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Introduction
Influenza virus belongs to the Orthomyxoviridae family and 

includes three types: A, B and C. Among these types, the influenza 
A virus leads to seasonal epidemics, sporadic pandemics, which are 
the major causes of morbidity and mortality. Influenza, an acute 
infectious disease, is a major source of fever, cough, runny nose and 
other symptoms of humans and has a great impact on public health. 
It is estimated that seasonal influenza virus strains infections caused 
50,000 deaths each year. These symptoms are actually closely related 
to the HA. The HA, a glycoprotein, is a spike located on the surface of 
influenza virus’ envelope which is responsible for hemagglutination. 
It is reported that the HA could bind to sialic acid receptors located 
on the surface of host cells and mediated the subsequent entry via 
membrane fusion which is significant for initial viral infection [1-
3]. It is proteolytically hydrolyzed to HA1 and HA2 subunits. HA1 
is receptor-binding domain while HA2 fusion peptide inserts itself 
into the endosomal membrane, allowing contact of both the viral and 
endosomal membranes [4]. Accordingly, HA could be employed as a 
biomarker for detection and as an important target for depressing its 
function.

Aptamers, as promising alternatives to antibodies, are ssDNA and 
RNA molecules obtained from the Systematic Evolution of Ligands 
by Exponential enrichment (SELEX) process that can bind to a wide 
range of target molecules with high specificity and affinity, including 
protein, organic molecules, drugs, various cell surface receptors, and 
whole cells, to name a few [5-7]. They have been applied to detect 
pathogenic bacteria, separate the targets, and identify biomarkers [8,9]. 
Meanwhile, they have also been employed as an efficient therapeutic 
tool against viruses due to their remarkable properties [10-12]. So far, 
several high-affinity DNA and RNA aptamers have been successfully 
applied in suppressing the function of viral proteins, such as human 
immunodeficiency virus HIV glycoprotein 120 (gp120) [13], human 
hepatitis B virus polymerase (P protein) [14] and influenza virus NS1 
protein [15]. In the past five years, there are already quite some reported 
works for the selection of HA aptamer by SELEX process. The aptamers 
selected by Gopinath had a higher affinity and specificity for the HA of 
H1N1 [16]. However, they were RNA and not stable. The function of 
DNA aptamer selected by Jeon was to target HA protein of influenza 
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Abstract
Single-stranded DNA aptamers specific to the hemagglutinin (HA) protein of avian influenza virus (A/Puerto 

Rico/8/1934) were obtained by SELEX process in 13 cycles. The aptamer with the highest affinity and specificity was 
applied to an affinity bioassay. An aptamer hairpin (aHP) was prepared that consists of two DNA regions, viz. (a) the 
aptamer for the HA protein and (b) an oligonucleotide designed to form a stem-loop structure. In the absence of target, 
the aHP maintains its hairpin structure and was adsorbed to the Graphene Oxide (GO). The fluorescence of SYBR 
Green I (SGI) is almost quenched. On addition of the target, aHP unfolds and the GO is no longer attached but released 
to the solution. By applying a polymerase elongation reaction, a long dsDNA product is generated when SGI is added. 
The proposed method could detect HA and H1N1 virus with a limit of 2.5 μg/mL and 1×102 TCID50, respectively. 
Consequently, this paves the way for influenza virus detection and is employed in basic research and medical diagnosis.

virus and inhibit it, which may be promising candidate for treatment of 
influenza virus infection [17].

Park paid attention to hemagglutination inhibition test in vitro 
with selected aptamer [18]. However, few works have been reported on 
aptamers for H1N1 (A/Puerto Rico/8/1934) influenza virus’ detection. 
Hence, it is necessary to screen a DNA aptamer with highly specificity 
to the HA protein of the virus H1N1, and use it to establish a sensitive 
detection system.

