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Abstract
In the past decade, adaptive design methods in clinical research have attracted much attention because it offers 

the principal investigators (1) potential flexibility for identifying clinical benefit of a test treatment under investigation, 
but efficiency for speeding up the development process. One of the most commonly considered adaptive designs 
is probably a two-stage seamless (e.g., phase I/II or phase II/III) adaptive design. The two-stage seamless adaptive 
designs can be classified into four categories depending upon study objectives and study endpoints at different 
stages. These categories include (I) design with same study objectives and study endpoints at different stages, (II) 
designs with same study objectives but different study endpoints at different stages, (III) designs with different study 
objectives but same study endpoints at different stages, and (IV) designs with different study objectives and different 
study endpoints at different stages. In this article, an overview of statistical methods for analysis of these different 
types of two-stage designs is provided. In addition, a case study concerning the evaluation of a test treatment for 
treating hepatitis C infected patients utilizing type (IV) trial design is presented.
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Introduction
In the past decade, adaptive design methods in clinical research 

have attracted much attention because it offers the principal 
investigators (1) potential flexibility for identifying clinical benefit of 
a test treatment under investigation, but efficiency for speeding up the 
development process. The FDA adaptive design draft guidance defines 
an adaptive design as a clinical study that includes a prospectively 
planned opportunity for modification of one or more specified aspects 
of the study design and hypotheses based on analysis of data (usually 
interim data) from subjects in the study [1]. As it is recognized by many 
investigators/researchers, the use of adaptive design methods in clinical 
trials may allow the researchers to correct assumptions used at the 
planning stage and select the most promising option early. In addition, 
adaptive designs make use of cumulative information of the on-going 
trial, which provide the investigator an opportunity to react earlier to 
surprises regardless of positive or negative results Thus, the adaptive 
design approaches may speed up the drug development process.

Despite the possible benefits for having a second chance to modify 
the trial at interim when utilizing an adaptive design, it can be more 
problematic operationally due to bias that may have introduced to the 
conduct of the trial. As indicated by the FDA draft guidance, operational 
biases may occur when adaptations in trial and/or statistical procedures 
are applied after the review of interim (unblinded) data. As a result, 
it is a concern whether scientific integrity and validity of trial are 
warranted. Chow and Chang [2] indicated that trial procedures include, 
but not limited to, inclusion/exclusion criteria, dose/dose regimen 
and treatment duration, endpoint selection and assessment and/or 
laboratory testing procedures employed. On the other hand, statistical 
procedures are referred to as study design, statistical hypotheses 
(which can reflect study objectives), endpoint selection, power analysis 
for sample size calculation, sample size re-estimation, and/or sample 
size adjustment, randomization schedules and statistical analysis plan 
(SAP). With respect to these trial and statistical procedures, commonly 
employed adaptations at interim include sample size re-estimation 
at interim analysis, adaptive randomization with unequal treatment 
allocation (e.g., change from 1:1 ratio to 2:1 ratio), deleting, adding, or 

modifying treatment arms after the review of interim data, (4) shifting 
in patient population due to protocol amendment, different statistical 
methods, (6) changing study endpoints (e.g., change response rate 
and/or survival to time-to-disease progression in cancer trials), and 
changing hypotheses/objectives (e.g., switch a superiority hypothesis 
to a non-inferiority hypothesis). Therefore, the use of the adaptive 
design methods in clinical trials seems promising because of its 
potential flexibility for identifying any possible clinical benefit, signal, 
and/or trend regarding efficacy and safety of the test treatment under 
investigation. However, major adaptations may have an impact on the 
integrity and validity of the clinical trials, which may raise some critical 
concerns to the accurate and reliable evaluation of the test treatment 
under investigation. These concerns include (1) that the control of the 
overall type I error rate at a pre-specified level of significance, (2) that 
the correctness of the obtained p-values, and (3) that the reliability of 
the obtained confidence interval. Most importantly, major (significant) 
adaptations may have resulted in a totally different trial that is unable 
to address the scientific/medical questions the original study intended 
to answer.

As indicated by Chow [3], a seamless trial design is defined as a trial 
design that combines two independent trials into a single study that 
can addresses study objectives from individual studies. An adaptive 
seamless design is referred to as a seamless trial design that would use 
data collected before and after the adaptation in the final analysis. In 
practice, a two-stage seamless adaptive design typically consists of 
two stages (phases): a learning (or exploratory) phase (stage 1) and 
a confirmatory phase (stage 2). The objective of the learning phase is 
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not only to obtain information regarding the uncertainty of the test 
treatment under investigation but also to provide the investigator the 
opportunity to stop the trial early due to safety and/or futility/efficacy 
based on accrued data or to apply some adaptations such as adaptive 
randomization at the end of Stage 1. The objective of the second stage 
is to confirm the findings observed from the first stage. A two-stage 
seamless adaptive trial design has the following advantages that (1) it 
may reduce lead time between studies (the traditional approach); (2) it 
provides the investigator the second chance to re-design the trial after 
the review of accumulated date at the end of Stage 1. Most importantly, 
data collected from both stages are combined for a final analysis in 
order to fully utilize all data collected from the trial for a more accurate 
and reliable assessment of the test treatment under investigation.

As indicated in Chow [3] and Chow and Tu [4], in practice, two-
stage seamless adaptive trial designs can be classified into the following 
four categories depending upon study objectives and study endpoints 
at different stage.

Table 1 indicates that there are four different types of two-stage 
seamless adaptive designs depending upon whether study objectives 
and/or study endpoints at different stages are the same. For example, 
Category I designs (i.e., SS designs) include those designs with same 
study objectives and same study endpoints, while Category II and 
Category III designs (i.e., SD and DS designs) are referred to those 
designs with same study objectives but different study endpoints and 
different study objectives but same study endpoints, respectively. 
Category IV designs (i.e., DD designs) are the study designs with 
different study objectives and different study endpoints. In practice, 
different study objectives could be treatment selection for Stage 1and 
efficacy confirmation for Stage 2. On the other hand, different study 
endpoints could be biomarker, surrogate endpoints, or a clinical 
endpoint with a shorter duration at the first stage versus clinical 
endpoint at the second stage. Note that a group sequential design with 
one planned interim analysis is often considered an SS design. 

