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Abstract

This is a commentary on a paper we published in Cancer Biother Radiopharm 2010. This commentary addresses
related concerns about adding a separate clearing agent in the pretargeted tumor therapy. Previous investigations of
tumor pretargeting mostly focused on utilizing the characteristic rapid clearance of a small therapeutic effector to
limit toxicity exposure to normal tissues, but at a price of reduced tumor accumulation. Nevertheless, at least in
theory, this reduction of tumor accumulation is not inevitable. The effector structure should be able to be modulated
for its highest tumor accumulation while keeping the normal tissue background of the free effector negligible.
However, so far little effort has been made in this area. In connection with the reduction of the toxicity to normal
tissues, inclusion of a clearing step is well known. This commentary is to indicate that, in the pretargeted tumor
therapy, inclusion of a clearance step will be more crucial when tumor accumulation of the effector is improved. It is
the prerequisite to redeem the benefit of improved tumor accumulation.

Introduction
Pretargeting is a targeting strategy in which, an antitumor Ab is

injected, followed a couple of days later by another injection of the
effector. “Effector” is a term for the tumor targeting agent in a
pretargeting setting. It is a small water-soluble molecule that bears a
toxic payload, binds the pretargeted Ab, and is excreted very rapidly
into urine if not bound to the Ab or tumor.

A few years ago, we published a paper in Cancer Biotherapy and
Radiopharmaceuticals entitled “adding a clearing agent to pretargeting
does not lower the tumor accumulation of the effector as predicted”
[1]. At that time, there was a concern that the use of a clearing agent
may reduce the tumor accumulation of the later injected small
molecule effector. The paper told a story that as long as the available
pretargeted binding sites for the effector are sufficient in the tumor, the
percent tumor accumulation for that effector in % ID or % ID/g would
be at the same value. The story is backed by a delivery theory that, in
an infinite short period of time, the tumor accumulation increment of
the effector is the product of the blood flow, blood concentration, the
tumor trapping fraction, and the infinite small time interval [2]. Thus,
the tumor accumulation of the effector that localizes in tumor with an
infinite affinity is the integration of the increment over the entire
period. If the pretargeted binding sites are sufficient, the tumor
accumulation is at the maximum. The maximum percent tumor
accumulation (MPTA) of an effector is proportional to the tumor
blood flow, the area under the blood curve (AUCBlood), and the tumor
trapping fraction, but independent of the number of pretargeted
binding sites (i.e., the number of the pretargeting Abs in the tumor). It
is also independent of different pretargeting Abs used [3].

Comments
The use of a clearing agent does lower the tumor accumulation of

the effector in a situation where the effector dosage over-matches the
available pretargeted binding sites [4,5]. This may happen when the

clearing agent competes with the effector for binding or when the
effector dosage is excessive. Thus it would have been more scientifically
correct if we used “MPTA” in the title instead of “tumor accumulation”,
but at that time MPTA was not a well-known term.

Although it is clarified that adding a clearing agent does not reduce
tumor accumulation as long as the effector is not overdosed, there is
another concern that inclusion of a clearing step makes the overall
procedure too difficult for an ultimate translation to the clinic. The on-
going clinical trials of pretargeted tumor therapy do not include a
clearing agent. Most likely, this is based on a cost-effective
consideration. It is true the more steps, the less likely to receive an FDA
approval. Another reason is probably that currently there is not a well-
established clearing agent although every pretargeting mechanism
allows for using one. However, it may not be true that even if a life
could be saved, FDA would not consider the 3 injections to be
recommendable as a standard care procedure in the clinic. The key
question is whether the 3-step pretargeted therapy would make a life-
saving technology.

It is evident that cancer cells can be destroyed if using a correct toxic
agent, either radio- or other toxic-therapeutics, at a sufficiently high
dose as recently proved in hematological cancer therapy [6-9], but the
progress of solid tumor therapy is slow. One of the major impediments
is the limited blood flow that restrains the delivery of an adequate
toxicity dose to solid tumors [10-11]. To deliver a higher toxicity dose,
one way or another, this limited blood flow has to be circumvented.