Graphene oxide (GO), a two-dimensional nanomaterial, is an 
efficient bioanalytical platform for the detection of nucleic acids, 
proteins, metal ions, and small molecules [19-21], drawing wide 
attention due to its unique and excellent electronic, thermal, and 
mechanical properties [22-24]. GO makes fluorescence detection 
promising application in sensing technology [25,26]. Herein, a novel 
label-free fluorescent approach was constructed for H1N1 detection in 
conformity with GO and strand displacement reaction by employing 
SYBR Green I (SGI) for signal amplification. Once target was bound 
with the aptamer sequence of the hairpin probe (HP), another sequence 
could form a self-assembled short hairpin structure. Meanwhile, strand 
displacement reaction would be triggered by generating a large amount 
of dsDNA in the presence of KF polymerase and dNTPs. Upon addition 
of GO, the SGI-stained dsDNA would be inefficiently quenched by it, 
resulting in a significant fluorescence enhancement. In the absence of 
target, the stained HP would be absorbed onto GO and quenched by it.
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then 30 s at 95°C, 30 s at 65°C, and 30 s at 72°C, 20 cycles, followed by 
5 min at 72°C). The asymmertric PCR (5 min at 95°C, then 30 s at 95°C, 
30 s at 65°C, and 30 s at 72°C, 40 cycles, followed by 5 min at 72°C) was 
used to acquire the ssDNA as the enriched library for the next selection 
round. The amount of ssDNAs at each step was measured by UV-Vis 
spectroscopy. The aptamer binding ratio was obtained by analyzing 
the fluorescence of eluted ssDNA every two rounds. After 13 rounds’ 
enrichment, the PCR products selected from the 13th round were 
subcloned and sequenced by Shanghai Sangon Biological Engineering 
Technology and Services Co., Ltd (Shanghai, China). Their secondary 
structures were performed using the DNAMAN software.

Performance of target protein sensing and selective 
assay: The sample was mixed with hairpin probe (5 μL, 50 nM 
5’-GGGAGCTCAGAATAAACGCTCAAGGCACGGCATGTGTG 
GTATGTGGTGCCTGTACTCGTTCGACATGAGGCCCGGATC 
CATGCTAACAAGCATG-3’) in PBS (phosphate buffered saline) 
buffer at 95°C for 5 min and kept at room temperature for 20 min. After 
that, the HA proteins ranging from 0 µg/mL to10 µg/mL were added to 
the solution. After incubation for 40 min, 4 µL SGI (50×concentrate) 
and 1.5 µL GO (1 mg/mL) were successively injected into the reactions 
and incubated at 37°C for 10 min. The polymerization reaction was 
then performed by mixing with 10 mM dNTPs and 2 U/mL KF 
polymerase for 10 min, and then terminated by heating at 80°C for 
5 min. Subsequently, the fluorescence intensity was measured in the 
quartz cuvette. Fluorescence intensity was recorded at 520 nm with 
an excitation wavelength of 496 nm. Bovine serum albumin (BSA), 
lysozyme and the control were chosen to verify the selectivity of this 
approach. Their concentrations were 5 µg/mL. All experiments were 
repeated three times.

Analysis of virus sample: After various titers of virus were mixed 
with hairpin in working solution (PBS) at 37°C for 40 min, SGI and 
GO were added into the systems for 10 min. dNTP and KF polymerase 
were mixed into the reaction buffer. Continually, the reaction was 
performed at 37°C for 10 min, and the fluorescence signals were 
measured in a quartz cuvette at an excitation wavelength of 496 nm 
and an emission wavelength of 520 nm, respectively. Its specificity was 
also detected using two different strains:H9N2, H5N1 under the same 
conditions. All experiments were repeated in triplicates.

Results and Discussion
In vitro selection of ssDNA aptamers for recognition of the 
HA protein

In order to obtain DNA aptamers with high affinity and specificity, 
thirteen repeated separation-amplification cycles were completed, 
and the ssDNA and HA protein concentrations decreased with each 
subsequent selection round. After 13 selection rounds, the aptamers 
showed higher affinities for HA protein. The amounts of HA protein 
and ssDNA pools added in each round are shown in Table 1. In addition, 
the quantity of BSA and yeast tRNA increased with the selection round 
to ensure the competitive binding. The binding ratios of aptamers 
against HA increased with the selection process and the percentage of 
bound ssDNA did not increase considerably after round 11 as shown in 
Figure S1. These results displayed that the affinity of the ssDNA pool to 
HA protein appeared to be nearly constant after round 11. After being 
cloned and sequenced, two independent candidates were acquired 
and named aptamers 1, 2. The predicted secondary structures of the 
two aptamers were also determined by DNAMAN software, and their 
typical stem-loop motifs are shown in Figure 1. As aptamer 1 showed 

