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Abstract

The sequencing of the human genome and technological advances in DNA sequencing have led to a revolution
with respect to DNA sequencing and its potential to diagnose genetic disorders. However, requests for open access
to genomic data must be balanced against the guiding principles of the Common Rule for human subject research.
Unfortunately, the risks to patients involved in genomic studies are still evolving and as such may not be clear to
learned and well-intentioned scientists. Central to this issue are the strategies that enable human participants in
such studies to remain anonymous, or de-identified. The wealth of genomic data on the Internet in genomic data
repositories and other databases has enabled de-identified data to be broken and research subjects to be identified.
The security of de-identification neglects the fact that DNA itself is an identifying element. Therefore, it is
questionable whether data security standards can ever truly protect the identity of a patient, under the current
conditions or in the future. As Big Data methodologies advance, additional sources of data may enable the re-
identification of patients enrolled in next-generation sequencing (NGS) studies. As such, it is time to re-evaluate the
risks of sharing genomic data and establish new guidelines for good practices. In this commentary, I address the
challenges facing federally funded investigators who need to strike a balance between compliance with federal (US)
rules for human subjects and the recent requirement for open access/sharing of data from National Institute for
Health (NIH)-funded studies involving human subjects.
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Introduction
The release of the human genome sequence has given rise to new

approaches for medicine. The linking of genomic information and
patient health information, coupled with advances in computing and
informatics techniques, has the potential to herald a new era of
molecular medicine. Advanced medical diagnostics, prognostics and
therapeutic tailoring are all potential benefits from such discoveries.
However, the massive amount of data collected and the potential for
identification pose risks to patients who agree to participate in
genomic studies. Central to this following commentary is the fact that
attempts to de-identify patient data may be futile given that a patient’s
genomic information (DNA) may be the “ultimate identifier”. Here I
consider the potential benefits and risks that must be balanced in
genomic studies.

Benefits of Genomic Studies for Medicine
Technological advances have facilitated the development of cheap,

high-throughput sequencing systems, now capable of sequencing a
human genome for $1000 [1,2]. Advances in bioinformatic techniques
and powerful computational methods to collate and mine biologically
important information from genomic datasets have kept pace with this
data explosion. As the use of bioinformatic techniques becomes more
common in clinical research, and genetic and genomic information is
linked to patient health records, the power of these techniques
increases. This is a classic view of Big Data, whereby genomic data is

linked to health information to generate more advanced and subtle
health information for an individual patient. Such initiatives are
currently being launched on both national and international scales [3].
As such, the benefits to society can easily be determined based on the
health benefits from NGS technologies.

The potential for societal benefit from genomic studies is very high,
although still being realized [4]. Advanced molecular diagnostics may
revolutionize the identification (diagnosis) of disease. Examples where
such advances have increased our understanding of disease include
understanding the role of mutations in cancer pathologies resulting in
a molecular basis for cancer diagnosis [5], understanding the role of
genomic abnormalities in neurological disorders [6], the development
of pre-natal screening methods using maternal blood samples [7], and
enhanced diagnostic tools for acute neurological injury [8]. Potentially,
patients who are at risk of developing diseases can be identified, and
prevention programs specifically tailored to a patient’s genetic profile
can be devised. It may also be possible to establish a measure of disease
and healthiness.

The use of genomics to predict patient response to therapy may
enable the individualization of medicine. Genetics or genome profiles
could be used to identify therapeutics that offer a patient the greatest
benefit and least risk. This is no longer theoretical; KRAS signalling
mutations have been used to guide therapy [9]. This customized or
precision medicine-based therapeutic strategy may radically change
current approaches for rationalized therapy for many disorders, not
just cancer.

