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Abstract
Background: HIV drug resistance can cause viral re-bound in patients on combination antiretroviral therapy, 

requiring a change in therapy to re-establish virological control. The RDI has developed computational models that 
predict response to combination therapy based on the viral genotype, viral load, CD4 count and treatment history. 
Here we compare two sets of models developed with different levels of treatment history information and test their 
generalisability to new patient populations.

Methods: Two sets of five random forest models were trained to predict the probability of virological response 
(follow-up viral load <50 copies/ml viral RNA) following a change in antiretroviral therapy using the baseline viral 
load, CD4 count, genotype and treatment history from 7,263 treatment change episodes. One set used six treatment 
history variables and the other 18 - one for each drug. The accuracy of the models was assessed in terms of the 
area under the receiver-operator characteristic curve (AUC) during cross validation and with 375 TCEs from clinics 
that had not contributed data to the training set.

Results: The mean AUC achieved by the two sets of models during cross validation was 0·815 and 0.820. 
Mean overall accuracy was 75% and 76%, sensitivity 64% and 62% and specificity 81% and 84%. The AUC for 
each committee tested with the independent test set was 0.87 and 0.855. Mean overall accuracy was 89% and 87%, 
sensitivity 67% and 61% and specificity 90% and 87%. There were no significant differences between the two sets.

The models correctly predicted 330 (92%) of the 357 treatment failures observed in practice and were able to 
identify alternative regimens that were predicted to be effective for up to 267 (75%) of the failures and regimens with 
a higher probability of response for all cases. 

Conclusions: Computational models can predict accurately the virological response to antiretroviral therapy 
from a range of variables including genotype and treatment history even for patients from unfamiliar settings. This 
approach has potential utility as a useful aid to treatment decision-making and may reduce treatment failure.

Keywords: Antiretroviral therapy; Computer models; HIV drug
resistance; Genotype; Treatment history; Predictions; Treatment 
outcome

Introduction
The long-term suppression of HIV replication and resulting 

dramatic improvements in clinical outcome resulting from combination 
antiretroviral therapy (cART) is a major success story. Nevertheless 
this requires potentially life-long therapy and the careful selection 
and sequencing of drugs, particularly to re-establish viral suppression 
following virological failure, which often occurs with the emergence of 
HIV drug resistance. When treatment fails in well-resourced settings 
a genotypic resistance test is routinely performed to identify any 
resistance-associated mutations [1]. The results are typically interpreted 
using one of the many rules-based interpretation systems available via 
the Internet [2]. These indicate whether the patient’s virus is likely to 
be sensitive or resistant to each drug but do not directly provide any 
indication of the relative antiviral effects of combinations of drugs. 
With 25 or more drugs available for use in combination and more than 
a hundred mutations involved in drug resistance, the selection of the 
optimum new regimen can be challenging. 

The RDI was established as a not-for-profit, global collaboration in 
2002 to collect sufficient data from clinical practice to make it possible 
to model accurately the virological response to ART, as a treatment 
support tool [3]. Artificial neural network models were developed to 
predict virological response from genotype, viral load and CD4 count 
[4,5]. Limited treatment history information was added in an attempt 
to take into account the potential for minority populations of virus 
with drug resistance resulting from previous rounds of therapy that 
are present at levels too low for detection by population sequencing. 
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This was found to improve accuracy [5,6]. Recent models have been 
demonstrated to predict antiretroviral treatment response with 80% 
accuracy [7,8]. This compares with a 60-70% predictive accuracy for 
genotypic sensitivity scores derived from genotyping with rules-based 
interpretation [8,9].

Random Forest (RF) models are being used to power an 
experimental web-based HIV treatment response prediction system 
(HIV-TRePS). Two clinical pilot studies involving experienced HIV 
physicians demonstrated that this system is a useful aid to clinical 
practice [10]. One-third of treatment decisions were revised based on 
the system’s predictions and the revised regimens were predicted to 
produce significantly greater virological responses and involve fewer 
drugs in the new regimen. 

An alternative system for predicting short-term treatment 
responses, using a combination of three different computational models 
trained with a European dataset, has also been evaluated and shown 
to be comparable to estimates of response provided by HIV physicians 
[11].

The development of the most accurate computational models 
possible can involve optimising the number of input variables on 
which the models base their predictions: too few and potentially useful 
information may be missing that could contribute to the accuracy of 
the models, too many and accuracy may suffer unless the training 
data set is sufficiently large [12]. Early models were developed using a 
limited set of historical variables that studies had shown to be the most 
influential [5,6].