Materials and Methods
Materials

A synthetic ssDNA library containing a 35-base central random 
sequence (5’-GGGAGCTCAGAATAAACGCTCAA-N35-TTCGAC 
ATGAGGCCCGGATC-3′) were synthesized by Shanghai Sangon 
Biological Engineering Technology & Services Co., Ltd (Shanghai, 
China, http://www.sangon.com). Polymerase Klenow Fragment (2 
U/μL) and 10×Klenow Fragment buffer (500 mM Tris–HCl, 50 mM 
MgCl2, 10 mM DTT, pH 8.0) were also obtained from Sangon Biotech 
Co., Ltd. (Shanghai, China). All materials used in the experiment were 
dissolved in distilled water purified by a Milli-Q water purification 
system (electric resistivity 18 MΩ cm−). All the other chemicals were 
analytical reagent grades, and were used without further purification. 
SYBR Green I (104×concentrate) was purchased from FANBO 
BIOCHEMICALS Co., Ltd (Beijing, China). Graphite powder was 
purchased from Nanjing XFNANO Materials Tech Co., Ltd (Nanjing, 
China, http://www.xfnano.com). The fluorescent emission spectra were 
recorded in a quartz cuvette by an LS55 luminescence spectrometer 
(PerkinElmer, UK) at room temperature. The concentration of 
oligonucleotides were determined by using the absorbance at 260 
nm. The recombinant HA protein of AIV subtype H1N1 (A/Puerto 
Rico/8/1934) with a concentration of 0.25 mg/mL was offered from 
Sino Biological Inc. The virus was cultivated in the allantoic cavities of 
10-day-old embryonated chicken eggs and maintained at 35°C. After 
72 h culturing, the allantoic fluid was centrifuged and the supernatant 
was harvested, and stored at -70°C prior to use. The titer of virus used 
for infection was evaluated by the infection of Madin-Darby canine 
kidney (MDCK) cells [27], and hence, virus titer was expressed as the 
tissue culture infective doses leading to 50% infected cells (TCID50). 
The three strains of virus were A/Chicken/Henan/12/2004 (H5N1), A/
Chicken/Jiangsu/7/2002 (H9N2) and A/Puerto Rico/8/1934 (H1N1)
which were maintained in Molecular Virology Lab of Hunan Normal 
University.

Methods
SELEX procedure: The oligonucleotide library 

consisted of a 35-base random region flanked by two primer 
regions: 5′-GGGAGCTCAGAATAAACGCT CAA-N35-
TTCGACATGAGGCCCGGATC-3′. The detailed procedure for 
selecting HA protein aptamers was implemented as follows. The HA 
protein with 0.05 mol/LNaHCO3 (pH 9.6) was coated on a 96-well ELISA 
Plate at 4°C overnight. 3% bovine serum albumin (BSA) was added at 
37°C for 2 h to block the wells coated with HA protein and blank wells. 
The ssDNA library was denatured at 95°C for 5 min in binding buffer (20 
mmol/L HEPES buffer pH 7.35, 120 mmol/L NaCl, 1 mmol/L MgCl2, 1 
mmol/L CaCl2, and 5 mmol/L KCl) and then immediately placed into 
iced water for 10 min. To decrease background binding, yeast tRNA 
was added to the binding buffer from the second round to the end 
round. For negative selection, ssDNA libraries added to BSA-blocked 
blank wells were maintained at 37°C for 40 min. Uncombined ssDNAs 
were then transferred to the wells coated with HA protein at 37°C for 
40 min. The wells were washed five times with washing buffer (binding 
buffer +0.05% Tween 20) and filled with eluting buffer (20 mmol/L 
Tris-HCl, 4 mol/L guanidiniumisothiocyanate, 1 mmol/L DTT, pH 
8.3) at 80°C for 10 min. Subsequently, 3 mol/L sodium acetate (pH5.2) 
and dehydrated ethanol were added and kept at -80°C for 40 min, and 
centrifuged at 30,857×g for 10 min at 4°C. The sediment was washed 
twice by absolute ethyl alcohol and dissolved in 20 μL double-distilled 
water after drying. The ssDNA was amplified by PCR (5 min at 95°C, 
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higher binding affinity for HA protein (Kd=78 ± 1 nmol/L) compared 
with aptamer 2, aptamer1 was selected for further experiments.

