently developed to increase the sensitivity of NMR including 
the use of cryoprobes in improving signal to noise for 13C NMR based 
metabolomics [82-84]. Another area of improvement is the use of 
hyperpolarized substrates to selectively enhance the resonance of key 
metabolites.  

Low circulating levels of plasma phosphatidylcholine and high 
levels of methylamines were detected in plasma and urine samples from 
129S6 mice, a mouse strain known to be susceptible to hepatic steatosis 
and insulin resistance in comparison to BALBc (relative resistance) 
using 1H NMR-based metabolic profiling [85]. In a recent study, 
assessment of biochemical process of diabetes has been done utilizing 
quantitative 1H NMR-based metabonomics to analyze urine, serum, 
and liver extracts from streptozotocin-induced diabetic rats [86]. This 
study identified a number of metabolic alterations in liver samples 
from diabetic rats including metabolites participating in nitrogen and 
carbon metabolism. Salek et al used 1H NMR to compare metabolic 
alterations not only in diabetic animal models but also in humans [22]. 
The study involved NMR based urine analysis from 12 healthy and 30 
T2D patients. A clear group separation based on a large number of 
metabolites that included amino acids such as alanine, ornithine, etc. 
was observed. Although a robust technique, the detection limits of 1H 
NMR is compromised by the large number of co-resonances that may 
be somewhat improvised by use of 2-dimensional NMR or with use of 
nuclei, such as 13C that have more dispersion.

Animal Models of Diabetes Mellitus
Animal models, including but not limited to rabbits, dogs, 

monkeys and various murine species (e.g. rat and mice), serve a critical 
function in understanding of the pathophysiology, early embryonic 
clues of disease predisposition(s) and genetic basis of the disease as well 
as developing therapeutic (such as drug efficacy and toxicity) and/ or 
preventive strategies and tracking disease prognosis e.g. rhesus monkey 

models have been used to understand T1D as well as developing 
insulin administration strategies as a medical intervention to alleviate 
T1D [87]. Given the multi-faceted nature of diabetes mellitus, there 
are numerous murine models representing individual factors shown 
to be responsible for developing T1D or T2D. These murine models 
can be grouped as spontaneous or genetic models, diet or nutritional 
induced models, environmental or chemically induced models, 
surgically induced models and transgenic or knockout models [88,89]. 
Even though, none of the rodent models may accurately correlate with 
the human disease pathology for diabetes singularly, since most of 
these animals display an array of symptoms that resemble the human 
disease, they can be manipulated for studying the impact of a particular 
component such as genetics or environmental effect(s) [89,90].  

Spontaneous murine models, known since early 1980’s, are available 
for both T1D and T2D, and are helpful in understanding the genetics 
of the disease, including consequences of inbreeding, insulin resistance 
mainly due to glucose toxicity, ketosis, obesity and hyperinsulinemia 
[89,91]. Some of the most commonly used murine models for genetic 
studies of diabetes are NOD (non-obese diabetic) mice, KK (Kuo 
Kondo) mice and BB (bio breeding) rats [88,91]. Mouse models such as 
NOD-Pdcd1-/- (programmed cell death 1 [PD-1, Pdcd1], an immune-
inhibitory receptor from the CD28/cytotoxic T lymphocyte-associated 
antigen-4 family), have been further developed to specifically study 
T1D [92]. A recent study illustrating urine profile in a spontaneous 
non-human primate T2D model, Rhesus monkey (Rhesus macaques), 
was able to detect a defective Na (+)-dependent transporter, SLC6A20, 
in proximal tubules of kidneys [93]. Further, this study confirmed 
similar observation in db/db mouse model and thus reflects the basic 
functional changes at the cellular level in a disease state of T2DM.

Diet or nutritionally-induced models play an important role in 
gaining insights specifically concerning T2D, which is mainly linked 
with the obesity and development of insulin resistance leading to 
glucose toxicity.  As per the information by the American Diabetic 
Association, T2D is much more common in ethnic minorities as well as 
other non-white communities such as Asian Americans in the United 
States and is linked mainly to the diet. A diet high in saturated fats and 
poor in nutritional value is a major contributing element to obesity 
and in turn developing T2D. Number of studies using animal models 
have highlighted the role of factors apart from high-fat diet that may 
influence the predisposition of these populations for developing T2D; 
source of protein in diet [94]. In these studies, rats that were on diets 
high in fats and had most of their protein share from casein-based food 
or soy products showed insulin resistance while the group of animals 
with high fat diet and most of its proteins coming from cod (fish-based) 
showed no insulin resistance [94]. Thus, these studies suggest that the 
overall food pyramid distribution and sources of each particular food 
groups influence the outcome, at least, in predicting the predisposition 
of a population for developing T2D. 