Direct targeting strategy (direct delivery of a toxic agent by loading
it onto a tumor targeting agent) is employed more often than the
pretargeting strategy considered herein, but that strategy seems
unlikely to succeed. So far, solid tumor eradication remains unfulfilled
in the clinic [11,12]. Small water-soluble therapeutic agents accumulate
in tumor rapidly but are excreted also rapidly and very often
accumulate in normal tissues as well. Large targeting molecules or
serum-protein-bound small molecules do not pass through the
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glomerular filtration membrane easily, stay longer in the circulation
and do counteract the limited tumor blood flow, but the blood
background would be elevated at the same time [6]. Modulation of the
molecular size of a direct targeting agent to achieve the highest tumor
accumulation with minimal normal tissue binding could be a solution.
However, the targeting moiety in a direct targeting fashion may
constrain a desired modulation.

Pretargeting strategy separates the tumor targeting of an antitumor
Ab and its labeling by using the 2nd effector injection. The advantage is
often described as the delayed toxicity injection eliminates the toxicity
exposure to the blood and normal tissues during the phases of tumor
targeting and normal tissue clearance of the Ab. Fewer researchers are
working on this strategy than on the conventional direct targeting
strategy, but it is encouraging that in the past several years more
groups especially in Europe have joined the efforts to develop
pretargeting technologies [13-15]. This strategy improves the
therapeutic index as compared to the direct Ab targeting but has not
achieved tumor eradication yet. The complexity in optimizing the
dosage and timing is considered as a difficulty, but it may not be a real
one as we have addressed this issue [16].

Another advantage of the pretargeting strategy is not well known.
This strategy offers the flexibility in modulating the effector structure
while keeping the normal tissue background low. After separating the
injection of a pretargeting agent and its labeling, pharmacokinetic
modulation of the effector is no longer constrained by the original Ab
structure. The nature of pretargeting is a conversion of the native
targets on the cell surface to some artificial targets for the effector.
Thus, the structural modulation is now subject to the restriction of the
recognition moiety, but there are multiple recognition systems to be
chosen [13,17-20]. Our morpholino oligomer/c-morpholino oligomer
recognition system alone, [19] for example, allows for modulating the
effector molecular properties (size, charge, and affinity) without
elevating the normal tissue background. Earlier, there were some
systemic pharmacokinetic modulation investigations, but that was
limited to lowering normal tissue background rather than improving
tumor accumulation [21-23].

Almost like a virgin field, the effector size (other properties as well)
as a potential limiting factor for tumor accumulation has not been
explored, because pretargeting strategies are less popular as compared
to the direct Ab-based therapy. Though we now understand both
theoretically and empirically that the reduced tumor accumulation in a
pretargeting setting arises from rapid excretion of the small effectors,
[2,6,23,24] initially it was often perceived that the rapid targeting of a
small effector would certainly lead to higher tumor accumulation. In
reality, the rapid targeting (higher tumor trapping fraction) and the
rapid excretion of the effector (smaller area under blood curve)
counteract each other. Optimizing the effector size should lead to
improved tumor accumulation and an optimal tumor therapeutic
index.

However, when tumor accumulation is improved, another downside
of pretargeting strategy will emerge. If not using a clearing agent, there
will be a considerable level of residual Ab in the circulation even after a
couple of days following the injection of the pretargeting Ab. In this
condition, an improved tumor accumulation of the effector (% ID/g)
will not improve the therapeutic index. For instance, at a given dosage
of a pretargeting Ab and a given time, the number of the binding sites
for the effector would be at a fixed value. With an improved tumor
accumulation, saturation of these sites requires a reduced effector
dosage that in turn would elevate the blood background following the

formula: (blood background in % ID/g = residual Ab concentration
(mole/g)/dosage of effector (mole)*100%). Therefore, the blood
background will be elevated proportionally to the tumor accumulation.
A clearance step would remove the blood background and therefore is
the prerequisite to redeem the benefit of an effector of higher tumor
accumulation. Thus, inclusion of a clearance step will be increasingly
important when tumor accumulation is improved.

A longer wait prior to the effector injection may be employed as an
alternative, but it is much less effective and may not be even practical
when the pretargeting Ab has a higher internalizing tendency. If the
use of a clearing agent helps to enable tumor eradication and there is
not a simpler life-saving alternative, we believe patients would not have
a complaint about 3 injections or even more. If patients can walk out of
a hospital tumor-free, FDA approval should not be an issue.
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