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Introduction 
The Human Genome Project (HGP) spawned an eruption of 

research focused on achieving personalized medicine. Clinicians and 
researchers hoped that sequencing of the human genome would allow 
for prediction of disease and personalized pharmaceutical therapy 
based on an individual’s genetic polymorphisms. Quickly researchers 
realized the limitations of simple genome associations in clinical 
medicine. The positive and negative predictive values of genome 
associations have been poor largely making them ineffective for clinical 
screening, thus researchers have turned to the downstream products of 
the genetic sequence. Epigenomics, transcriptomics, proteomics, and 
metabolomics are fields born out of both the increased knowledge as 
well as the failures of genomics in clinical medicine. The “omics era” 
has been characterized by a proliferation in translational research to 
identify markers of disease and factors associated with pharmaceutical 
efficacy and toxicity. There are an incredible number of ‘omics 
investigations relating to a myriad of human diseases; a comprehensive 
review of the available screens for human disease is impractical. 
The objective of this manuscript is to review the existing screening 
tests related to pharmaceutical therapies in each ‘omic category. We 
will progress through the relevant pharmaceutical screens from the 
underlying genetic code to ultimate clinical phenotype (Figure 1). 
Inevitably, there will be reference to ‘omic screening in human disease 
since disease and therapy are irreconcilably entangled. 

Genomics
Genomics is the study of the human genome and the accompanying 

variability of the contained DNA. Pharmacogenomics, by extension, is 
the study of how pharmaceutical agents interact with the output of the 
human genome. In 1956, Arno Motulsky proposed genetic variation as 
an explanation for individual differences in drug efficacies and adverse 
reactions. The first pharmacogenomic association was demonstrated 
with the association of peripheral neuropathy in isoniazid “slow 
acetylators”in 1960 [1]. Other early genetic associations were largely 
theoretical until molecular genotyping techniques allowed for a 
more firm genetic-toxicity linkage. This early neurotoxic-isoniazid 
association was later confirmed with molecular genotyping techniques. 
Isoniazid is primarily metabolized by N-acetylation. “Slow acetylators” 
shunt isoniazid through an alternative CYP isoenzyme to form 

isonicotinic acid, a neurotoxin that is typically produced in only small 
amounts by “rapid acetylators” [2]. 

After the first draft of the HGP was published in 2001 [3], 
investigators analyzed the genome for common polymorphisms 
in an attempt to make associations with specific traits within the 
population. The HapMap Project seeks to catalog common genetic 
variants describing where the variation occurs within the genome and 
in which populations worldwide [4,5]. The 1000 Genomes Project 
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Figure 1: Schematic flow from genetic code to drug response. The study of 
the inherent genetic code is termed “genomics”. The genome can be modified 
by environmental factors and study of these factors is termed “epigenomics”. 
Translation of the genome can be modified by RNA factors and study of the 
interplay and output of these factors is called “transcriptomics”. Characterization 
of the subsequent protein output is called “proteomics”. “Metabolomics” is the 
study of the small molecules that are the product of the above biologic functions. 
Ultimately these biologic interactions result in the phenotypic trait observed as 
drug response.
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seeks to produce an extensive deep catalog of human genetic variation, 
structural variants, and their haplotype contexts [6]. These projects 
provide resources for investigators to make large-scale genome level 
associations. These “genome wide association” (GWA) studies require 
extremely large sample sizes to reach statistical significance [7]. GWA 
studies have attempted to provide screening tests for medication-
induced toxicity. We have moved from larger gene segment analyses 
to single base-pair associations using GWA studies. Now single 
nucleotide polymorphism (SNP) studies seek to characterize functional 
differences in similar gene outputs putting an even finer point on the 
genetic polymorphisms within the human population. 