In practice, typical examples for a two-stage adaptive seamless 
design include a two-stage adaptive seamless phase I/II design and 
a two-stage adaptive seamless phase II/III design. For the two-stage 
adaptive seamless phase I/II design, the objective at the first stage may 
be for biomarker development and the study objective for the second 
stage is usually to establish early efficacy. For a two-stage adaptive 
seamless phase II/III design, the study objective is often for treatment 
selection (or dose finding) while the study objective at the second stage 
is for efficacy confirmation. In this article, our focus will be placed on 
Category II designs. The results can be similarly applied to Category III 
and Category IV designs.

It should be noted that the terms seamless and phase II/III were not 
used in the FDA draft guidance as they have sometimes been adopted 
to describe various design features [1]. In this article, a two-stage 
adaptive seamless phase II/III design only refers to a study containing 
an exploratory phase II stage (stage 1) and a confirmatory phase III 
stage (stage 2) while data collected at both phases (stages) will be used 
for final analysis. 

One of the questions that are commonly asked when applying a 
two-stage adaptive seamless design in clinical trials is sample size 
calculation/allocation. For the first kind (i.e. Category I, SS) of two-
stage seamless designs, the methods based on individual p-values as 
described in Chow and Chang [2] can be applied. However, for other 
kinds (i.e. Category II to Category IV) of two-stage seamless trial 
designs, standard statistical methods for group sequential design 
are not appropriate and hence should not be applied directly. For 
Category II-IV trial designs, power analysis and/or statistical methods 
for data analysis are challenging to the biostatistician. For example, 
a commonly asked question is “How do we control the overall type 
I error rate at a pre-specified level of significance?” in the interest of 
stopping trial early, “How to determine stopping boundaries?” is a 
challenge to the investigator and the biostatistician. In practice, it is 
often of interest to determine whether the typical O’Brien-Fleming 
type of boundaries is feasible. Another challenge is “How to perform 
a valid analysis that combines data collected from different stages?” to 
address these questions, Cheng and Chow [5] proposed the concept of 
a multiple-stage transitional seamless adaptive design which takes into 
consideration of different study objectives and study endpoints. 

Properties of Two-Stage Adaptive Design
As compared to the traditional approach (i.e., having two separate 

studies), a two-stage seamless adaptive design is preferred in terms of 
controlling type I error rate and power. For comparison of controlling 
the overall type I error rate, consider a two-stage adaptive trial design 
that combines a phase II trial and a phase III study. Let IIα  and α III  be 
the corresponding type I error rate for the phase II trial and the phase 
III study, respectively. Thus, for the traditional approach, the overall 
type I error rate is given by II IIIα α α= . In the two-stage adaptive 
seamless phase II/III design, on the other hand, the actual desired alpha 
is given by IIIα α= . Thus, as compared to the traditional approach, the 
a for a two-stage adaptive phase II/III design is actually 1/ IIα  times 
larger. Similarly, let IIPower  and IIIPower  be the power for the phase 
II trial and the phase III study, respectively. Then, the power for the 
traditional approach is *II IIIPower Power Power= . In the two-stage 
phase II/III adaptive design, the power is given by IIIPower Power= . 
Thus, as compared to the traditional approach, the power for a two-
stage phase II/III adaptive design is 1/ IIPower  times larger.

A two-stage seamless adaptive trial design has the following 
advantages. First, it may help in reducing lead time between studies 
for the traditional approach. In practice, the lead time between end of 
the phase II trial and kick-off the phase III study is estimated about 
6-12 months. This is because that usually the phase III study will 
not be initiated until the final clinical report of the phase II trial is 
completed. After the completion of a clinical study, it will usually take 
about 4-6 months to clean and lock the database, programming and 
data analysis, and final report. Besides, before we kick-off the phase III 
trial, protocol development, site selection/initiation, and IRB review/
approval will also take some time. Thus, the use of a two-stage phase 
II/III adaptive trial design will definitely reduce the lead time between 
studies. In addition, the nature of adaptive trial design will also allow 
the investigator to make a go/no-go decision early (i.e., at the end of 
the first stage). In terms of sample size required, a two-stage phase II/
III adaptive design may require a smaller sample size as compared to 
the traditional approach. Most importantly, a two-stage phase II/III 
adaptive trial design allows us to fully utilize data collected from both 
stages for a combined analysis which will provide a more accurate and 
reliable assessment of the test treatment under investigation.

Study Objectives Study Endpoint
Same (S) Different (D)

Same (S) I=SS II=SD
Different (D) III=DS IV=DD

Source: Chow [2] 

Table 1: Types of Two-stage seamless Adaptive Designs.
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In what follows, an overview of statistical methods for analysis of 
different types (i.e. Category I to IV) of two-stage designs is provided. 
In addition, a case study concerning the evaluation of a test treatment 
for treating patient with hepatitis C infection of a clinical study utilizing 
a Category IV adaptive design is presented.

Analysis for Category I Adaptive Designs
Category I design with same study objectives and same study 

endpoints at different stages is considered similar to a typical group 
sequential design with one planned interim analysis. Thus, standard 
statistical methods for group sequential design are often employed. It, 
however, should be noted that with various adaptations that applied, 
these standard statistical methods may not be appropriate. In practice, 
many interesting methods for Category I designs are available in the 
literature. These methods include (1) Fisher’s criterion for combining 
independent p-values [6-8], (2) weighted test statistics [9] (3) the 
conditional error function approach [10,11] and (4) conditional power 
approaches [12].

Among these methods, Fisher’s method for combining p-values 
provides great flexibility in selecting statistical tests for individual 
hypotheses based on sub-samples. Fisher’s method, however, lacks 
flexibility in the choice of boundaries [13]. For Category I adaptive 
designs, many related issues have been studied. For example, 
Rosenberger and Lachin [14] explored the potential use of response-
adaptive randomization. Chow, Chang, and Pong [15] examined the 
impact of population shift due to protocol amendments. Li et al., [12] 
studied a two-stage adaptive design with a survival endpoint, while 
Hommel et al. [16] studied a two-stage adaptive design with correlated 
data. An adaptive design with a bivariate-endpoint was studied by 
Todd [17] Tsiatis and Mehta [18] showed that there exists a more 
powerful group sequential design for any adaptive design with sample 
size adjustment,

For illustration purpose, in what follows, we will introduce the 
method based on sum of p-values (MSP) by Chang [2,19]. The MSP 
follows the idea of considering a linear combination of the p-values 
from different stages. 