In order to build a detailed knowledge of how genomics profiles
affect susceptibility to disease and therapeutic responses, we need to
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analyze large genomic data sets. Such data sets can only be created or
collated by large multi-center projects or by sharing data. The goal
behind data sharing is to maximize the knowledge gained from a given
study. Data from a given project may by useful in other related
projects. For example, studies of the mechanisms of cell death in
cancer have guided studies of cell death in neurological disease, where
a reduction in cell death is the goal. In addition, by sharing data,
researchers can combine data, potentially increasing the power of a
given study. Data sharing is important when multi-center initiatives
generate data; common data handling and data standards enable the
harmonization of resources (for example, standards proposed by the
Global Alliance for Genomics and Health). From a financial
standpoint, data sharing also reduces unnecessary replication, while
allowing maximal access to given datasets. Therefore, as multi-center
initiatives in genomics develop, the shared data resources available to
researchers will become invaluable. However, data sharing must be
balanced against the protection of privacy [10].

NIH Genomic Data Sharing Policy
To maximize the benefits of large (complex and expensive) datasets,

the NIH recently requested that all genomic data generated from NIH-
funded projects be made available to the community under shared or
controlled access. Given the potential benefits to society (see above)
and the wealth of information available to researchers, one can clearly
see how shared access to such data will assist in the biomedical
research of disease.

NIH (Not OD-13-119) set forth the planned NIH genomic data
sharing policy such that all NGS data generated by federal funds be
shared [11]. A few points in the policy are cause for concern. First,
while removal of personal identification information from the data set
is requested, the guideline is not as detailed as the HIPPA standard for
de-identification. Second, the policy states that “prior to data
submission, traditional identifiers such as name, date of birth, street
address, and social security number should be removed. The de-
identified data are coded using a random, unique code to protect
participant privacy [11].” However, there is a fundamental assumption
that the sequence data is not itself an identifier or a potential source of
data for identification. Recent studies challenge this assumption.

Identifying personal genomes by surname inference
Patients can be re-identified using DNA sequence information. In a

study by Grymek et al. reported in Science in January 2013, the
surnames of de-identified human subjects were recovered from
chromosome Y tandem repeat data and genealogical databases [12].
The authors used freely available public Internet data to perform the
analysis. The Grymek study noted that consent forms identified data
breech as a security risk, that re-identification was not prevented, that
privacy could not be guaranteed, and that future techniques might be
able to identify the subjects [12]. The study concluded that surname
inference from public databases is feasible, putting the privacy of
current de-identified data sets at risk. One of the more troubling
aspects of the Grymek study is that one of the co-authors, who
developed the software used in the study, decided to perform the study
because “they could not resist trying” [13]. This suggests a potentially
worrying lack of oversight or regulation.

However, the idea that DNA can identify a participant is not new. In
2006, public records and death records enabled a researcher to identify
people based on familial pedigree studies of genetic markers [14]. Use

of genealogical databases has resulted in the parental identification of
adopted children [15]. In addition in 2008 and 2011, information from
GWAS studies enabled participant identification [16,17]; the more
information about mutations in a person’s genome the greater the risk
of identification. While the identification of a family or parent of a
child may have damaging consequences, far more information can be
extracted from genomic information.

The significance of the Grymek study, with respect to its relevance
to the US population, has been challenged. Indeed, some groups
believe that the study was published to appeal to the media rather than
to inform the public of real re-identification risks [18]. The surname
inference algorithm was tested first against a well-known individual
who had published his genome (Craig Venter) and then against a well-
defined population (Utah residents of European ancestry associated
with the Mormon Church) [12]. Of note, the data set had previously
been shown to be vulnerable to re-identification. Critics also opine that
the re-identification study was only possible in an academic
department with appropriate resources [18]. These opinions fail to
acknowledge the fact that as more information becomes available via
databases and online repositories, further inferences will be possible,
especially when other pieces of information can be ascertained from
public sources and built into the model.

One consideration that may not be immediately obvious to a
genomic study participant is the power of Big Data approaches to
obtain information from non-traditional sources, such as social media,
for example [19]. Big Data approaches are being evangelized and
debated for their potential benefits to society. However, less
consideration has been given to the privacy concerns associated with
Big Data. Facebook is estimated to have over one billion users. Such
sites, thus provides a wealth of personal information that can be mined
and used for identification purposes along with a few demographical
identifiers. Newer biometric devices also give access to health
information. The number of internet connected devices is predicted to
top 50 billion in 2020 [20]. Therefore, social media and online
resources contain a wealth of data that could be used to assist in
patient identification.