Genomic Screens
Microarray assays are the preferred methodology for genotyping 

analyses because they allow for screening for a large number of 
polymorphisms with a small sample of blood without the need for 
multiple DNA extractions and amplification steps, which increase 
the potential for error. The DNA is isolated, digested, labeled then 
hybridized within a microarray-well containing the oligonucleotide 
sequences of interest. Commercial laboratories and pharmaceutical 
companies now offer United States Food and Drug Association 
(US FDA) approved screening assays to evaluate for a range of 
pharmaceutical efficacy and safety (Table 1).

Genomic screening has become standard of care for many 
oncologic therapies. Genomics has been researched and utilized most 
extensively in this field due to the frequency of patient enrollment in 
clinical trials and the wide availability of tissue samples for genetic 

analysis. Tumor genetic polymorphisms have been associated with 
improved efficacy, identification of resistance, and toxicity of cancer 
therapeutics. The National Comprehensive Cancer Network (NCCN) 
now recommends screens for tumor specific genes associated with better 
chemotherapeutic efficacy [8]. Examples include human epidermal 
growth recepter 2 (HER2) screening in breast cancer [9,10] and gastric 
cancer [11] which dictates response to the specific immunologic 
adjuvant therapy transtuzumab. Optimal testing for HER2 remains 
controversial and both genomic (fluorescence in situ hybridization 
[FISH]) and proteomic screens (immunohistochemistry [IHC]) are 
available though the tests should be used in concert [12]. Cetuximab 
therapy in metastatic colon cancer is associated with a favorable cost-
benefit analysis in tumors with the KRAS wild type gene [13] and KRAS 
mutations have been associated with a failure of the epidermal growth 
factor receptor tyrosine kinase inhibitors erotinib and gefitinib in non-
small cell lung cancer [14]. BRAF mutations have been associated with 
failure of therapy in colorectal cancers [15] and improved survival in 
melanoma patients receiving vemurafenib [16]. See Table 2 for a list of 
‘omics screens available for oncology pharmaceuticals. 

One of the most commonly utilized genomic screens in 
pharmaceutical prescribing is HLA-B*5701 screening for abacavir 
hypersensitivity. This is likely due to clinical trial data demonstrating 
improved patient outcomes [17] and the overall prevalence of HIV-
1 infection in the population yielding ample opportunity for testing. 
Interestingly, the positive predictive value (PPV) of this screen was 
only 47.9% yet the test has become standard of care in Infectious 
Disease clinics. 

Screening Test Polymorphisms
Represented

Pertinent Pharmaceuticals Represented Limitations

Roche CYP2D6/2C19 
AmpliChip®

33 CYP2D6 and 2 CYP19 distinct 
alleles 

25% of known pharmaceuticals[28]. Only represents 25% of known CYP2D6 
and only 5.5% of known CYP2C19 
polymorphisms.

Affymetrix Drug Metabolizing 
Enzyme and Transporters 
(DMET)

225 genes involved in drug 
absorption, distribution, 
metabolism, and elimination.

Virtually all pharmaceuticals may be affected 
by polymorphisms one of these enzymes.

It is unclear how to clinically interpret this 
matrix output.

HLA-B 5701 HLA-B*5701 Presence of this polymorphism is associated 
with 47% PPV and 99% NPV of Abacavir 
hypersensitivity[17]

Poor PPV (due to low prevalence of 
polymorphism) may inappropriately exclude 
therapy from some patients.

Genelex CYP2C9 and VKORC CYP2C9*1, *2, *3 and VKORC1 
-1639

Warfarin dosing[18] Screening explains only approx 40% of 
dosing variation[84].

HLA-B*1502 HLA-B*1502 Carbamazepine associated Stevens-Johnson 
Syndrome or toxic epidermal necrolysis in 
Asian populations[85].

Limited to patients of Asian decent.

HLA-A*3101 HLA-A*3101 Carbamazepine associated hypersensitivity 
reactions in European populations[78].

NNT equals 39 European patients, 56 
Japanese patients and 83 patients of un-
determined decent. 

HER2
(INFORM® HER2 FISH test, 
PathVysion® HER2 FISH test, 
PharmaDX® HER2 FISH test, 
Spot-Light® HER2 CISH test)

Number HER2 gene copies Herceptin efficacy in breast[86] and gastric[86] 
cancer.