Another subtype of murine model, environmental or chemical-
induced rodent model, has been useful in various studies focused on 
disorders related to diabetes. One of the most commonly used chemical-
induced diabetic murine models is streptozotocin (STZ)-induced 
diabetic rat [88,95]. Diabetes, a heterogeneous disease, is known to 
affect a number of normal functions in various human organs. One 
of the common disorders observed in diabetic men is diabetes-related 
erectile dysfunction (ED), which has been widely studied in chemical-
induced murine models [95,96]. Maggi et al reported that STZ-diabetic 
rats suffered from the hypogonadism, a condition frequently observed 
in diabetics, along with low testosterone production and atrophy in a 
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number of androgen-dependent accessory glands as well as induction 
of RhoA/Rho-kinase (ROCK) signaling pathway [95,96]. Further, the 
authors found that normalizing the testosterone production along with 
the introduction of ROCK inhibitors showed significant improvement 
in alleviating the ED in these animals and may thus have a promising 
potential for clinical implications for the patients suffering from 
diabetes-related ED. 

A different type of animal model, a surgically-induced model in 
mice, pigs, dogs and rats, has been helpful in studying diabetic-related 
retinopathy and the role of pancreas in T1D and T2D [97]. The surgical 
models are generally developed by complete or partial removal of 
pancreas known as pancreatectomy, He, et al. have shown that complete 
pancreatectomy is one of the two factors in diabetic monkeys that can 
lead to severe hypoglycemic conditions [98]. Further, combining the 
pancreatectomy along with the other diabetic murine models such as 
spontaneous rat model has led to some interesting findings. Plachot, 
et al. found that even partial pancreatectomy in GK (Goto-Kakizaki) 
rats, a commonly used spontaneous rat model to study T2D further 
accelerates the disease initiation by reducing beta-cell proliferation and 
insulin secretion, a critical element in diabetes [99]. Hyperglycemia, 
responsible for the loss or reduction of beta-cell proliferation has also 
been connected to the expression of c-myc, a known oncogene, and 
other transcription factors in these murine models and thus, may 
indirectly control the insulin production in these animals [100]. 

Transgenic or knockout murine models are other common tools 
that are used to study the role of specific gene(s) associated with a 
disease such as neurodegenerative disorder, cancer and many other 
genetic diseases. Most of the transgenic rodent models for diabetes, 
T1D and T2D, are associated with single or double knockout of 
various genes in the insulin production pathway [101]. However, 
due to number of components in a insulin synthesis pathway and 
resultant insulin resistance in diabetes, transgenic models have been 
disappointing to this end [101]. Nevertheless, transgenic or knockout 
models are useful when used in conjunction with targeted molecular 
and biochemical studies. Transgenic mouse models are also helpful in 
studying diabetes in conjunction with other obesity-related metabolic 
disorders/ syndromes such as atherosclerosis, dyslipidemia and insulin 
resistance and thus are frequently used in metabolomics studies, 
specifically LC-MS-based lipidomics and liver and blood profiling in 
these animal models [90,102,103]. At least one MS-based lipidomics 
study found that the stimulation of PPARγ (peroxisome proliferation 
activated receptors) by an agonist rosiglitazone as detected in blood 
plasma of obese T2D mouse model and thus has a promising potential 
as a target for drug therapy in T2D [102,104]. 

Future Directions/ Challenges
Given the recently released predictions about escalating prevalence 

of diabetes worldwide by the WHO, it is extremely critical to integrate 
biochemical, molecular and clinical knowledge to design diabetes 
treatment and preventive strategies that are affordable as well as 
effective. The modern improvements in technology such as advances 
in the multi-platform and highthroughput omics; transcriptomics, 
proteomics and metabolomics, and vast bioinformatics toolset, as 
well as advanced knowledge acquired by molecular and biochemical 
studies are certainly helpful. However, the immense data obtained 
from the “omics” need to be interpreted with a great caution; giving 
due consideration to the limitations of animal models and the 
statistical tools used. Results should thus be interpreted in conjunction 
with experimental evidence from biochemical and molecular studies. 

Currently metabolomics approaches lack standardized procedures 
for sample preparation, data analysis and interpretation. Thus, there 
is a critical need to develop common benchmarks describing the 
experimental set-up and ontology for metabolomics similar to the 
universal standards available for other “omics” such as transcriptomics 
e.g. MIAME (minimum information associated with a microarray 
experiment) [105] and proteomics e.g. MIAPE (minimum information 
about a proteomics experiment) [106]. Additionally, there is a lack of 
comprehensively annotated metabolite databases for unambiguous 
metabolite identification [107].

Similar caution is required in interpreting data obtained from the 
animal models since most animal models do not entirely complement 
various disease states as found in T1D and T2D in humans. The use 
of non-human primates closest to humans such as monkeys can be 
successfully substituted for a better understanding of T1D and T2D. 
However, the usage of primates requires complex animal care protocols 
and is not cost-effective in a large experimental set-up. Additionally, 
since they have a longer life span the interpretation of results can be 
delayed and complex.

Nonetheless, the data obtained from integrating various “omics” 
studies, may be useful in discovering molecular markers and/ or drug 
targets that can be of clinical significance for developing therapeutic 
interventions as well as for gaining mechanistic insights into disease 
onset and progression. In addition, these and other studies may also 
have implications in unraveling genetic markers predicting individual’s 
predisposition for developing diabetes and thus can be valuable in 
formulating diagnostic tests for early detection of diabetes.
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