Theoretical framework

Consider a clinical trial utilizing a K-stage design. This is similar 
to a clinical trial with K interim analyses, while the final analysis is the 
K th interim (final) analysis. Suppose that at each interim analysis, a 
hypothesis test is performed. The objective of the trial can be formulated 
as the following intersection of the individual hypothesis tests from the 
interim analyses

0 01 0: ,KH H H∩ ∩

where 0 , 1,...,iH i K=  is the null hypothesis to be tested at the i th 
interim analysis. Note that there are some restrictions on 0iH , that is, 
rejection of any 0 , 1,...,iH i K=  will lead to the same clinical implication 
(e.g. drug is efficacious); hence all 0 , 1,...,iH i K=  are constructed 
for testing the same endpoint within a trial. Otherwise the global 
hypothesis cannot be interpreted. 

In practice, 0iH is tested based on a sub-sample from each stage, 
and without loss of generality, assume 0iH  is a test for the efficacy of a 
test treatment under investigation, which can be written as,

0 1 2 1 2:    versus   : ,i i i ai i iH Hη η η η≥ <

where 1iη  and 2iη  are the responses of the two treatment groups at 

the i th stage and we assume bigger values are better. It is often the 
case that when 1 2i iη η= , the p-value ip  for the sub-sample at the 
i th stage is uniformly distributed on (0, 1) under 0H . Under the null 
hypothesis, Bauer and Kohne [6] used Fisher’s combination of the 
p-values to construct a test statistic for multiple-stage adaptive designs. 
Following similar idea, Chang [19] considered a linear combination of 
the p-values as follows,

1
, 1,..., ,

K

k ki i
i

T w p i K
=

= =∑ 			                 (1)

Where 0kiw >  and K is the number of interim analyses planned. If
1kiw = , this leads to

1
, 1,..., .

K

k i
i

T p i K
=

= =∑ 				                     (2)

kT can be viewed as cumulative evidence against 0H . Thus, the 
smaller the kT  is, the stronger the evidence is. Alternatively, we can 

consider
1

/
K

k i
i

T p K
=

=∑ , which an average of the evidence is against 0H . 

Intuitively, one may consider the stopping rules 

Stop for efficacy   if 
Stop for futility     if ,
Continue                otherwise

k k

k k

T
T

α
β

≤
 ≥



                                                 (3)

Where , , and k k kT α β are monotonic increasing functions of k , 
, 1,..., 1,k k k Kα β< = −  and .K Kα β= Note that  and k kα β  are referred to 

as the efficacy and futility boundaries, respectively. To reach the 
k th stage, a trial has to pass 1 to ( 1)k − th stages. Therefore, a so-called 
proceeding probability can be defined as the following unconditional 
probability:

( )1 1 1 1 1 1( ) , ,...,k k k k kt P T t T Tψ α β α β− − −= < < < < <

1 1

1
1 1

1 1 1( ,..., ) ,k

k
k

t

T T k k kf t t dt dt dt
β β

α α

−

−
−−∞

= ∫ ∫ ∫                   (4)

Where 0, , 1,...,it t i k≥ = is the test statistic at the i th stage, and 
1 kT Tf   is the joint probability density function. Thus, the error rate at 

the k th stage can be obtained as 

( ).k k kπ ψ α= 					                  (5)

Since the typeI error rates at different stages are mutually exclusive, 
the experiment-wise typeI error rate is sum ofπk, k=1,...K. Thus, we 
have 

1
.

K

k
k

α π
=

=∑ 					                    (6)

Note that stopping boundaries can be determined with appropriate 
choices of ak. The adjusted p-value calculation is the same as the one 
in a classic group sequential design[20]. The key idea is that when the 
test statistic at the kth stage k kT t α= = (i.e.just on the efficacy stopping 

boundary), the p-value is equal to alpha spent
1

.k
ii

π
=∑  This is true 

regardless of which error spending function is used and consistent with 
the p-value definition of the traditional design. As indicated in Chang 
[19], the adjusted p-value corresponding to an observed test statistic 

kT t=  at the k th stage can be defined as
1

1
( ; ) ( ), 1,.., .

k

i k
i

p t k t k Kπ ψ
−

=

= + =∑ 		                 (7)
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Thus, it can be verified that 

2 2
1 2 1 1 1 1 1 2

2
1 2 1 1 2

1( ) ( )  for 
2

1 ( )                         for  
2

α α β α β α β α
α

α α α β α
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 + − ≥
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                  (15)

Similarly, under (15), various boundaries can be obtained with 
appropriate choices of 1α , 2α , and 1α (Table 3).The adjusted p-value 
is given by

2 2
1 1 1 1 1 1 2

2
1 1 1 2

                           if 1
1( ; ) ( ) ( )   if 2 and 
2

1 ( )                   if 2 
2

t k

p t k t k

t k

α β α β α β α

α α β α


 =

= + − − − = <

 + − = ≥

     (16)

Where 1t p=  if the trial stops at Stage 1 and 1 2t p p= +  if the trial 
stops at Stage 2.

Early futility stopping – A trial featuring early futility stopping is 
a special case of the previous design, where 1 0α =  in equation (15). 
Hence, we have

2
2 1 1 1 2

2
2 1 2

1   for 
2

1              for 
2

α β β β α
α

α β α

 − <= 
 ≥


			                 (17)

Solving for 2α , it can be obtained that

1 1
12

1 2

1    for 2
2

2        for 

α β β α
βα

α β α

 + <= 
 ≥

			                 (18)

Examples of the stopping boundaries generated using equation 

(18) are presented in Table 4. The adjusted p-value can be obtained 
from equation (16), where 1 0,α =  that is,

Note that ip  in equation (1) is the stage-wise (unadjusted) p-value 
from a sub-sample at the i th stage, while ( ; )p t k  are adjusted p-values 
calculated from the test statistic, which are based on the cumulative 
sample up to the k th stage where the trial stops, equations (6) and (7) 
are valid regardless how ip  are calculated.