Equivocal results should be confirmed by a 
second screening method.  4 FDA approved 
genetic methods available.  

CYP2C19 CYP2C19 metabolizer status Poor metabolizers do not form active 
metabolite of clopidogrel[25].

Improved outcomes have been demonstrated 
in Chinese patients[30] only and no major 
society recommends genotyping prior to 
therapy to date.

G6PD G6PD mutation by semi-
quantitative or spectrophotometric 
methods[64]

High risk of hemolysis in patients receiving 
dapsone, methylene blue, nitrofurantoin, 
phenazopyridine, primaquine, rasburicase, and 
toluidine blue[87]. 

Initial semi-quantitative analysis should be 
confirmed by spectrophotometric method due 
to wide variability of enzyme function.

PPV: positive predictive value
NNT: number needed to treat

Table 1: FDA approved/recommended screening assays.
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Significant effort has been invested in genomic screening for 
warfarin dosing. Several large studies have demonstrated decreased 
dosing variability [18], decreased hospitalization [19], and earlier time 
to stable dosing [20]. Demographic and environmental factors have 
been added to known genotype associations in an effort to further 

improve efficacy and safety. An unvalidated algorithm including 
integration of multiple genetic polymorphisms is available to clinicians 
at www.warfarindosing.org [21]. However, even with incorporation of 
multiple factors, only 40% of the variability in response to warfarin can 
be predicted.

Cancer Type Test Therapeutic Impact ‘Omic Category
Breast Cancer HER2 by FISH Response to trastuzumab[9,10] Genomics

HER2 by IHC Response to trastuzumab[9, 10] Pathology/Proteomics
ER/PR by RT-PCR Response to hormonal therapies[88-90] Transcriptomics
DPD by PCR Fluorouracil toxicity[91] Genomics
PIK3CA Mutation Analysis Resistance to trastuzumab in HER2 positive 

tumors[92]
Genomics

Colorectal Cancer KRAS mutation analysis Response to panitumamab, cetuximab[13] Genomics
BRAF mutation analysis Response to panitumamab, cetuximab[15] Genomics
EGFR amplication by FISH Response to cetuximab[93] Genomics
Thymidylate synthase by IHC Resistance to fluorouracil or related agents[94] Pathology/Proteomics
UGT1A1 Molecular Assay Increased risk of severe irinotecan toxcity[95] Genomics
DPD by PCR Fluorouracil toxicity[91, 96] Genomics
PIK3CA Mutation analysis Resistance to cetuximab salvage therapy[97] Genomics

Non-Small Cell Lung Cancer EGFR Mutation analysis Response to gefitinib, erlotinib[98] Genomics
KRAS Mutation Resistance to gefitinib, erlotinib[14] Genomics
ALK by FISH Sensitivity to crizotinib[99] Genomics
ERCC1 by IHC Resistance to platinum-based 

chemotherapeutics[100]
Pathology/Proteomics

EGFR Amplication by FISH Resistance to gefitinib, erlotinib, cetuximab plus 
paclitaxel, and carboplatin[101]

Genomics

EGFR by IHC Response to cetuximab plus chemotherapy[102] Pathology/Proteomics
TS by RT-PCR Resistance to pemetrexed[103] Transcriptomics
UGT1A1 Molecular Assay Irinotecan toxicity[104] Genomics
ALK by FISH Response to crizotinib in metastatic disease[105] Genomics

Gastric Cancer HER2 by FISH Response to trastuzumab[11] Genomics
HER2 by IHC Response to trastuzumab[106,107] Pathology/Proteomics
ERCC1 by IHC Resistance to platinum-based chemotherapies[108] Pathology/Proteomics

Melanoma BRAF Mutation Analysis Response to vemurafenib[16] Genomics
Brain Cancer MGMT methylation Response to temozolomide[109] Epigenomics
Head and Neck Cancers DPD status Fluorouracil toxicity and efficacy[110] Metabolomics
CLL 17p by FISH Resistance to fludarabine based regimens Genomics