Previous studies have indicated that models are more accurate in 
their predictions of response for independent data from patients treated 
in ‘familiar’ settings - the clinics that contributed data to the training 
data set, than from ‘unfamiliar’ settings [5].

In this study we describe the development and comparison of 
models developed with limited and comprehensive treatment history 
variables and their testing with an independent data set from unfamiliar 
settings.

Methods
The RDI database currently holds anonymised, longitudinal data 

from approximately 90,000 patients from more than 30 clinics, cohorts 
and studies around the world. In order to train models to predict 
virological response to treatment, data are extracted from the database 
that relate to a change in antiretroviral therapy. The complete package 
of data relating to that change is termed a treatment change episode 
(TCE).

For the current study, TCEs were extracted that had all the following 
data available to be used as input variables during model development 
(Figure 1): Baseline plasma viral load on therapy (log10 copies of HIV 
RNA/ml; sample taken ≤ 8 weeks prior to treatment change); CD4 cell 
count on therapy (cells/ml; sample taken ≤ 12 weeks prior to treatment 
change); baseline genotype on therapy (≤ 12 weeks prior to treatment 
change); drugs in previous (baseline) regimen; drugs in antiretroviral 
treatment history; drugs in the new regimen; time to follow-up (number 
of days, between four and 48 weeks following introduction of the new 
regimen); and follow-up viral load.

There were 18 drugs included as binary variables; present=1, not 
present=0): zidovudine, didanosine, stavudine, abacavir, lamivudine/
emtracitabine, tenofovir DF, efavirenz, nevirapine, etravirine, indinavir, 
nelfinavir, saquinavir, (fos) amprenavir, lopinavir, atazanavir, darunavir, 

enfuvirtide, raltegravir. Maraviroc and tipranivir were not included in 
the models as there were insufficient follow-up data for these inhibitors 
in the RDI dataset. The following 62 mutations from the baseline 
genotype were selected from previous studies and published lists (refs) to 
be used as binary variables in the modelling. HIV reverse transcriptase 
mutations (33): M41L, E44D, A62V, K65R, D67N, 69 insert, T69D/N, 
K70R, L74V, V75I, F77L, V90I, A98G, L100I, L101I/E/P, K103N, 
V106A/M, V106I, V108I, Y115F, F116Y, V118I, 138A/G/K, Q151M, 
V179D/F/T, Y181C/I/V, M184V, Y188C/L/H, G190S/A, L210W, 
T215F/Y, K219Q/E, P236L; HIV protease mutations (29): L10F/I/R/V, 
V11I, K20M/R, L24I, D30N, V32I, L33F, M36I, M36L/V, M46I/L, I47V, 
G48V, I50V, I50L, F53L, I54 (any change), 58E, L63P, A71(any change), 
G73(any change), T74P, L76V, V77I, V82A/F/S, V82T, I84V/A/C, 
N88D/S, L89V, L90M)

The TCEs identified with complete data were censored using the 
following rules established in previous studies: no more than 3 TCEs 
from the same change of therapy (using multiple follow-up viral loads) 
were used (all with viral load determinations ≥ 4 weeks apart); TCEs 
involving drugs no longer in current use either at baseline or in the 
new regimen (e.g. ddC, delavirdine, loviride, emivirine, capravirine, 
atervidine and adefovir) were excluded; TCEs involving drugs not 
adequately represented in the database (tipranavir and maraviroc) 
were excluded; TCEs that include an unboosted protease inhibitor (PI) 
other than nelfinavir, or ritonavir as the only PI, in the baseline or new 
regimen positions were excluded; TCEs with viral load values of the 
form ‘<X’ where X is >50 or 1·7 log copies were excluded as the absolute 
values were not known.

The 7,263 qualifying TCEs were used to train two committees 
each of 5 RF models to predict the probability of the follow-up viral 
load being less than 50 copies/ml, using methodology described in 
detail elsewhere [7,8]. The first committee used just 6 simplified treatment 
history variables, which have been identified in previous studies as those with 
most influence on the accuracy of the models (any exposure to zidovudine, 
lamivudine/emtracitabine, enfuvirtide, raltegravir, any non-nucleoside reverse 
transcriptase inhibitor or any protease inhibitor). The second committee used 
individual treatment history variables for each of the 18 drugs covered by the 
system. The total number of input variables was 89 for the simple treatment 
history models and 101 for the individual treatment history models.