Two-stage design
In this section, for simplicity, we will consider the method of sum 

of p-values (MSP) and apply the general framework to the two-stage 
designs as outlined in Chang [19] and Chow and Chang [2] which are 
suitable for the following adaptive designs that allow (1) early efficacy 
stopping, (2) early stopping for both efficacy and futility; and(3) early 
futility stopping. These adaptive designs are briefly described below.

Early efficacy stopping – For simplicity, consider 2K =  (i.e., a two-
stage design) which allows for early efficacy stopping (i.e.,

1 1β = ). By 
(5), the typeI error rates to spend at Stage 1 and Stage 2 are given by

1

1 1 1 1 10
( ) ,dt

α
π ψ α α= = =∫ 			                                 (8)

and
2 1

1

2
2 2 2 2 1 2 1

1( ) ( ) ,
2t

dt dt
α α

α
π ψ α α α= = = −∫ ∫ 	                 (9)

respectively. Using equations (8) and (9), (6) becomes

2
1 2 1

1 ( ) .
2

α α α α= + − 				                  (10)

Solving for 2α , we obtain

2 1 12( ) .α α α α= − + 				                 (11)

1α is the stopping probability (error spent) at the first stage under 
the null hypothesis condition and 1α α−  is the error spent at the 
second stage. As a result, if the test statistic 1 1 2 ,t p α= >  it is certain 
that 2 1 2 2.t p p α= + >  Therefore, the trial should stop when 1 2p α>  for 
futility. 

Based on relationship among 1α , 2α and α as given in (10), various 
stopping boundaries can be considered with appropriate choices of 1α , 

2α and α For illustration purpose, Table 2 provides some examples of 
the stopping boundaries from equations (10, 11).

By (7)-(11), the adjusted p-value is given by

2
1 1

                       if 1
( ; ) ,1 ( )   if 2

2

t k
p t k

t kα α

=
= 

+ − =

		                 (12)

Where 1t p=  if the trial stops at Stage 1 and 1 2t p p= +  if the trial 
stops at Stage 2.

Early efficacy or futility stopping – For this case, it is obvious that if 
1 2 ,β α≥  the stopping boundary is the same as it is for the design with 

early efficacy stopping. However, futility boundary 1β  when 1 2β α≥  is 
expected to affect the power of the hypothesis testing. Therefore,

One-sided α
1α

0.005 0.010 0.015 0.020 0.025 0.030

0.025
2α

0.2050 0.1832 0.1564 0.1200 0.0250 -

0.05
2α

0.3050 0.2928 0.2796 0.2649 0.2486 0.2300

Source: Chang [19] Statistics in Medicine, 26, 2772-2784. 

Table 2: Stopping boundaries for two-stage efficacy designs.

One-sided  α
1 0.15β =

0.025
1α

0.005 0.010 0.015 0.020 0.025

2α
0.2154 0.1871 0.1566 0.1200 0.0250

0.05
1α

0.005 0.010 0.015 0.020 0.025

2α
0.3333 0.3155 0.2967 0.2767 0.2554

Source: Chang [19]. Statistics in Medicine, 26, 2772-2784 

Table 3 Stopping boundaries for two-stage efficacy and futility designs.
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2
1 1 1 1 2

2
1 1 2

                            if 1                    
1( ; )       if 2 and 
2

1                if 2      
2

t k

p t k t k

t k

α β β β α

α β α


 =

= + − = <

 + = ≥

             (19)

Conditional power

Conditional power with or without clinical trial simulation is often 
considered for sample size re-estimation in adaptive trial designs. As 
discussed earlier, since the stopping boundaries for the most existing 
methods are either based on z-scale or p-value, to link a z-scale and 
a p-value, we will consider 1 ( )k kp z= −Φ or inversely, 1(1 ),k kz p−= Φ −  
where kz  and kp  are the normal z -score and the p-value from the 
sub-sample at the k th stage, respectively. It should be noted that 2z  
has asymptotically normal distribution with 2̂( / ( ),1)N seδ δ  under 
the alternative hypothesis, where 2̂δ  is the estimation of treatment 
difference in the second stage and 

2 2
2 2 2

ˆ ˆ( ) 2 / 2 / .se n nδ σ σ= ≈

The conditional power can be evaluated under the alternative 
hypothesis when rejecting the null hypothesis 0H . That is, 

2 2 1( , ).z B pα≥ 				                 (20)

Thus, the conditional probability given the first stage naïve p-value, 
1p  at the second stage is given by

2
1 2 1 1 1 1( , ) 1 ( , ) , .

2C
nP p B p pδδ α α β

σ
 

= −Φ − < ≤  
 

                    (21)

As an example, for the method based on the product of stage-wise 
p-values (MPP), the rejection criterion for the second stage is

1
1 2 2 2 2 1, . ., (1 / ).p p i e z pα α−≤ ≥ Φ −

Therefore, 1
2 1 2 1( , ) (1 / ).B p pα α−= Φ −

Similarly, for the method based on the sum of stage-wise p-values 
(MSP), the rejection criterion for the second stage is 

1
1 2 2 2 2 1 2 1, . ., ( , ) (1 max(0, )).p p i e z B p pα α α−+ ≤ = = Φ − −

On the other hand, for the inversenormal method [21] the rejection 
criterion for the second stage is 

1
1 1 2 2 2(1 ),w z w z α−+ ≥ Φ −

 i.e., 1 1
2 2 1 1 2( (1 ) (1 )) / ,z w p wα− −≥ Φ − − Φ −

where 1w and 2w  are prefixed weights satisfying the condition of 
2 2
1 2 1.w w+ = Note that the group sequential design and CHW method 

[9] are special cases of the inverse-normal method. Since the inverse 
normal method requires two additional parameters ( 1w and 2w ), for 
simplicity, we will only compare the conditional powers of MPP and 
MSP. For a valid comparison, the same 1α is used for both methods. 