While Big Data may not immediately pose a threat to re-
identification, there is cause for concern in the future. Techniques and
algorithms to mine large data sets have been developed, and similar
algorithms might be adapted to mine publically available data for
similar inferences and personal data. An issue with Big Data is the
vagueness of the term and processes involved, as well as the lack of
transparency around what Big Data is and those performing the
research. Here we define Big Data as a process of sifting and
assimilating disparate data to obtain meaning, but other definitions are
also used. Recent revelations of the scope of Big Data collection and
infrastructure infiltration by the National Security Administration
(NSA) in the USA has resulted in fears for privacy that are hard to
overcome. A consideration of the risk to benefit of Big Data is beyond
the scope of this review, but one must be mindful of the power of such
large computational systems to infer from disparate and varied social
media sites as well as from more identifiable sources of health-
associated information.

Recent studies suggest that younger generations are more open than
older generations when it comes to sharing personal information [21].
As direct-to-consumer DNA sequencing services (such as 23andMe
and genealogy services) become available, the open nature of the
former demographic may result in open access online sharing of
personal information [22]. The consequences of open sharing are
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probably not acknowledged, but the risks should be clearly identified.
This is especially pertinent for participants in genomic studies, as the
ability to identify a patient using information about gene mutations
becomes possible and Big Data methodologies become more refined.

The challenge to the community is to determine what changes to the
rules and regulations regarding what one can do with genomic
information are needed. In the future, it is likely that participants will
be identifiable from their genetic/genomic information. As such, it is
perhaps unrealistic to attempt to guarantee the privacy or anonymity
of participants. It is recommended that the public be better educated
during the consent process about the risks of identification.

What is the damage of releasing personal genomic data and
data from sequencing?

When considering the risks to a participant in a genomic study, one
should consider why re-identification would be an issue for a
participant. Clearly, the identification of a participant and their
genomic information, with information about mutations associated
with disease, would enable a number of inferences about the person,
their current health and their future health. Notwithstanding the
academic question of whether one can re-identify a given patient in a
study, other groups may have an interest in such data (this is not an
exhaustive list):

Insurance companies: Federal rules and laws prohibit medical
insurance discrimination based on genetic data. However, the
enforcement of such polices may be problematic, and violation of such
rules may be hard to prove. While health insurance cannot be denied
or rates increased because of genetic disorders [23,24], other forms of
insurance, such as long term care policies, are not subject to these laws.
This may need to be addressed in the near future.

Employment: Some opinion posts suggest that employers may
discriminate on the basis of finding certain diseases or personality
traits. This is prohibited under the 2008 Genetic Information Non-
discrimination Act (GINA). For example, certain APO4E variants are
associated with a markedly higher risk of Alzheimer’s disease. Would
an employer hire someone with a heightened chance of Alzheimer’s or
other costly disorder? In 2010, a patient filed a GINA lawsuit against
her employer for dismissal subsequent to a BRACA1-positive test
result [25]. This case was settled out of court with a non-disclosure
agreement.

Law enforcement: A commonly cited, albeit theoretical concern, is
the ability to match genomic data to DNA fingerprinting data. DNA
fingerprinting involves the identification of DNA microsatellite
patterns. Such sequences could be interpreted from an annotated
genome and then used to search DNA fingerprinting files. This
remains a theoretical concern at this time.

Unknown family members: Genealogical data has already been
useful in searches for parents, either by adopted children or children
conceived through artificial donor insemination. A recent case in
Kansas, in which a donor was sued for child support, highlights some
of the potential issues associated with this situation [26]. The case was
prosecuted by the state, even though the donor had signed away his
paternal rights. In addition to the obvious cost, confrontations between
sperm donors and potential children could cause substantial personal/
social issues.

Criminals (blackmail): A genetic trait or vulnerability could be used
to extort money. In addition, one could easily envision a scenario in

which paternity and evidence of communicable disease could be
prosecuted as illegal activity. No cases of genetic data being used to
blackmail a person have yet surfaced.

