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Introduction 
The oxidation of the B ring in steroidal compounds leads to 

products exhibiting numerous biological functionalities. Ring B 
oxidized sterols and steroids have shown anti-cancer activity [1-3]. 
7-Ketodehydroepiandrosterone has been shown to improve the memory 
of mice [4] and 3-acetyl-7-oxo-DHEA increases the resting metabolism 
of persons on calorie restrictive diets [5]. 7-Ketopregnenolone’s has
shown anti-cortisone properties [6]. 7-Ketocholesterol has shown some 
regulatory function in the biosynthesis of cholesterol [7]. Furthermore, 
B ring oxidized steroidal compounds may be used as synthetic reagents 
to make other steroidal products, such as a steroidal pyrazoline [8].

Several ∆5 allylic oxidation methods leading to enone formation 
have been reported and are catalogued in this review. The ∆5 steroidal 
olefins are very common. Other steroidal olefins, with the exception of 
∆4 olefins perhaps, are much less common. As the precursor of steroids, 
cholesterol’s ∆5 moiety is retained until the steroids are enzymatically 
isomerized [9]. Thus, methods stated in this review have many potential 
steroidal substrates.

There are three allylic carbons (C4, C7 and C10) to the C5 double 
bond in a typical steroidal nucleus before isomerization to ∆4. The C10 
carbon is a stable quaternary carbon. Thus, allylic oxidation occurs 
only at C4 and C7, albeit not equally. The C4 carbon is located on 
the sterically hindered β side with its axial hydrogen extending also 
in the β direction. On the other hand, the C7 carbon is located on 
the exposed α side with its axial hydrogen extending further in the α 
direction [10]. There is also an energetic advantage for C7 oxidation. 
Resonance originating from C7 oxidation is more energetically favored 
than resonance originating from C4 oxidation due to delocalization 
to the tertiary C5 carbon rather than to the secondary C6 carbon. It 
was calculated that radical oxidation at C7 is favored by -4.65 kcal/
mol over C4 on a two ring system containing the A and B ring moiety 
of cholesterol [11] (Figure 1). It should be noted as an exception that 
selenium complexes have been reported to oxidize C4 rather than C7 
[12,13]. 

Steroidal compounds can be fairly resistant to deprotonation, 
especially within the B ring. Ring strain, that is incurred from the sp3 
to sp2 hybridization change (bond angle distortion), is higher than that 
of non-fused ring systems due to “conformational transmission” [14]. 
Perhaps this explains why the oxidative methods surveyed in Tables 
1-5 occur exclusively through a radical mechanism. With respect to
the radical mechanism, it is important to note that tertiary carbons are
present on steroidal compounds that can be radically oxidized leading
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Abstract

Introduction of α, β-unsaturated ketones to ∆5 steroidal olefins changes the characteristics and biological function 
of those compounds. Several synthetic methods have been reported to accomplish carbonyl introduction to ∆5 steroidal 
olefins. Herein, this short review will catalogue many of those oxidative methods, particularly those proceeding through 
a peroxide intermediate and/or use chromium complexes as reagents.

Figure 1: C4 and C7 resonance demonstrated by a two ring system 
with a similar moiety [11].

to undesired side products, one in particular being C25 for steroids 
with side chains [15]. Furthermore, cleavage of the side chain can occur 
concurrent with allylic oxidation [16]. 

Protecting the C3 hydroxy group is commonly accomplish by 
esterification using acetic anhydride to make cholesteryl acetate. 
The authors of this review prefer esterification with benzoyl chloride 
since cholesteryl benzoate products can be more easily isolated with 
recrystallization in acetone and water than the steroidal acetates. This 
esterification is necessary because many oxidants and catalysts will 
convert the C3 hydroxyl group to a ketone [17]. 

Due to interest in “green” or environmentally benign chemistry, 
chemists have questioned the ethics of earlier catalysts. Environmental 
and health concerns have motivated the search for new oxidants and 
catalysts [18]. From chromium based catalysts, the next phase in 
steroidal allylic oxidation manifested through more environmentally 
friendly metallic catalysts that use TBHP as an oxygen donor. Meanwhile, 
several methods have been reported to give steroidal oxidation without 
any metal catalysts using as sodium chlorite and sodium hypochlorite 
[19,20]. Additionally, recoverable heterogeneous catalysts, clay 
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Substrate: Cholesterol

Catalysts, Reagents, Solvents and Conditions TBHP used as Oxidant 
(Yes/No) Date Reported % Yield Reported Reference #

Rh2(cap)4, DCM (DCE), r.t, 15 h Yes 2009 30 [26]
Rh2(cap)4, DCM (DCE), r.t, 20 h Yes 2007 63 [27]

NaOCl, DCE, 4°C, 10 h Yes 2004 68 [20]
CrO3/NHPI-activated clay, DCM, r.t, 58  h No 2009 52 [21]

2-quinoxalinol salen Cu(II) complex catalyst, Acetonitrile, 70°C, 12 h Yes 2010 69 [11]
RuCl3, Cyclohexane, r.t, 24 h Yes 1996 51 [28]

VOCl3, r.t, 5 days Yes 2015 45 [29]

Table 1: Cholesterol to 7-ketocholesterol.