P53 Mutation analysis Resistance to fludarabine based regimens[111] Genomics
CML BCR-ABL Recommended imatinib[112] Genomics

BCR-ABL KD Mutation V299L, 
T315A, F17L/V/I/C

Response to nilotinib rather than dasatinib[41] Genomics

BCR-ABL KD Mutation Y253H, 
E255K/V, F359V/C/I

Response to dasatinib rather than nilotinib[41] Genomics

BCR-ABL transcript mass by 
RQ-PCR

Response tyrosine kinase inhibitors after therapy ihas 
been intiated[113]

Transcriptomics

Myelodysplastic Syndrome Deletion 5q Response to lenalidomide[114] Genomics
Platelet derived growth factor 
receptor beta 

Indication for imatinib[115,116] Genomics

Non-Hodgkin’s Lymphoma MYC translocations Resistance to retuximab plus cyclophosphamide, 
doxorubicin, vincristine and prednisone (R-CHOP) in 
diffuse B-cell lymphoma[117] 

Genomics

HER2: Human epidermal growth receptor 2
FISH: Fluorescence in situ hybridization
IHC: Immunohistochemstry
ER/PR: Estrogen receptor/progesterone receptor
DPD: Dihydropyrimidine Dehydrogenase 
PIK3CA: Phosphoinositide-3-kinase, catalytic alpha
EGFR: Epidermal growth factor receptor
TS: thymidylate synthase
ERCC1: Excision repair cross-complementing 1 protein
UGT1A1: Uridine diphosphate glucuronosyltransferase 1A1 gene
ALK: Anaplastic lymphoma receptor tyrosine kinase
MGMT: methylguanine-methyltransferase promoter

Table 2: ‘Omics Screens for Cancer Therapeutics.
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It is estimated that more than 90% of known drugs are metabolized 
by hepatic cytochromes (CYPs) 1A2, 2C9, 2C19, 2D6, 2E1, and 3A4 
[22] thus genetic polymorphism in these enzymes is likely to play a large
role in drug response. CYP screening is available though application
to clinical practice has yet to be regularly employed by clinicians. This
is likely due to multiple factors including inherent redundancy in the
metabolic function of the CYP enzymes, variable penetrance (expressed
phenotype predicted by genotype) [23,24], and lack of clinical data to
demonstrate improved patient outcomes. Clinicians, however, should
be aware of these screens because polymorphism has been associated
with alteration in both clinical efficacy [25,26] and toxicity [27].

The best studied of these enzymes is CYP2D6. It metabolizes 
approximately 25% of known medications including antidepressants, 
antipsychotics, anti-arrhythmics, β-blockers, and analgesics. Toxicity 
and lack of efficacy have been demonstrated due to variable CYP2D6 
gene expression [28,29]. However, CYP2D6 screening prior to initiation 
of therapy is not currently recommended prior to initiation of CYP2D6 
dependent medications. CYP2C19 screening has recently been 
shown to be associated with variable pharmacodynamic responses to 
clopidogrel [25] and improved outcomes after percutaneous coronary 
intervention [30]. Again, screening prior to therapy is not currently 
recommended by major clinical societies though currently underway 
trials attempting to demonstrate improved outcomes may soon change 
this. Polymorphisms in other CYP enzymes have been associated with 
alterations in medication pharmacokinetics and pharmacodynamics 
subsequently leading to alterations in clinical efficacy and safety 
[31,32]. However, these associations suffer from the same limitations 
as other genomic screens, primarily low positive predictive values 
and failure to demonstrate improved outcomes. While a range of 
pharmacogenomic screens are available, physicians must realize their 
limitations in clinical practice.

Limitations of Genomic Screens
Pharmacogenomic screens have become more available with 

the publication of the human genome sequence and the resulting 
proliferation of laboratories specialized in characterization of its 
variation. There are few FDA approved genomic screens available 
(Table 1) though local laboratories can provide sequencing and analysis 
in their respective areas of specialty. 