The output variable was the follow-up viral load coded as a binary 
variable: ≤ 1.7 log or 50 copies/ml=1 (response) and >1.7 log or 50 
copies/ml=0 (failure). The models were trained to produce an estimate 
of the probability of the follow-up viral load being <50 copies/ml.

The two committees of 5 RF models were developed using a 5 x 
cross validation scheme whereby 20% of the TCEs were selected at 
random and the remainder used to train numerous models and their 

Figure 2: ROC curves for the two sets of models with 375 independent test TCEs
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performance gauged by cross validation with the 20% that had been 
‘left out’. Model development continued until further models failed 
to yield improved accuracy. This process was followed through five 
iterations until all the TCEs had appeared in a validation set once. The 
best performing RF model was selected from all those developed using 
each partition to be included in the final committee of models.

A dataset of 375 TCEs from clinics not included in the training data 
was obtained from the Stanford TCE repository (www.hivdb.stanford.
edu/) and set aside as an independent test set [13].

Receiver-operator characteristic (ROC) curves were plotted using the 
actual virological responses observed in the clinic at follow-up versus the 
predictions of the models. The performance of the models as predictors of 
response was evaluated in terms of the area under the ROC curve (AUC) as 
the primary measure plus the sensitivity and the specificity, using the optimum 
operating point from the cross validation as the cut-off for classifying the 
models’ outputs as predicting virological response or failure. This was done 
for each of the five models in the two committees, during cross validation and 
with each committee as a whole (using the committee average prediction for 
each TCE) using the test set of 375 TCEs.

The accuracy of prediction of the models was compared to that of the 
following three rules-based genotype interpretation systems that are in 
common use as a tool to assist in the selection of effective drug combinations 
following virological failure: Stanford University’s HIVdb system; Agence 
Nationale de Recherches sur le SIDA (ANRS) and REGA, accessed on 20th 
June 2012 via the Stanford University HIV Drug Resistance Database web 
site (hivdb.stanford.edu). For HIVdb the total mutation score was used as a 
predictor of response and for ANRS and REGA the total genotypic sensitivity 
scores were used.

Finally the combination of all ten RF models was used to identify 
potentially effective alternative regimens, using no more drugs than those in 
the regimen actually used in the clinic for the 357 cases of treatment failures. 
This was achieved by providing the models with all the baseline data for 
the cases and then obtaining predictions of the probability of response for 
alternative regimens commonly used in clinical practice. Those regimens 

with a probability of response above the optimum operating point for the 
models as a prediction system, derived during cross validation, were deemed 
as predicted to be effective.

Results
Characteristics of the datasets

The characteristics of the datasets are summarised in Table 
1. The training and test set were comparable in terms of baseline 
characteristics with mean viral loads of 4.2 and 4.34 log10 copies viral 
RNA/ml respectively (median of 4.11 and 4.30) and mean CD4 counts 
of 269 and 277 (median of 230 and 235). Both populations were heavily 
pre-treated with a mean of 5.82 and 5.56 previous drugs (median of 
five in both cases), and both had significant drug resistance with a 
mean of 8.48 and 8.34 resistance mutations (median of 6 in both cases). 
The main difference between the populations was the proportion of 
responders (defined as a follow-up viral load of <50 copies HIV RNA/
ml): 35% of the training set and just 5% of the independent test set.

Results of the modelling

Cross validation: The performance characteristics from the ROC 
curves of the 5 individual models in each of the two committees during 

Training set Test set
TCEs 7,263 375

Mean (median) baseline VL (log10 c/mL) 4.20 (4.11) 4.34 (4.30)

Mean (median) baseline CD4(cells/μL) 269 (230) 277 (235)

Treatment History
Mean (median) number of previous drugs 5.82 (5) 5.56 (5)
NRTI experience 99% 100%

NNRTI experience 65% 54%

PI experience 75% 79%

Enfuvirtide experience 6% 0%

Raltegravir experience 1% 1%

Mean (median) resistance mutations 8.48 (6) 8.34 (8)

Responders(<1.7log10 c/mLfollow-up VL) 2,550 (35%) 18 (5%)

Failures(≥ 1.7log10 c/mLfollow-up VL) 4,713 (65%) 357 (95%)

TCEs=treatment change episodes. VL=viral load. NRTI=nucleoside reverse 
transcriptase inhibitor. NNRT=non-nucleoside reverse transcriptase inhibitor. 
PI=protease inhibitor
Table 1: Data description.