Substrate: DHEA

Catalysts, Reagents, Solvents and Conditions TBHP used as Oxidant 
(Yes/No) Date Reported % Yield Reported Reference #

Rh2(cap)4, DCE, 40°C, 20 h Yes 2007 74 [27]
NaOCl, Ethylacetate/Tert-butanol (8:2), 4°C, 10 h Yes 2004 70 [20]
CrO3/NHPI-activated clay, DCM, r.t, 58 h No 2009 67 [21]
BiCl3, Acetonitrile, 70°C, 28 h Yes 2005 80 [30]
BiCl3/K-10, Acetonitrile, 70°C, 11 h Yes 2005 77 [30]
NaClO2, Acetonitrile/Water (2:1), 50°C, 20 h Yes 2007 65 [19]
NaClO2/NHPI, Acetonitrile/Water (2:1), 50°C, 11 h No 2007 50 [19]
VOCl3, r.t, 5 days Yes 2015 19 [29]

Table 2: DHEA to 7-keto DHEA.

supported and organometallic polymer catalysts, have been reported to 
yield allylic oxidation products of steroidal compounds [21–23].

Reported Methods
The following Tables 1-5 are divided by substrates used in our allylic 

oxidation reaction with TBHP and vanadium complexes. Reagents, 
conditions, dates, and isolated yields reported for various steroidal 
allylic oxidation reactions are displayed. All reagents are listed, with 
TBHP given a special column (TBHP was mainly, if not exclusively 
used).

Caution must be taken when comparing the reported yields 
because there were various methods used to identify “isolated” yields 
(using HPLC instead of obtaining mass for example) [20], differing 
standards on purity of the isolated product (i.e., reporting an isolated 
yield that is 67% pure) [19], differing sampling sizes, and an overall lack 

of supporting information. Several reported steroidal allylic oxidation 
reactions have not been included in the tables due to low yields of 7-keto 
product, such as oxygen irradiation with and without photosensitizer 
[24] and Gif chemistry [25]. 

The importance of identifying TBHP usage in allylic oxidation 
reactions is that those reactions share a similar intermediate. It has been 
noted, “that different catalysts produce essentially the same mixture of 
products with the same relative yields suggests that the catalyst is not 
involved in product-forming steps” [26]. Indeed, tert-butoxide and 
tert-butyl peroxy radicals are formed through degradation of TBHP by 
catalysts. Those radicals then oxidize steroidal compounds [19,20,26-
33,36]. 

All of the reactions in Table 1-5 can be funneled, generally speaking, 
into two mechanisms. The first mechanism, oxidation through 
formation of a C7 peroxide, is shared by auto-oxidation, TBHP-metal 
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Substrate: Pregnenolone

Catalysts, Reagents, Solvents and Conditions TBHP used as 
Oxidant (Yes/No) Date Reported % Yield Reported Reference #

Rh2(cap)4, DCE, 40°C, 20 h Yes 2007 40 [27]
CrO3/NHPI-activated clay, DCM, r.t, 58 h No 2009 54 [21]
2-Quinoxalinol salen Cu(II) complex catalyst, Acetonitrile, 0°C, 12 h Yes 2010 53 [11]
VOCl3, r.t., 5 days  Yes 2015 24 [29]

Table 3: Pregnenolone to 7-ketopregnenolone.

Substrate: Cholesteryl Acetate

Catalysts, Reagents, Solvents and Conditions TBHP used as Oxidant 
(Yes/No) Date Reported % Yield Reported Reference #

Co(OAc)2/SiO2, Benzene, 50°C, 24 h, N2 Yes 2001 70 [22]
ZrO2/SiO2/Cr(VI), Benzene, r.t, pH 3 Yes 1999 48 [31]
RuCl3, Cyclohexane, r.t, 24 h Yes 1996 51 [28]
Rh2(cap)4, DCE, 40°C, 20 h Yes 2007 80 [27]
TiO(acac)2, Benzene, 80°C, 24 h, Ar Yes 1981 25 [32]
98 VO(acac)2, Benzene, 80°C, 24 h, Ar Yes 1981 26 [32]
Cr(acac)3, Benzene, 80°C, 24 h, Ar Yes 1981 52 [32]
Mn(acac)2, Benzene, 80°C, 24 h, Ar Yes 1981 11 [32]
Mn(acac)3, Benzene, 80°C, 24 h, Ar Yes 1981 10 [32]
Fe(acac)3, Benzene, reflux, 24 h, Ar Yes 1979 74 [32]
Co(acac)2, Benzene, 80°C, 24 h, Ar Yes 1981 12 [32]
Co(acac)3, Benzene, 80°C, 24 h, Ar Yes 1981 43 [32]
Ni(acac)2, Benzene, 80°C, 24 h, Ar Yes 1981 38 [32]
Cu(acac)2, Benzene, 80°C, 24 h, Ar Yes 1981 83 [32]
Ce(acac)2, Benzene, 80°C, 24 h, Ar Yes 1981 24 [32]
Cu(Oac)2/SiO2, Benzene, 70°C, 48 h, N2 Yes 2002 72 [23]
CuI, Acetonitrile, reflux, 4 h Yes 2003 79 [33]
CuI/TBAB, DCM, reflux, 4 h Yes 2003 76 [33]
CrO3/Py2, Triflourotoluene, r.t, 31 h, N2 Yes 2006 76 [34]
CrO3/Py2, DCM, r.t, 24 h, N2 No 1969 74 [10]
PCC, DCM, 40°C, 66 h Yes 2006 41 [34]
CrO2, Acetonitrile/Benzene (9:1), reflux, 72 h, N2 No Note 48
Cr(CO)6, Acetonitrile, reflux, 15 h Yes 1985 80 [35]
Mn3O(Oac)9, Ethyl Acetate, 40°C, 48 h, N2 Yes 2006 87 [36]
NaOCl, DCE, 4°C, 10 h No 2004 68 [20]
2-QuinoxalinolsalenCu(II) complex catalyst, Acetonitrile, 70°C, 
12 h Yes 2010 97 [11]