Design of rapid detection for target

Although several similar methods have been reported, however, 
they have their some shortcomings. Therefore, it is necessary to 
develop a highly sensitive and selective fluorescent means for HA and 
H1N1 detection. As shown in Scheme 1, the aptamer hairpin (HP) 
was composed of two DNA regions including the HA protein aptamer 
sequence and the oligonucleotide sequence specially designed which 
could form stem-loop structure. In the absence of HA protein, HP 
maintained its hairpin structure and its fluorescence signals could 
not be detected after adding SGI and GO. Because the aptamer was 
strongly absorbed onto the GO due to π-π stacking interactions 
between the nucleotide bases and GO [28], it was resulted in that 
KF polymerase and dNTPs could not work and the fluorescence was 
quenched. When the target was added, HP would not be absorbed onto 
the GO, and polymerase elongation reaction generated a long dsDNA 
product, triggering a strong increase in the fluorescence intensity upon 
introducing the SGI. In addition, it was first necessary to examine the 
ratio of GO and HP to improve the detection efficiency. As shown 
in Figure 2, the fluorescence decreased obviously with GO increase, 
and remained stable until its concentration reached 15 μg/mL, which 
suggested the fluorescence of 50 nM HP could be effectively quenched 
by 15 μg/mL GO via fluorescence resonance energy transfer (FRET) 
[29]. Thus, 15 μg/mL was chosen as the optimal concentration for 
next experiments. As for the feasibility assay, Figure 3 showed that the 
fluorescence of aptamer spiked with GO and SGI was weak (curve b) 

 

Figure 1: Predicted secondary structures of the selected ssDNA aptamer 
candidates using DNAMAN software. (a) aptamer sequence 1; (b) aptamer 
sequence 2.

 

Scheme 1: The detection principle for the target.

SELEX 
Rounds

HA protein 
(ugwell)

ssDNA poll 
(pmol/well)

tRNA 
(ug/ml)

1 4 400 0
2 2 200 0.125
3 1 100 0.125
4 0.5 100 0.25
5 0.5 80 0.25
6 0.25 60 0.5
7 0.25 50 0.5
8 0.1 40 1
9 0.1 30 1
10 0.05 20 1.5
11 0.05 10 1.5
12 0.05 10 2
13 0.025 5 2

Table 1: Hemagglutinin (HA) protein, ssDNA pool and tRNA input in 13 rounds 
selection.

 

 

 

 

 

 

 

 

 

 

Figure 2: Optimization of concentration ratio of graphene oxide toaptamer 
(50 nM) with SGI. (a to g: 2.5,5,7.5,10,12.5,15,17.5 μg/mL) Excitation: 496 
nm. Error bars indicate standard deviation (n=3).

 

Figure 3: The feasibility of KF polymerase-aided amplification assay.
The fluorescence spectras of the proposed method were under different 
conditions. (a) Blank: buffer; (b) 50 nM HP + GO + SGI; (c) 50 nM HP + GO 
+ SGI + KF; (d) 50 nM HP + HA + GO + SGI; (e) 50 nM HP + HA + GO + SGI 
+ KF. The concentrations of HA protein and GO were respectively 5 μg/mL 
and 15 μg /mL.Excition: 496 nm, and emission: 520 nm. Error bars indicate 
standard deviation (n=3).
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and nearly the same as the background signals. In the absence of HA, 
the polymerase elongation reaction would not be triggered, resulting 
in weak fluorescence signals even after KF polymerase and dNTPs 
were added (curve c). In the presence of target, fluorescence enhanced 
slightly (curve d) as the reaction was initiated, and an obvious 
fluorescence peak appeared upon mixing KF polymerase and dNTPs 
subsequently (curve e). Therefore, the result revealed clearly that the 
KF polymerase-aided reaction would increase greatly the fluorescence 
intensity, which displayed that the assay is feasible for detection HA.