As it can be seen from equation (21), the comparison of the conditional 
power is equivalent to the comparison of function 2 1( , )B pα . Equating 
the two 2 1( , ),B pα  we have

2
2 1

1

ˆ
,p

p
α α= − 					                 (22)

where 2α̂  and 2α  are the final rejection boundaries for MPP and MSP, 
respectively. Solving (22) for 1p , we obtain the critical point for 1p

2
2 2 24

2
α α α

η
−

=
   .				                 (23)

Equation (23) indicates that when 1 1p η<  or 2 2η>p , MPP has 
a higher conditional power than that of MSP. When 1 1 2 ,pη η< < MSP 
has a higher conditional power than MPP.As an example, for one-sided 
teat at 0.025α = , ifwe choose 1 0.01α =  and 1 0.3,β = then 

2ˆ 0.0044,α =

and 2 0.2236,α = which result in 1 20.0218, 0.2018η η= =  by equation (23).

Note that the unconditional power wP  is nothing but the expectation 
of conditional power, i.e.

1[ ( , )].w CP E P pδ δ= 				                  (24)

Therefore, the difference in unconditional power between MSP 
and MPP is dependent on the distribution of 1p , and consequently, 
dependent on the true difference δ , and the stopping boundaries at 
the first stage 1α , 1β .

Note that in Bauer and Kohne’s [6] method using Fisher’s 
combination, which leads to the equation

2
4,1(1/ 2)

1 1 1ln( / ) ,e αχα β α α−−+ = it 
is obvious that determination of 1β  leads to a unique 1α , consequently

2α . This is a non-flexible approach. However, it can be verified that 
the method can be generalized to 1 2 1 1ln / ,α α β α α+ =  where 2α does 

not have to be 
2
4,1(1/2)e αχ α−− =

Note that Tsiatis and Mehta [18] indicated that for any adaptive 
design with sample size adjustment, there exists a more powerful group 
sequential design. It, however, should be noted that the efficacy gain by 
the classic group sequential design is at the price of a cost. For example, 
as the number of interim analyses increases (e.g. from 3 to 10), the 
associated cost may increases substantially. Also, the optimal design 
is under the condition of a pre-specified error-spending function, 
but adaptive designs do not require in general a fixed error-spending 
function.

Analysis for category II adaptive designs
Now, consider a Category II two-stage phase II/III seamless 

adaptive designs which have same study objectives but different study 
endpoints (continuous endpoints). Let ix  be the observed value of 
the study endpoint (e.g., a biomarker) from the ith subject in phase II 
(Stage 1), 1,...,i n=  and jy  be the observed value of the study endpoint 
(i.e. the primary clinical endpoint) from the jth subject in phase III 
(Stage 2), 1,...,j m= . Suppose that ix s′ and jy s′ are independently 
and identically distributed with ( )iE x ν=  and 2( )iVar x τ= , and 

( )jE y µ= and ( )Var y , respectively. Chow, Lu and Tse [22] 
proposed obtaining predicted values of the clinical endpoint based 
on data collected from the biomarker (or surrogate endpoint) under 
an established relationship between the biomarker and the clinical 
endpoint. These predicted values are then be combined with the data 
collected at the confirmatory phase (Stage 2) to derive a statistical 

One-sided α
1β

0.1 0.2 0.3 ≥ 0.4

0.025
2α

0.3000 0.2250 0.2236 0.2236

0.05
2α

0.5500 0.3500 0.3167 0.3162

Source: Chang [19].Statistics in Medicine, 26, 2772-2784. 
Table 4: Stopping boundaries for two-stage futility design.
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inference on the treatment effect under investigation. For simplicity, 
suppose that x and y can be correlated in the following straight-line 
relationship

0 1y xβ β ε= + + 				                  (25)

whereε  is the random error with zero mean and variance 2ς . ε
is assumed to be independent of x. In practice, we assume that this 
relationship is well-established. In other words, the parameters 0β  and 

1β  are assumed known. Based on equation (25), the observations xi 
observed in the first stage can then be transformed 0 1 ixβ β+ (denoted 
by ˆiy ). ˆiy is then considered as the observation of the clinical endpoint 
and combined with those observations yi collected in the second stage 
to estimate the treatment mean. Chow, Lu and Tse [22] proposed the 
following weighted-mean estimator,

ˆ̂ (1 )y yµ ω ω= + − 				                  (26)

where 
1

1ˆ̂
n

i
i

y y
n =

= ∑ , 
1

1 m

j
j

y y
m =

= ∑ and 0 1ω≤ ≤ . It should be noted that 

µ̂  is the minimum variance unbiased estimator among all weighted-
mean estimators when the weight is given by

2 2
1

2 2 2
1

/( )
/( ) /

n
n m

β τω
β τ σ

=
+

				                 (27)

if 2
1,β τ and 2σ  are known. In practice, 2τ  and 2σ  are usually 

unknown and ω  is commonly estimated by
2
1

2 2
1 2

/ˆ
/ /

n s
n s m s

ω =
+

				               (28)

where 2
1s  and 2

2s  are the sample variances of ˆiy ’s and jy
’s, 

respectively. The corresponding estimator of µ , which is denoted by

ˆ̂ˆ̂ (1 )GD y yµ ω ω= + − ,				                  (29)

and is referred to as the Graybill-Deal (GD) estimator of µ . Note 
that Meier [23] proposed an approximate unbiased estimator of the 
variance of the GD estimator, which has bias of order 2 2( )O n m− −+ . 
Khatri and Shah [24] gave an exact expression of the variance of this 
estimator in the form of an infinite series, which is given as. 

�
2 2

1 2

1 1 1ˆ ˆˆ( ) 1 4 (1 )
/ / 1 1GDVar

n S m S n m
µ ω ω  = + − +  + − −  

.