Other: Another concern with the release of identifiable genetic/
genomic information is the potential consequence for other family
members. The recent controversy surrounding the sequencing and
publication of the HeLa cell genome [27] and the effect on the family
of Henrietta Lacks resulted in a new NIH policy on genomic studies of
HeLa cells (NOT-OD-14-08). Few diseases have such direct a
correlation between risk and disease, when the disease is not already
apparent or predictable. For example, Huntington’s chorea has a strong
identifiable familial linkage, and BRCA mutations are associated with a
high risk of certain cancers, but other progressive diseases are not as
easily identifiable in genetic data at this time. The risk in this situation
is that a person may not possess the knowledge or tools to correctly
interpret the data or the risk, leading to unfortunate consequences.
James Watson discovered that he had a BRCA mutation. Fortunately,
he obtained genetic counselling before announcing the discovery to
family members. The mutation was not associated with disease,
therefore obviating the need additional testing. However, this is a clear
example of the potential for harm from limited data. Indeed, one
recent post suggests that only negative information is obtained from
DNA mutations [28]. Clearly, there is concern is for family members of
identified people with genetic indicators that predict a higher
likelihood of diseases that have expensive and/or prolonged therapies.

Disorders with a genetic basis can be predicted directly from
genetic/genomic data (types 1-3). Once a potential candidate for a
disease is identified, the challenge is to identify the person. It is hoped
that legislation will thwart such use of genetic data, either by limiting
the use of genetic information for insurance calculations or prohibiting
re-identification [18].

What other information can be obtained from genomic data?
Most of the risk associated with genetic/genomic studies involves

the identification of human diseases with a genomic basis and
subsequent patient identification. A second and perhaps less obvious
risk is the potential to identify infectious diseases from genomic/
genetic data sets. The current data policy enables the identification of
non-human DNA from other micro-organisms such as bacteria and
viruses. The NIH policy states that both aligned and unaligned reads
are to be submitted (Level 2 data file (e.g. binary alignment matrix
(BAM) or equivalent). A BAM file is an indexed data file that contains
the sequence and genomic location of a sequenced section of DNA.
The request for unaligned reads is a potential for concern, because
these data contain information on DNA that does not align to the
human genome, for example viral or bacterial DNA information. There
may be risks if such information can be matched to a given patient.
Such a concern is not theoretical. It was recently shown that microbes
associated with sexually transmitted infections (STIs) could be
identified in asymptomatic patients [29]. In this study, S16 ribosomal
RNA patterns were used to identify various STIs once the human
sequences were removed from the data set. This in essence is the same
data as “unmapped DNA”, which is required in NIH data submissions
[11]. Therefore, similar approaches could be used to identify bacterial
or viral genetic information from a patient’s tissue. For example,
evidence of hepatitis C or human papilloma virus might be used to
increase the cost of health insurance due to the long-term potential
cost of hepatitis and HPV-induced cancers. A second and perhaps
more nefarious use of such data would be to blackmail or extort a
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patient to prevent public release of this information. In addition, a
social stigma is frequently associated with STIs, which could affect
patient decisions in consenting to infectious disease research [30].

The identification of infectious diseases requires raw sequencing
data (level 1 data) or unaligned level 2 data. NIH policy suggests
depositing the unaligned reads in the database. This would make
searching easier, because the data will have already been filtered for
human genomic sequences, thereby reducing the computational power
required for such studies.

However, while we see the risks in such information, it is clear that
the information is also beneficial to research. A number of projects
have focused on the characterization of the microbiome, a complement
of microbial organisms in different body compartments that influence
human health. This area of research is currently a focus for the NIH,
because it has the potential to change how we view disease.
Furthermore, the identification of viral infections may assist
epidemiological infectious disease research. Hence, these data have
utility, but a patient should be able to assess the risk of consenting to
such a study.