Cost remains a major barrier to wide adoption of pharmacogenomic 
screening. A genomic screen may cost a patient anywhere between 
$100 to several thousand dollars depending upon the number of 
polymorphisms sought, and the vendor pricing. Single screens 
have become less expensive with commercialization, utilization of 
microarray techniques, and increased clinical demand. For instance 
the HLA-B*5701 screen for abacavir hypersensitivity can be obtained 
for approximately $150 in patient cost. 

Insurance company re-imbursement remains a limitation to 
utilization in clinical practice. Perhaps recent trials demonstrating 
pharmacodynamic associations with genomic polymorphisms 
[19,20,25] will lead to an investment in screening algorithms that will 
ultimately decrease clinical costs. However, re-imbursement is unlikely 
to change until clinical trials demonstrate improved outcomes with 
antecedent pharmacogenomic screening. 

The positive and negative predictive values of currently available 
screening tests remain the major limitation of these assays. Combining 
polymorphism screening for CYP2C19 and the vitamin K epoxide 

reductase complex (VKORC1) only resulted in 41% prediction of the 
variability in warfarin doses [18]. This combination screen represents 
the most effective pharmacogenomic screen to date and highlights the 
shortcomings of utilizing genomics alone. The abacavir and warfarin 
screens represent the most successful efforts toward “individualized 
medicine” thus far. The two approaches highlight fundamental 
differences in screening needs. In one case, toxicity is avoided by 
identification of one specific polymorphism. In the other case, multiple 
factors are integrated to improve efficacy. Both situations have yielded 
less than a 50% success rate for prediction of safety and efficacy [17,18]. 
This suggests other factors contribute to the ultimately observed 
phenotype. This has prompted research into the downstream ‘omic 
fields. 

Epigenomics
The term epigenomics refers to environmental factors that regulate 

gene expression but are not inherently part of the genome. These 
factors include DNA methylation, variations in histone wrapping, 
RNA silencing, among other factors. Epigenomic factors are major 
determinants of when and whether genes are expressed. This field has 
potential to account for differences in gene expression in different 
populations and geographic regions affecting drug response from the 
same genetic code. Numerous methods have been used for analysis 
of epigenetic factors in basic science laboratories and technique 
optimization is still underway [33]. 

Epigenomic Screens
Identification of environmental exposures associated with 

epigenetic changes leading to cancer [34] is a ripe area of investigation. 
Expansion into a greater number of human disease processes occurs 
monthly. The bulk of pharmacoepigenetic work has been done in 
chemotherapeutic agents. For instance, hypomethylation of the 
multi-drug resistance gene 1 (MDR-1) dictates increased expression 
of the gene in the setting of daunorubicin and etoposide treatment 
[35]. Epigenetic factors have been shown to affect the expression 
of numerous CYP genes [36] and characterization may account for 
variation in functionality in patients with the same underlying genetic 
code. Few other pharmaceutical related epigenetic screens have been 
investigated. 

Limitations of Epigenomic Screens
The major clinical limitation of this field is availability. Ultimately, 

epigenetic screens validated in one population will be difficult to apply 
globally due to the inherent differences in environmental factors 
between populations. This may limit the generalizability of epigenetic 
screens across populations. 

Transcriptomics 
Transcriptomics is defined as the study of how the human genome 

is expressed. Changes in epigenomic, local cellular environment and 
expression of other genes can alter the human “transcriptome”. The 
true clinical utility of transcriptomic screens lies in their potential 
to characterize organ biology through biomarkers in the blood. For 
example, a medication may modify gene trasnscription in the liver. The 
mRNA or miRNA profile released from hepatocytes can be measured 
in serum [37] and the changes can be used to measure the response 
to treatment. Additionally, peripheral blood cells may change their 
transcipts in response to a therapy. The measurement of these transcript 
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biomarkers in plasma may provide a means to detect organ specific 
biologic changes without the need to examine the organ tissue itself, 
which limits pharmacogenomic and pharmacoepigenomic screens.