Based on the GD estimator, the comparison of the two treatments 
can be made by testing the following hypotheses 

0 1 2 1 1 2:        . .      :  H v s Hµ µ µ µ= ≠ 		               (30)

Let ˆijy  be the predicted value (based on 0 1 ijxβ β+ ), which is used 
as the prediction of y for the jth subject under the ith treatment in phase 
II (Stage 1). From equation (29), the GD estimator of iµ  is given by

ˆ̂ˆ̂ (1 )GDi i i i iy yµ ω ω= + − ,			              (31)

where 
1

1ˆ̂
in

i ij
ji

y y
n =

= ∑ , 
1

1 im

i ij
ji

y y
m =

= ∑  and 
2

1
2 2

1 2

/ˆ
/ /

i i
i

i i i i

n S
n S m S

ω =
+

 

with 2
1iS  and 2

2iS  being the sample variances of 1ˆ̂( , , )
ii iny y  and 

1( , , )
ii imy y , respectively. For hypotheses (30), consider the following 

test statistic,

� �
1 2

1

1 2

ˆ̂

ˆ̂( ) ( )
GD GD

GD GD

T
Var Var

µ µ

µ µ

−
=

+


			                  (32)

where

�
2 2

1 2

1 1 1ˆ̂ˆ( ) 1 4 (1 )
/ / 1 1GDi i i

i i i i i i

Var
n S m S n m

µ ω ω
  

= + − +  + − −  

is an estimator of ˆ( )GDiVar µ , i =1, 2. Consequently, an approximate 
( )100 1 %α− confidence interval of 1 2µ µ−  is given as 

( )1 2 / 2 1 2 / 2ˆ̂̂̂ ,   GD GD T GD GD Tz V z Vα αµ µ µ µ− − − +            (33)

Where 1 2ˆ ˆ( ) ( )T GD GDV Var Varµ µ= + . As a result, the null hypothesis 
H0 is rejected if the above confidence interval does not contain 0. Thus, 
under the local alternative hypothesis that 1 1 2: 0H µ µ δ− = ≠ , the 
required sample size to achieve a 1 β−  power satisfies 

/ 2 1 2ˆ̂| | ( ) ( )  GD GDz Var Var zα βδ µ µ− + + = .

Thus, if we let mi=ρni and n2=γn1. Then, denoted by NT, the total 
sample size required for achieving a desired power for detecting a 
clinically meaningful difference between the two treatments is (1+ρ)
(1+γ)n1, which is given by

( )1
1

1 1 1 8(1 )
2

n AB A Cρ −= + + + 		                                  (34)

where 
2

/ 2
2

( )z z
A α β

δ
+

= ,
2 2
1 2

1 1
1 2( )

B
r r

σ σ
ρ γ ρ− −= +
+ +

 and 
2 2

2 1 2
1 3 2 1 3

1 1 2 2( ) ( )
C B

r r r r
σ σ

ρ γ ρ
−

− −

 
= + + + 

 

with 2 2 2
1 /i i ir β τ σ= , i = 1, 2.

If one wishes to test for the following superiority hypotheses

H1: 1 2 1µ µ δ δ− = > . 

The required sample size for achievng 1 β−  power satisfies

1 1 2ˆ̂( ) ( ) ( )  GD GDz Var Var zα βδ δ µ µ− + − + =

This gives

( )1
1

1 1 1 8(1 )
2

n DB D Cρ −= + + + 		               (35)

where 
2

2
1

( )
( )
z z

D α β

δ δ
+

=
−

. For the case of testing for equivalence with a 

significance level α , consider the local alternative hypothesis thatH1: 

1 2 1µ µ δ− = with 1δ δ< . The required sample size to achieve 1 β−
power satisfies

1 1 2ˆ̂( ) ( ) ( )  GD GDz Var Var zα βδ δ µ µ− + − + =

Thus, the total sample size for two treatment groups is 
( )( ) 11 1 nρ γ+ + with n1 given 

( )1 1 8(1 )n EB E C= + + + 		                   (36)

where 
2

/ 2
2

1

( )
( | |)
z z

E α β

δ δ
+

=
−

.

Note that formulas for sample size calculation and allocation for 
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testing equality, non-inferiority, superiority, and equivalence for other 
data types such as binary response and time-to-event endpoints can be 
similarly obtained.

Analysis for Category III and IV Adaptive Designs
In this section, statistical inference for Category III and IV phase 

II/III seamless adaptive designs will be discussed. For a Category III 
design, the study objectives at different stages are different (e.g., dose 
selection versus efficacy confirmation) but the study endpoints are 
same at different stages. For a Category IV design, both study objectives 
and endpoints at different stages are different (e.g., dose selection 
versus efficacy confirmation with surrogate endpoint versus clinical 
study endpoint).

As indicated earlier, how to control the overall type I error rate 
at a pre-specified level is one of the major regulatory concerns when 
adaptive design methods are employed in confirmatory clinical 
trials. Another concern is how to perform power analysis for sample 
size calculation/allocation for achieving individual study objectives 
originally set by the two separate studies (different stages). In addition, 
how to combine data collected from both stages for a combined and 
valid final analysis. Under a Category III or IV phase II/III seamless 
adaptive design, in addition, the investigator plans to have an interim 
analysis at each stage. Thus, if we consider the initiation of the study, 
first interim analysis, end of Stage 1 analysis, second interim analysis, 
and final analysis as critical milestones, the two-stage adaptive 
design becomes a 4-stage transitional seamless trial design. In what 
follows, we will focus on analysis of a four-stage transitional seamless 
design without (non-adaptive version) and with (adaptive version) 
adaptations, respectively.

Non-adaptive version 

For a given clinical trial comparing k treatments groups, 1,..., kE E  
with a control group C, suppose a surrogate (biomarker) endpoint and 
a well-established clinical endpoint are available for assessment of the 
treatment effect. Denoted by iθ  and , 1,...,ψ =i i k  the treatment effect 
comparing iE  with C assessed by the surrogate (biomarker) endpoint 
and the clinical endpoint, respectively. Under the surrogate and 
clinical endpoints, the treatment effect can be tested by the following 
hypotheses:

0,2 1: ,kH ψ ψ= = 			                                   (37)

which is for the clinical endpoint, while the hypothesis 

0,1 1: ,kH θ θ= 				                                    (38)

is for the surrogate (biomarker) endpoint. Cheng and Chow 
(2015) assumed that iψ  is a monotone increasing function of the 
corresponding iθ  and proposed to test the hypotheses (37) and (38) at 
3 stages (i.e., stage 1, stage 2a, stage 2b, and stage 3) based on accrued 
data at 4 interim analyses. Their proposed tests are briefly described 
below. For simplicity, he variances of the surrogate (biomarker) 
endpoint and the clinical outcome are denoted by 2σ and 2τ , which 
are assumed known. 