Model AUC* Sensitivity (%) Specificity (%)
Simple treatment history 
Cross validation
1 0.829 63.64 84.23
2 0.824 67.51 81.68
3 0.827 65.24 80.43
4 0.784 61.21 79.60
5 0.813 64.08 80.72
Mean 0.815 64.34 81.33

Committee average 
performance with 375 test 
TCEs

0.870 66.67 90.48

95% CI 0.87-0.97 41-87 87-93

Individual treatment history
Cross validation
1 0.837 64.86 85.06
2 0.821 61.18 84.42
3 0.834 62.52 86.56
4 0.798 60.43 83.49
5 0.811 61.55 81.26

Mean 0.820 62.11 84.16
Committee average 
performance with 375 test 
TCEs

0.855 61.11 87.47

95% CI 0.76-0.95 36-83 85-92

Results from common rules-based genotype interpretation systems**
Stanford HIVdb 0.591 47.06 41.26
95% CI 0.49-0.69 [23, 72] [36, 47]
ANRS v2011.05 0.573 23.53 61.03
95% CI 0.45-0.69 [7,50] [56,66]
REGA v8.0.2 0.566 35.29 54.44
95% CI 0.44-0.69 [14, 62] [49, 60]

*AUC=area under the (receiver-operator characteristic) curve. 
** Based on 366 TCEs after those containing maraviroc or raltegravir were removed 
Table 2: Performance of the models during cross validation and independent 
testing.
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Identifying potentially effective alternative regimens: Since the 
performance of the two committees of 5 RF models was not significantly 
different during cross validation and independent testing, both were 
used to identify potentially effective regimens for the 357 virological 
failures in the test set of 375 TCEs. The results are presented in Table 3. 
The models correctly predicted 330 (92%) of the 357 failures observed 
in practice. They were able to identify alternative regimens that were 
predicted to be effective for 267 (75%) of the 357 failures, using no more 
drugs than were used in the clinic. They were able to identify alternative 
regimens with a higher probability of response than the regimen used 
in the clinic for all 357 cases of failure. 

The data in the test set are from 1997-2010, with 85% at least 10 
years old, so some of the treatment decisions made in the clinic will 
have been made before some of the more recent drugs became available. 
A frequency analysis of the data indicated that the following drugs, 
approved for use during the last 10 years, were only infrequently used 
in the dataset: atazanavir (0 TCEs), etravirine (2 TCEs) enfuvirtide (3), 
darunavir (5), raltegravir (6). The analysis was repeated without these 
five drugs. The models were still able to identify alternative regimens 
that were predicted to be effective for 146 (41%) of the 357 failures, 
again using no more drugs than were used in the clinic. They were able 
to identify alternative regimens with a higher probability of response 
than the regimen used in the clinic for 351 (98%) of the 357 treatment 
failures.

A further analysis was performed whereby only those drugs that 
had been approved by the FDA at the time of the treatment decision 
were included in the analysis for each test TCE. The models were able 
to identify alternative regimens that were predicted to be effective for 
143 (40%) of the 357 failures and regimens with a higher probability of 
response than the regimen used for 356 (100%) of the failures.

Discussion
The two sets of models developed in this study performed 

comparably well as predictors of virological response to antiretroviral 
therapy. The marginal numerical superiority of the individual treatment 
history models during cross-validation and of the simple treatment 
history models during independent testing did not achieve statistical 
significance. The AUC values of 0.82-0.87 compare very favourably 
with the values of 0.57-0.59 typically achieved by genotyping with 
rules-based interpretation as a predictor of outcome indicating that this 
approach offers additional utility as an aid to treatment selection over 
the use of genotyping alone. 

The performance of the models with an independent test set from 
‘unfamiliar’ clinics was particularly impressive and suggests a high 
degree of generalizability of the models. A common problem with 
computational models developed for this sort of task is that during 
development they find the best ‘local solution’, i.e. best algorithm for 
the training data, which may not be generalizable to other datasets. 
RF models were selected as being less prone to this effect than 

cross-validation and the performance of the two committees with 
the independent test set are summarized in Table 2. The AUC values 
achieved by the models using simple treatment history variables during 
cross-validation ranged from 0.784 to 0.829, with a mean of 0.815. 
The overall accuracy ranged from 73.16 to 76.97% (mean=75.35%), 
the sensitivity ranged from 61.21 to 67.51% (mean=64.34%) and the 
specificity from 79.60 to 84.23% (mean=81.33%). 