Transcriptomic Screens
The most clinically utilized multi-gene transcriptomic screen is 

the AlloMap (XDx, Inc.), which screens for 11 gene expression levels 
associated with cardiac transplant rejection. This screen minimizes 
the need for endomyocardial biopsy in cardiac transplant patients 
[38] and is now covered by most health insurance companies. This
screen is not a direct marker of pharmaceutical efficacy or toxicity but
rather, a test for expression of genes associated with rejection that may
prompt clinicians to alter pharmaceutical therapy. Two breast cancer
multi-gene expression assays are available, the Oncotype DX (Genomic
Health, Inc., CA, USA) which screens for tumor expression of 21 genes
[39] and the MammaPrint (Agendia, Amsterdam, The Netherlands)
which screens for expression of 70 tumor genes [40]. These screens
require tissue of resected or biopsied tumors. Several chronic myeloid
leukemia (CML) mutations have been associated with varying efficacy
of chemotherapeutics [41]. The NCCN now recommends following
BCR-ABL kinase transcript levels throughout therapy and consider
significant changes an indication to change therapy [42]. Estrogen
receptor/progesterone receptor (ER/PR) testing is recommended
at diagnosis of all breast cancers to determine appropriate
adjuvant chemotherapy. Classically, this testing is performed using
immunohistochemistry (IHC) techniques on resected/biopsied tissue
though peripheral sampling followed by RT-PCR is becoming more
reliable and clinically available [43,44].

Limitations of Transcriptomic Screens
Transcriptomic analyses have largely failed to move into the 

clinical arena to date. This field remains entrenched in basic science 
laboratories with few efforts to move the technique into translational 
studies. The fundamental limitation of using transciptomic assays 
is that mRNAs are intermediate products of disease that fail to 
adequately predict the clinical effect. Polymorphism of downstream 
proteins including post-translational changes, changes in second-
messenger systems, and interaction with downstream metabolic 
enzymes leads to persistent variability of the observed clinical effect. 
This is compounded by short mRNA half-lives resulting in difficulty in 
quantitative interpretation [45]. Circulating cancer cells may represent 
a biologically distinct cell type when compared to the primary tumor 
transcriptome. This discordance has been observed in circulating breast 
cancer transcription of ER/PR [46]. Biomarkers have been studied in 
numerous animal models and when applied in humans, they have not 
performed better than a coin-flip for prediction of disease/toxicity. 
Perhaps continued work that characterizes the kinetics of mRNAs/
transcripts and further enhancement of sensitivity of their detection 
will lead to a larger role of transcriptomic analysis in pharmacotherapy. 

Proteomics
In the same Nature issue that published the first draft of the 

HGP [3], The Human Proteome Organization (HUPO) announced 
their efforts to increase resources for characterization of the proteins 
encoded by the HGP [47]. Proteomics is defined as the study of proteins 
and their variability in human disease states. The proteome may vary 
between different individuals, different organs, or even between cells 
in the same organ in an individual. Most efforts have focused upon 
characterizing protein mediators and predictors of disease rather than 
the protein targets of pharmacotherapy. 

Proteomic Screens
The most prominently available proteomic screens are utilized in 

tumor specific cancer screening. For instance, evaluation of estrogen 
receptor (ER), and progesterone receptor (PR), is recommended 
in addition to genomic screening of HER2 for evaluation of newly 
diagnosed breast cancers. These evaluations are pathology based 
and are typically performed using IHC assays. IHC may technically 
be considered a proteomic approach because it quantifies a human 
protein associated with disease though many would consider it a more 
traditional pathologic technique because it does not characterize the 
inherent protein variability. Newer ultrasensitive proteomic techniques 
use a combination of high performance chromatography and mass 
spectrometry to characterize thousands of proteins from as little 
as a microgram of tissue [48]. Identification of a variable proteomic 
fingerprint has been associated with aspirin resistance and the use 
of clopidogrel in this population is recommended [49]. Proteomic 
measurements of inflammatory markers, such as tumor necrosis 
factor alpha (TNF-α) and haptoglobin alpha-2-polypeptide has been 
associated with increased manifestations of atherosclerotic disease in 
patients with systemic lupus erythematosus (SLE) [50]. Inflammatory 
markers can be measured by commercial laboratories [51,52] and some 
have suggested targeting therapies, such as infliximab, in SLE patients 
with elevated markers [53]. While these tests have face validity, there 
are no data to demonstrate that therapy modification based on the 
testing improves patient outcomes.