Consideration of other “omic” data sets
Considerations of the risks associated with genomic information

mostly focus on DNA sequencing. However, the sequencing of all gene
products should be subject to a similar risk assessment. The
methodology used by Grymek to identify patients from tandem repeat
analysis [12] may not be applicable to RNA-seq, because these
elements may not be transcribed into RNA. However, because RNA is
directly transcribed from DNA, it is easy to infer the DNA sequence
from the RNA sequence. Furthermore, it may be easier to identify a
person from RNA than from DNA. Protein coding regions of
DNA/RNA show low rates of single nucleotide polymorphisms (SNPs),
whereas non-coding regions of RNA, such as intergenic and intronic
RNA, have higher rates of base differences/SNPs [31]. Therefore,
unique differences in these regions could be identifiers. Protein-based
sequencing (proteomics) may also be subject to similar considerations;
both proteomics and RNA sequencing can identify bacterial or viral
products. Therefore, it is prudent to consider genomic product
sequence information with the same rigor as DNA sequence
information.

How can we reduce the risk to patients and maintain
potential benefits?

What is a potential solution? There are risks for a participant in a
genomic study, but there are potential benefits too. Clearly, a consent
form will have to address both. How to draft a consent form so as to
describe the above risks while balancing them against potential
benefits is an area of debate [10,32]. Two points seem central to the
discussion. The first and central point is that DNA is an identifier; the
removal of names and other protected health information/identifiers
may be rendered mute by this fact. Therefore, claims of privacy and
confidentiality must be grounded in a forward-looking perspective.
Second, many debates have focused on informatics data release posing
a minimal risk of harm. I contend that this may not be the case, and
that provisions within the framework for determining the minimal risk
of genomic studies may not be appropriate.

Previous approaches have used a broad consent process, whereby
the participant is generally informed of the risks of participating in
research, with specific risks associated with a particular type of

research not included. It has been argued that a broad consent can be
used if the details of governance are laid out to the participant [33].
This argument has been rejected by others [34], and more dynamic/
continuous consent processes have been proposed [35,36]. This
approach has many merits, including the ideal that research
participants be kept informed and involved in the research process. A
prospectively obtained broad consent may be limited in its ability to
accurately spell out the potential future risks of identification or future
risks in information revealed in a genomic dataset. Since the autonomy
of a subject participating in a research program is clearly challenged by
a broad consent form, a broad consent no longer appears the
appropriate mechanism for genomic studies. However, counter to this
argument, a highly detailed consent form is also unlikely to result in a
“reasonably informed person”.

The recent proposed changes for NIH-funded genomics studies
recommend that future IRB consent forms include language informing
patients that their genomic data will be shared for future research.
Sharing in open access repositories requires explicit consent [11]. An
allowance is made to enable controlled data access, especially if
informed consent was not obtained. Such limited access must be
outlined in the grant submission. “Upon request, limited controlled
access for submitted data can be requested. In such a situation the
institution can restrict what the data will be used for. The requestor
must then have their project approved by NIH and are subject to
restrictions on what they can do with the data.” Notably, in surveys of
attitudes to data sharing patients express a greater level of comfort
when the data is restricted to approved researchers [30].

In devising the consent form for genomic studies, a decision
regarding the potential use of the data might be necessary. This is
clearly easier for a defined genomic study than for a biobank/
repository consent form. A recent presidential review committee
strongly suggested that Whole Genome Sequencing studies should not
be performed without explicit consent (a position this author is in
agreement with) [37]. As such, opt out should not be used when there
is the potential for future sequencing. Furthermore, consent forms
need to include language about the risks of genome sequencing and
determine what data sets are released. NIH data sharing policies
require sharing of level 2 or human genome aligned BAM files (Table
1). The question then remains: do we want to publically release the
data in an open access format, or should all human data be on a
restricted access policy? The public seem more comfortable with
restricted access release [30]. A tiered consent form could address
these options, or dynamic consent could inform a participant of the
potential uses of the samples. To increase a participant’s trust in a
project, details in a consent form may also address how restricted
access will be governed [33].