Stage 1 – At this stage, 1( 1)k n+  subjects are randomly assigned 
to receive either one of the k  treatments or the control at a 1:1 ratio. 
In this case, we have 1n  subjects in each group. At the first interim 
analysis, the most effective treatment will be selected based on the 
surrogate (biomarker) endpoint and proceed to subsequent stages. 
For pairwise comparison, consider test statistics ,1

ˆ , 1,...,i i kθ =  and
^

,11  ij kS argmax θ≤ ≤= . Thus, if ,1 1Ŝ cθ ≤  for some pre-specified critical 

value 1c , then the trial is stopped and we are in favor of 0,1H . On the 
other hand, if ,1 1,1

ˆ ,S cθ >  then we conclude that the treatment SE  is 
considered the most promising treatment and proceed to subsequent 
stages. Subjects who receive either the promising treatment or the 
control will be followed for the clinical endpoint. Treatment assessment 
for all other subjects will be terminated but will undergo necessary 
safety monitoring.

Stage 2a – At Stage 2a, 22n  additional subjects will be equally 
randomized to receive either the treatment SE  or the control C . The 
second interim analysis is scheduled when the short term surrogate 
measures from these 22n  Stage 2 subjects and the primary endpoint 
measures from those 12n  Stage 1 subjects who receive either the 
treatment SE  or the control C  become available. Let 1,1 ,1ŜT θ=  and 

1,2 ,1ˆST ψ=  be the pair-wise test statistics from Stage 1 based on the 
surrogate endpoint and the primary endpoint, respectively, and ,2Ŝθ  
be the statistic from Stage 2 based on the surrogate. If

1 2
2,1 ,1 ,2 2,1

1 2 1 2

ˆ̂ ,S S
n nT c

n n n n
θ θ= + ≤

+ +

then stop the trial and accept 0,1H . If 2,1 2,1T c> and 1,2 1,2T c> , then 
stop the trial and reject both 0,1H  and 0,2H . Otherwise, if 2,1 2,1T c>  but 

1,2 1,2T c≤ , then we will move on to Stage 2b.

Stage 2b – At Stage 2b, no additional subjects will be recruited. The 
third interim analysis will be performed when the subjects in Stage 2a 
complete their primary endpoints. Let 

1 2
2,2 ,1 2,,12

1 2 1 2

ˆ̂ ,S S
n nT

n n n n
ψ ψ= +

+ +

where ,2ˆSψ  is the pair-wise test statistic from stage 2b. If 2,2 2,2T c> , then 
stop the trial and reject 0,2H . Otherwise, we move on to Stage 3.

Stage 3 – At Stage 3, the final stage, 32n  additional subjects will 
be recruited and followed till their primary endpoints. At the fourth 
interim analysis, define 

1 2 1
3 ,1 2,,12 ,3

1 2 3 1 2 3 1 2 3

ˆ̂̂ ,S S S
n n nT

n n n n n n n n n
ψ ψ ψ= + +

+ + + + + +

where ,3ˆSψ  is the pair-wise test statistic from stage 3. If 3 3T c> , then 

stop the trial and reject 0,2H ; otherwise, accept 0,2H . The parameters 
in the above designs,

1 2 3, , ,n n n 1,1 1,2 2,1 2,2, , , ,c c c c and 3c  are 
determined such that the procedure will have a controlled type I error 
rate of α  and a target power of 1 β− . 

In the above design, the surrogate data in the first stage are used 
to select the most promising treatment rather than assessing 0,1H . This 
means that upon completion of stage one a dose does not need to 
be significance in order to be used in subsequent stages. In practice, 
it is recommended that the selection criterion be based on precision 
analysis (desired precision or maximum error allowed) rather than 
power analysis (desired power). This property is attractive to the 
investigator since it does not suffer from any lack of power because of 
limited sample sizes.

As discussed above, under the 4-stage transitional seamless design, 
two sets of hypotheses, namely 0,1H  and 0,2H are to be tested. Since 
the rejection of 0,2H leads to the claim of efficacy, it is considered the 
hypothesis of primary interest. However, in the interest of controlling 



Citation: Chow SC, Lin M (2015) Analysis of Two-Stage Adaptive Seamless Trial Design. Pharm Anal Acta 6: 341. doi:10.4172/2153-2435.1000341

Page 8 of 10

Volume 6 • Issue 3 • 1000341
Pharm Anal Acta
ISSN: 2153-2435 PAA, an open access journal 

the overall type I error rate at a pre-specified level of significance, 0,1H
need to be tested following the principle of closed testing procedure to 
avoid any statistical penalties. 

In summary, the two-stage phase II/III seamless adaptive design 
is attractive due to its efficiency, such as potentially reducing the lead 
time between studies (i.e., a phase II trial and a phase III study) and 
flexibility, such as making an early decision and taking appropriate 
actions (e.g. stop the trial early or delete/add dose groups). 

Adaptive version

The approach for trial design with non-adaptive version discussed 
in the previous section is basically a group sequential procedure with 
treatment selection at interim. There are no additional adaptations 
involved. With additional adaptations (adaptive version), Tsiatis 
and Metha [18] and Jennison and Turnbull [25] argue that adaptive 
designs typically suffer from loss of efficiency and hence are typically 
not recommended in regular practice. Proschan et al. [26] however, 
also indicated that in some scenarios, particularly when there is not 
enough primary outcome information available, it is appealing to use 
an adaptive procedure as long as it is statistically valid and justified. 
The transitional feature of the multiple stage design enables us not only 
to verify whether the surrogate (biomarker) endpoint is predictive of 
the clinical outcome, but also to modify the design adaptively after the 
review of interim data. A possible modification is to adjust the treatment 
effect of the clinical outcome while validating the relationship between 
the surrogate (e.g. biomarker) endpoint and the clinical outcome. In 
practice, it is often assumed that there exists a local linear relationship 
between ψ and θ , which is a reasonable assumption if we focus only 
on the values at a neighborhood of the most promising treatment SE . 
Thus, at the end of Stage 2a, we can re-estimate the treatment effect of 
the primary endpoint using

,1
2,1

,1

ˆˆ .ˆ
S

S
S

T
ψ

δ
θ

=

Consequently, sample size can be re-assessed at Stage 3 based on a 
modified treatment effect of the primary endpoint 0max{ , }Sδ δ δ=
, where 0δ  is a minimally clinically relevant treatment effect. Suppose m is the re-estimated Stage 3 sample size based on δ . Then, there 
is no modification for the procedure if 3m n≤ .On the other hand, if 

3m n> , then m  (instead of 3n as originally planned) subjects per 
arm will be recruited at Stage 3. The detailed justification of the above 
adaptation can be found in Cheng and Chow [5].