Limitations of Proteomic Screens
The major limitation of proteomic screens is that they are tissue 

specific and therefore require tissue to characterize protein variability. 
Unlike blood-based targets or resected tumor tissue, from which the 
pertinent biologic matrix is practical to obtain, tissue samples from 
organs such as lung, kidney, heart, or brain are not easily obtained for 
proteomic screens. Most proteomic screens are not yet commercially 
available to clinicians. While a subset of patients may be able to 
finance tests such as TNF-α, which costs only a few hundred dollars, 
no proteomic screens are reimbursed by insurance companies in the 
United States. 

Metabolomics
Metabolomics is an emerging field that quantitates endogenous 

and exogenous metabolic products to measure metabolic response or 
predict disease. Advances in metabolomic techniques have yielded a 
sensitive approach that may be altered by minute-to-minute physiologic 
changes and account for upstream variations in an individual’s 
genome, transcriptome, and proteome. Multiple techniques are 
employed to measure these small molecule metabolites; a combination 
of ultra performance liquid chromatography with nuclear magnetic 
resonance (NMR), orthogonal quadrupole time-of-flight (QTOF), or 
mass spectroscopy time-of-flight (MALDI TOF) have become the most 
common and preferred methodologies [54,55], though optimization is 
still occurring [56]. This approach has been applied to multiple disease 
processes [57-62]. This approach may ultimately prove to be the most 
sensitive screening modality for pharmaceutical efficacy and safety 
in the individual patient because it accounts for upstream genomic, 
epigenomic, transcriptomic and proteomic factors[63].

Metabolomic Screens
The classic metabolomic screen for toxicity is for glucose-6-

phosphate deficiency (G6PD). G6PD has been associated with 
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xenobiotic-induced hemolysis. The screen can be performed either 
qualitatively or quantitatively via spectrophotometric metabolite 
quantification [64]. G6PD testing is used prior to prescription of 
many anti-malarial therapies and prior to dapsone prescription. G6PD 
testing is recommended by the Association of Infectious Diseases 
Society of America for all HIV patients [65]. G6PD status is tested in 
all US military recruits. 

To date, only one clinical trial has demonstrated an ultrasensative 
metabolomic relationship between a medication and drug induced 
liver injury (DILI). The SPORTIF trial examined ximelagatran 
anticoagulation for stroke prevention in patients with atrial fibrillation. 
Blood sampling before and after ximelagatran administration revealed 
that lower levels of serum pyruvate before dosing predicted DILI [66]. 

Winnike examined the metabolomic profiles of subjects taking 
therapeutic doses of acetaminophen using using NMR spectroscopy 
and was able to identify evidence of hepatotoxicity suggesting the utility 
of “early-intervention pharmacometabonomics” [67]. However these 
evoked metabolomic profiles can’t truly be considered screening tests. 
This same group demonstrated alterations in acetaminophen urinary 
metabolite profile predicted by predose p-cresol urinary concentrations 
[68]. While this study did not directly demonstrate toxicity, it 
demonstrated proof that screening metabolomic profiles can predict 
variation in individual metabolic activity, and likely toxicity. Markers 
of hepatotoxicity have been observed in children taking valproic acid 
utilizing organic acid metabolism as the metabolic matrix [69]. A 
similar association has been demonstrated with statin induced liver/
muscle toxicity [70]. None of these assays are validated for screening 
prior to therapy. However, these association studies represent with 
groundwork required for metabolomic toxicity screening. 