Analysis of sensitivity and selectivity of the assay

As for the sensitivity assay, Figure 4A displayed that the fluorescence 
intensity considerably increased with HA increase ranging from 0 μg/
mL to 10 μg/mL. The fluorescence intensity showed a linear correlation 
in 2.5 μg/mL to 7.5 μg/mL (inset of Figure 4A), with a correlation 
coefficient (R2=0.9978), where Y and X are the changes of fluorescence 
intensity and target concentration, respectively. More importantly, 
the detection limit was 2.5 μg/mL based on theoretical calculation (3σ 
rule). Additionally, BSA and lysozyme were employed to evaluate the 
selectivity of this approach. As shown in Figure 4B, the fluorescence 
signals did not obviously increase after the addition of them, and 
had substantial enhancement when HA was added. Due to the 
inherent specificity of the aptamer toward its target, the fluorescence 
increased remarkably after adding only HA. The result indicated 
that this method could be applied to detect HA with high specificity. 
Meanwhile, influenza viruses were also assessed to test the applicability 
of this method for real sample detection. It was detected sample of the 
influenza virus with lower detection limit of 1×102 TCID50 (Figure 
5A). Thus, the method was a highly sensitive way for detecting H1N1.

 

Figure 4a: Fluorescence spectral responses of KF polymerase-
aidedamplification assay for HA protein of varying concentrations (a to f: 0, 
2.5, 3.5, 5, 7.5, 10 μg/mL). Insert: The linear relationship of the fluorescence 
intensity on HA protein concentrations from 2.5 μg/mL to 7.5 μg/mL. The 
error bars embody the standard deviations of repeated results.

 

Figure 4b: The specificity of this assay with different targets. (a) Blank,(b) 
BSA, (c) Lysozyme, (d) A. (all at a concentration of 5 μg/mL) Each data 
indicates the average of at least three experiments.

 

Figure 5a: The detection of the sample virus with different titers.Fluorescence 
intensity detection. The virus titers are varied from 0 to 6×102 TCID50 
(100 μL) from the bottom up. The inserted figure shows that the increases 
in fluorescence intensity and absorbance value are proportional to the 
concentration of target virus. Thecorrelation equation is Y=0.5492X+53.045 
while with a regression coefficient of 0.9858.

As for selectivity, it was found that fluorescent intensity of the target 
virus (H1N1) is greater than that of non-target ones (Figure 5B). It was 
further confirmed that our method was highly selective and specific not 
only for HA protein but also for the whole influenza virus.

Conclusion
In summary, a ssDNA aptamer against HA protein of the subtype 

H1N1(A/Puerto Rico/8/1934) was successfully obtained by employing 
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asymmertric PCR-based SELEX. Based on this, the assay using KF 
polymerase-aided signal amplification and GO-based fluorescence 
quenching showed sensitivity and good selectivity with a detection 
limit of 2.5 μg/mL for HA protein and had been successfully applied 
in real samples with a low limit of 102 TCID50. As a highly sensitive 
quenching platform GO has been widely applied in many biomolecule 
detections. The detection method constructed by Chen was based on 
the quenching action of GO, and its aptamer need to be labeled with 
carboxy fluorescein (FAM) [19].

Sheng also used GO for detection without enzyme [23]. 
Comparatively, two advantages are displayed in our work. Firstly, the 
labeled aptamer is not required. Secondly, a large amount of dsDNA 
were generated and the signals were significantly amplified when the 
strand displacement reaction would be triggered by KF polymerase. 
Based on the above characters, the aptasensor can effectively detect 
H1N1 with a lower limit of 1×102 TCID50 in 80 min, which is shorter 
than 2.5 h [30]. Moreover, the assay is easy to operate and simpler 
than the commercial real-time NASBA assay [31]. More important, it 
is easily applied in developing countries and other remote areas. Our 
further study will be focused on that the selected aptamer might be 
coupled with DNA nanotechnology to achieve more versatile functions 
as the strategy and to be widely applied in biomedicine [32,33].
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