A case study – hepatitis C infection

A pharmaceutical company is interested in conducting a clinical 
trial for evaluation of safety, tolerability and efficacy of a test treatment 
for patients with hepatitis C virus infection. For this purpose, a two-
stage seamless adaptive design is considered. The proposed trial 
design is to combine two independent studies (one phase IIb study for 
treatment selection and one phase III study for efficacy confirmation) 
into a single study. Thus, the study consists of two stages: treatment 
selection (Stage 1) and efficacy confirmation (Stage 2).The study 
objective at the first stage is for treatment selection, while the study 
objective at Stage 2 is to establish the non-inferiority of the treatment 
selected from the first stage as compared to the standard of care (SOC). 
Thus, this is a typical Category IV design (a two-stage adaptive design 
with different study objectives at different stages). 

For genotype 1 HCV patients, the treatment duration is usually 
48 weeks of treatment followed by a 24 weeks follow-up. The well-

established clinical endpoint is the sustained virologic response (SVR) 
at week 72. The SVR is defined as an undetectable HCV RNA level (< 10 
IU/mL) at week 72. Thus, it will take a long time to observe a response. 
The pharmaceutical company is interested in considering a biomarker 
or a surrogate endpoint such as a regular clinical endpoint with short 
duration to make early decision for treatment selection of four active 
treatments under study at end of Stage 1. As a result, the clinical 
endpoint of early virologic response (EVR) at week 12 is considered as 
a surrogate endpoint for treatment selection at Stage 1. At this point, 
the trial design has become a typical Category IV adaptive trial design 
(i.e., a two-stage adaptive design with different study endpoints and 
different study objectives at different stages). The resultant Category IV 
adaptive design is briefly outline below (Figure 1): 

Stage 1 –At this stage, the design begins with five arms (4 active 
treatment arms and one control arm). Qualified subjects are randomly 
assigned to receive one of the five treatment arms at a 1:1:1:1:1 ratio. 
After all Stage 1 subjects have completed Week 12 of the study, 
an interim analysis will be performed based on EVR at week 12 for 
treatment selection. Treatment selection will be made under the 
assumption that the 12 week EVR is predictive of 72 week SVR.
Under this assumption, the most promising treatment arm will be 
selected using precision analysis under some pre-specified selection 
criteria. In other words, the treatment arm with highest confidence 
level for achieving statistical significance (i.e., the observed difference 
as compared to the control is not by chance alone) will be selected. 
Stage 1 subjects who have not yet completed the study protocol will 
continue with their assigned therapies for the remainder of the planned 
48 weeks, with final follow-up at Week 72. The selected treatment arm 
will then proceed to Stage 2. 

Stage 2 –At Stage 2, the selected treatment arm from Stage 1 will 
be test for non-inferiority against the control (SOC). A separate cohort 
of subjects will be randomized to receive either the selected treatment 
from Stage 1 or the control (SOC)at a 1:1 ratio. A second interim 
analysis will be performed when all Stage 2 subjects have completed 
Week 12 and 50% of the subjects (Stage 1 and Stage 2 combined) have 
completed 48 weeks treatment and follow-up of 24 weeks. The purpose 
of this interim analysis is two-fold. First, it is to validate the assumption 
that EVR at week 12 is predictive of SVR at week 72. Second, it is to 
perform sample size re-estimation to determine whether the trial will 
achieve study objective (establishing non-inferiority) with the desired 
power if the observed treatment preserves till the end of the study. 

Statistical tests as described in the previous section will be used to 
test non-inferiority hypotheses at interim analyses and at end of stage 
analyses. For the two planned interim analyses, the incidence of EVR 
at week 12 as well as safety data will be reviewed by an independent 
data safety monitoring board (DSMB). The commonly used O’Brien-
Fleming type of conservative boundaries will be applied for controlling 
the overall Type I error rate at 5% [27]. Adaptations such as stopping 
the trial early, discontinuing selected treatment arms, and re-estimating 
the sample size based on the pre-specified criteria may be applied 
as recommended by the DSMB. Stopping rules for the study will be 
designated by the DSMB, based on their ongoing analyses of the data 
and as per their charter.

Figure 1. A diagram of 4-stage transitional seamless trial design

Concluding Remarks
Chow and Chang [2] pointed out that the standard statistical 

methods for a group sequential trial (with one planned interim 
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analysis) is often applied for planning and data analysis of a two-
stage adaptive design regardless whether the study objectives and/
or the study endpoints are the same at different stages. As discussed 
earlier, two-stage seamless adaptive designs can be classified into four 
categories depending upon the study objectives and endpoints used at 
different stages. The direct application of standard statistical methods 
leads to the concern that the obtained p-value and confidence interval 
for assessment of the treatment effect may not be correct or reliable. 
Most importantly, sample size required for achieving a desired power 
obtained under a standard group sequential trial design may not be 
sufficient for achieving the study objectives under the two-stage 
seamless adaptive trial design, especially when the study objectives 
and/or study endpoints at different stages are different. 

As indicated in the 2010 FDA draft guidance on adaptive clinical 
trial design, adaptive designs were classified as either well understood 
designs or less well understood designs depending upon the 
availability of well-established statistical methods of specific designs 
[1]. In practice, most of the adaptive designs (including the two-stage 
seamless adaptive designs discussed in this article) are considered less 
well understood designs. Thus, the major challenge is not only the 
development of valid statistical methods for those less well understood 
designs, but also the development of a set of criteria for choosing an 
appropriate design among these less well understood designs for valid 
and reliable assessment of test treatment under investigation.

Disclaimer
The views presented in this article have not been formally 

disseminated by the U.S. Food and Drug Administration and should 
not be construed to represent any agency determination or policy.
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