The AUC values achieved by the models using 18 individual 
treatment history variables during cross-validation were approximately 
one percent better, ranging from 0.798 to 0.837, with a mean of 0.820. 
The overall accuracy ranged from 74.53 to 77.99% (mean=76.43%), 
the sensitivity ranged from 60.43 to 64.86% (mean=62.11%) and 
the specificity from 81.26 to 86.56% (mean=84.16%). There were no 
significant differences between the performances of the two committees 
using DeLong’s test.

Testing the two committees with the independent set of 375 
TCEs: The ROC curves for the committee average performance of the 
two committees are presented in Figure 2. The simple treatment history 
committee achieved an AUC of 0.870. The sensitivity was 66.67% and 
the specificity 90.48% using the optimum operating point (OOP, the 
value that when used as a cut-off maximizes sensitivity and specificity) 
of 0.43. The individual treatment history committee achieved an AUC 
of 0.855. The sensitivity was 61.11% and the specificity 87.47%, using 
the OOP of 0.46. Again there were no significant differences between 
the performance of the two committees using DeLong’s test.

The Stanford, ANRS and REGA genotype interpretation systems 
achieved AUC values of 0.591, 0.573 and 0.566 respectively (Table 2). 
These values were significantly lower than that of the RDI models. 
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Figure 2: ROC curves for the two sets of models and GSS with 375 independent 
test TCEs.

Drugs included in the modelling of 
alternative regimens

Number (%) of actual failures for which the models 
identified alternative regimens predicted to be effective

Number (%) of actual failures for which the models identified 
alternative regimens with a higher probability of success 

18 drugs (no tipranavir or maraviroc) 267 (75%) 357 (100%)
13 drugs (no tipranavir, maraviroc, lopinavir, 
atazanavir, darunavirraltegravir, enfuvirtided: 
drugs approved in last 10 years)

146 (41%) 351 (98%)

Only those drugs available at the time of the 
TCE included

143 (40%) 356 (100%)

Table 3: Using the models to identify effective alternatives to regimens that failed.
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other modelling methodologies and these results are particularly 
encouraging in the degree of generalisability. The models significantly 
out-performed three genotype interpretation systems in common use 
as aids to treatment selection, which is also encouraging in terms of the 
potential utility of the system as a clinical aid.

It is interesting to note that the specificity achieved by the models in 
predicting response was particularly high at 80-90%. This is encouraging 
in that it minimizes the chances of a false positive - a prediction that a 
regimen will be effective and then it fails. The test data were largely 
cases of treatment failure among heavily pre-treated patients. The 
models correctly predicted 92% of these failures. This compares very 
favourably with the three genotype interpretation systems, which only 
correctly predicted 41-61% of the failures. Moreover the models were 
able to identify alternative, practical regimens that were predicted 
to produce a virological response for a substantial proportion of the 
failures observed, even without any of the drugs approved in the last 10 
years. This suggests that the models could have considerable utility in 
salvage and in settings with restricted access to drugs.

The study has some limitations. Firstly, it is a retrospective study 
and a prospective controlled clinical trial would be required to validate 
the models in terms of clinical benefit. The training and test data are 
all from well-resourced settings (North America, Western Europe, 
Australia and Japan). The models performance and findings may not 
be as generalizable to other settings. A similar point can be made about 
the clade of the virus, which will have mostly been B in the cases used in 
this study, although preliminary studies testing our models with non-B 
virus indicates that clade may not be a major factor [14,15].

Conclusions 
This study demonstrates that computational models can be 

developed to predict accurately the virological response to antiretroviral 
therapy from a range of variables including genotype, treatment 
history, viral load and CD4 count. This performance is not specific to 
the settings that provided the training data but can be generalizable 
to unfamiliar, but similar settings. The models were able to identify 
potentially effective alternative combinations of drugs for at least 40% 
of the failures occurring in these unfamiliar clinics, using only drugs 
that were available at the time, which are now more than10 years old in 
the great majority of cases. This approach may therefore have significant 
utility as a useful aid to treatment decision-making in settings with 
limited access to more recent drugs and may reduce treatment failure. 
An experimental online tool, the HIV Treatment Response Prediction 
System (HIV-TRePS) powered by such models is available for use as a 
free experimental clinical tool via www.hivrdi.org.
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