NIH polices request the release of unaligned data. The release of
unaligned data may have great utility, for example identifying infection
in a population or microbiome changes associated with a clinical
condition or disease. Given the risks identified above, a separate
explicit consent may be considered if data will also be aligned to non-
human reference genomes. Perhaps re-analysis of data to reference
genomes not explicitly referenced in the original consent procedure
protocol should require an amendment of the original IRB protocol
and even re-consent of the participant. A second issue not discussed
above is the requirement for reporting if evidence is gained for certain
transmittable diseases. As NGS technologies become used for clinical
diagnostics, this may soon require further consideration (Table 1).
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Data Levels File type Description Information contained in data

Level 0 Image file (.Tiff) Raw data obtained from the DNA sequencing
system. Depends on the methodology of the
sequencer, but typically either a series of images,
or a reading of individual bases

Limited raw data. This usually requires
additional information to decode the
individual base sequences and assign them
to a given sample.

Level 1 Raw read files (fastq, xsq, ssf) Cleaned raw read files, where raw data is
converted into a series of DNA bases and the
quality of the DNA sequence is determined.

These files contain all of the raw DNA
sequence information of a patient. However,
they are not yet aligned with the host
(human?) genome. Also contains non-human
DNA sequences from non-human, i.e. viral,
DNA present in the sample.

Level 2 Aligned data files (BAM, SAM, CRAM) DNA reads are aligned to their corresponding
location on the host (human Genome). DNA reads
that do not align with the host can be re-analyzed
for alignment to other genomes (i.e. bacterial or
viral). For RNA, this includes RNA expression
profiling.

The alignment of files enables rapid
identification of the species the DNA comes
from and its location within the genome. This
enables rapid identification of mutations, etc.

Level 3 Analysis software data output
(proprietary format, or spreadsheet/
database file)

Analysis of DNA sequences to identify base
mutations expression patterns or other features of
the data set.

These files contain summaries of the
“features” of the data, for example mutations,
or gene expression values. Typically
generated from the analysis software.

Level 4 Sequence data aligned to phenotype
(proprietary format, or spreadsheet/
database file).

Summarized data, with key features identified
along with clinical features (phenotype)

These files combine the “features” with the
clinical data (phenotype).

Table 1: Data levels obtained in DNA sequencing studies. DNA sequencers function by identifying the sequence (base composition) of short reads
of DNA. These reads are then aligned with a reference genome. Therefore, data obtained from sequencers typically comprises raw image files
(Level 0), raw read files (Level 1) aligned and cleaned data files (Level 2), analyzed data files (Level 3), and data correlated to phenotype (Level 4).

One central theme here is that DNA is an identifier. However,
additional pieces of information can assist in the identification of a
patient. De-identification strategies have focused on the removal of
four critical identifiers: name, date of birth, address and social security
number. The Health Insurance Portability and Accountability of 1996
Act (HIPAA) suggests scrubbing of 19 potential determining factors.
In the Gymek study [12], dates of birth were inferred from ages. As
such, the question remains: if ages were stratified in 5-10 year blocks,
rather than in 1-year divisions, would the data still have as much utility
to a researcher? If data stratification is performed using age, 10-year
blocks may be sufficient to at least make attempts of re-identification
based on age harder, but not impossible with enough information.
Therefore, it would seem appropriate to release stratified rather than
absolute ages of participants.

Studies that have been able to re-identify patients have relied on a
reference [12,16,17]. Guidelines to assist participants in remaining un-
identified may be considered and suggested. Indeed, many studies of
re- identification suggest we must educate patients to the risk of such
studies. The following are potential inclusions to consent forms:

Explain whether the genomic data will or will not be released to
open access or restricted access database repositories

Tier the consent form to include human and non-human (infectious
disease) genomic data.

Explain that absolute privacy cannot be guaranteed in the future

Explain that the patients may compromise their privacy via the use
of genealogical studies etc. and other social media platforms

Final Comments
The Big Data revolution is upon us, and a key contributor to this

movement is the largescale acquisition of genetic information linked to
clinical/health information [3]. As we move into a new era of data
science and information-driven healthcare, we must determine best
practices to ensure minimal risk to patients and maximal societal
benefit from the data generated. Public trust in science is paramount
for the success of such studies. While guidance for scientists involved
in such research is becoming clearer, the area is quite complex,
combining elements of ethics and risk assessment, as well as research
science [38]. We will not be able to foresee all risks regarding
information release, but with some foresight, we can attempt to reduce
the risks.
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