Metabolomic profiles have been utilized in drug discovery using 
small compounds to target specific metabolic changes in specific cell 
lines [71-73]. This technique suggests that screening of individual 
metabolomes could predict subsequent pharmaceutical response and 
may yield more specific therapies.

Limitations of Metabolomic Screens
At this time, high sensitivity metabolomic screens for 

pharmacotherapy have not left research laboratories and thus are of 
little utility to the practicing clinician. The human metabolome needs 
to be further characterized and subsequently therapeutic associations 
can be made. In addition, these highly specific techniques raise 
issues with reproducibility [74]. It is unclear how clinicians will use 
this sensitive data since even small changes in physiology, such as 
food ingestion [75] or going up a flight of stairs, can have significant 
impact on the metabolome [55]. Combining pharmacometabolomics 
with pharmacogenomics can lead to identification of more clinically 
relevant associations [76,77]. If clinicians initially focus on larger stable 
metabolic signals, such as the output of CYP systems, hopefully we can 
minimize being misled by transient metabolic associations that do not 
represent causation. 

The Future ‘Omics in Pharmacotherapy
‘Omic modalities have utility in screening for efficacy and safety 

of pharmaceutical therapy. Screening must ultimately fulfill practical 
criteria in order to be clinically useful. For screening assays that 
seek to improve efficacy, the positive predictive value (PPV) must 

be high or patients that may have benefit from the therapy will be 
inappropriately excluded. Likewise, if a screen is meant to eliminate 
high morbidity toxicity, such as Stevens-Johnson Syndrome, then the 
PPV is less important and the negative predictive value (NPV) is more 
pertinent because false negative screens put patients at significant 
risk. Predictive values are preferred for clinical screening assays 
because they account for disease prevalence in the population, which 
sensitivity and specificity do not. Ideally, the screen would have both 
high PPV and NPV. However this is unlikely in a single screen due 
to the limitations listed in the respective ‘omic sections. Genomic 
screens are perfectly suited for rare, high morbidity condition, such as 
HLA-B*1502 associated Stevens-Johnson Syndrome in carbamazepine 
therapy [78]. More common and less severe toxicities, such as statin-
rhabdomyolysis, may be best screened by a combination or syllogistic 
approach. A biologic systems panel (BSP) [79] has the potential to 
account for several common genetic polymorphisms, proteomic, and 
metabolomic variables improving the overall predictive values of the 
panel. More common toxicities may be cost-effectively screened with 
an initial genomic screen, followed by a functional screen, if positive 
on the initial screen, so that patients are not denied therapies due to 
false positive tests.

The complexity of human-medication interactions are further 
complicated by idiosyncrasies of disease. For instance, HER2 status of 
breast cancer may change during therapy [80]. The chemotherapeutic 
agent tamoxifen is metabolically activated by CYP2D6 and despite 
numerous pharmacokinetic studies demonstrating a lower metabolite 
serum concentrations [81, 82], no increased rate of breast cancer 
recurrence in patients taking CYP2D6 inhibitors when compared 
to controls [83]. This suggests that lower serum concentrations of 
tamoxifen’s active metabolite are sufficient for treatment, or other 
factors such as tumor specific changes diminish the pharmacokinetic 
association. Associating metabolic traits with GWA identified 
genotypes has been shown to improve the predictive value for 
observed clinical effect for common medical conditions [76,77]. This 
work highlights the power of combining ‘omic methodologies. Again, 
integration of the ‘omics fields into panels may improve the predictive 
efficacy and safety of prescribing practices. 

Conclusions
‘Omics pharmaceutical screens are slowly entering clinical 

medicine. Continued basic research is necessary to establish a robust 
matrix of ‘omics data. As associations are identified, researchers should 
determine if pre- therapy screening improves patient outcomes. 
Insurance companies must be pushed to cover screening assays that 
enhance outcomes. Integration of numerous ‘omics techniques into 
panels will yield screens with higher positive and negative predictive 
values. ‘Omics panels will prove more clinically useful to physicians 
than single ‘omic screens.
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