BiCl3, Acetonitrile, 70°C, 22 h Yes 2005 82 [30]
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NaClO2, Acetonitrile, 60°C, 80 h Yes 2007 66 [19]
NaClO2/NHPI, 1,4-dioxane/water (3:1), 50°C, 25 h No 2007 60 [19]
VOCl3, r.t, 5 days Yes 2015 83 [29]

Table 4: Cholesteryl acetate to 7-ketocholesteryl acetate.

Substrate: Cholesteryl Benzoate’

Catalysts, Reagents, Solvents and Conditions TBHP used as Oxidant (Yes/No) Date Reported % Yield 
Reported Reference #

PFC, Benzene, reflux, 48 h, N2 No 1996 88 [37]
CrO2, Acetonitrile/benzene (9:1), reflux, 72  h, N2 No Note 52 [35]
CrO3/DMP, DCM, -10°C to -20°C, 4 h No 1978 75 [38]
PCC, Benzene, refluxed, 24 h, N2 No 1987 87 [39]
VOCl3, r.t, 5 days Yes 2015 98 [29]

Table 5: Cholestryl benzoate to 7-ketocholesteryl benzoate.

 

Figure 2: TBHP and singlet oxygen oxidation’s shared mechanism. 
5,6-epoxicholesterol may be a side product.

 

Figure 3: Suggested mechanism of allylic oxidation by chromium [38].

oxidation, and hypochlorite oxidation. In auto-oxidation, a peroxide is 
formed via singlet oxygen (ene reaction) at the C5 carbon [24], which 
rearranges to the C7 position [40,41]. Likewise, TBHP degradation by 

 

Figure 4: Hydrogen abstraction in benzophenoneaminocholestene [43].

metal leads to radicals that form a C7 peroxide. Bleach initiates radical 
formation from TBHP, similar to the metal catalysts [20]. When only 
sodium chlorite and NHPI are used, NHPI becomes phthalimide 
N-oxyl (PINO), a radical initiator of molecular oxygen [19]. Those 
radicals in addition to radicals formed from ClO2 lead to a C7 peroxide. 
The C7 peroxide degrades to form a ketone or hydroxyl group [40-42] 
(Figure 2).

The second mechanism is that of oxidation via chromium reagent. 
During the first step of the suggested mechanism (Figure 3), there is 
complexation of chromium and a ligand containing a functional group, 
imine preferably, such as DMP or pyridine. After complexation, the 
ligand abstracts the C7 hydrogen leaving a resonating steroidal radical. 
An oxo group on the chromium complex will terminate the radical, 
reducing the chromium. Oxidation of the steroid then proceeds in an 
unspecified manner. It is important to note that the chromium complex 
may be monomeric [38]. 

Acetonitrile, benzene, pyridine, DCM, DCE, trifluorotoluene, 
1,4-dioxane/water, and cyclohexane were used as solvents in Tables 1-5. 
Using laser flash photolysis and benzophenoneaminocholestene, it has 
been shown that the C7 hydrogens are abstracted at a much greater 
rate (more than double) in DCM than in acetonitrile, dioxane, and 
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methanol [43] (Figure 4). Thus, the least polar solvents appear to work 
best for allylic oxidation. This is, however, limited by the solubility of 
the steroidal substrate.

Conclusion
Converting ∆5 steroidal compounds to their corresponding 

enones is an endeavor that has spanned several decades. The authors 
of this review suggest that all of the oxidative methods found within 
this review utilize one of two general mechanisms. One mechanism 
involves formation of a peroxide at the allylic position and the other 
achieves oxidation through reduction of a chromium complex. Both 
mechanisms occur via radical formation. Various solvents were used 
in the reported methods, but flash photolysis experiments from at least 
one article indicate that nonpolar solvents may be more affective.
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