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Introduction
Basibionts are substrate or benthic organisms which are the hosts 

to epibionts or bio-foulers. Corals and sponges are the most studied 
groups of benthic invertebrates in marine chemical ecology due to 
their abundance and distribution in all seas [1,2]. Several studies have 
been conducted by the benthic ecologists and chemists to unravel 
the mechanisms of chemical defence of the basibionts which protect 
their surfaces against fouling from epibiotic association. Many 
marine invertebrates such as soft corals and sea cucumbers are sessile 
i.e., steadily attached to the sea bottom or with low movement, thus
vulnerable either to predation and threat from a rich surrounding
microbiota with pathogenic potential. One of the most important
challenges for the benthic organisms is to combat the problems of
biofouling. ‘Biofouling’ is the colonisation of submerged surfaces by
unwanted organisms such as bacteria, barnacles, algae, etc and has
detrimental effects on shipping and leisure vessels, heat exchangers,
oceanographic sensors and mariculture, with considerable ecological
and economic consequences [3]. Soft corals and sea cucumbers are
under intense competitive pressure for space, light, and nutrients.
Fouling can have severely deleterious effects on benthic organisms,
such as inhibition of photosynthesis, blockage of filter feeding, and
elevated risk of mechanical dislodgement or predation. It is not
surprising that they have developed a range of chemical defences to
ensure their survival. Biofouling has been shown to be a sequential
process [4], one stage of succession being conducive to the onset of
the next [5]. Although these mechanisms are somewhat different for
micro- and macro-organisms the sequence of events follows a similar
pattern (Figure 1): settlement, attachment, development and growth
of foulers such as bacteria, protists, barnacles, bivalves, hydroids,
sedentary polychaetes, bryozoans, anemones, tunicates, diatoms, as
well as green, brown and red algae [6-10]. Fouling is described as an
on-going process which has no true end, as even a mature fouling
community will undergo changes in composition due to season,
disturbance, predation, and other biological and abiotic influences.
As said earlier, soft corals, sponges, sea cucumbers live in close
association with microorganisms like bacteria and other bio-foulers
like barnacles and their body surfaces are inevitably colonized by these

epibionts; while some of them harbour microorganisms within their 
digestive tracts or even within tissues and cells. Such interactions are 
complex and reach from harmful diseases to symbioses of mutual 
benefit [11]. Associated microorganisms have recently been shown to 
be involved in the synthesis of numerous metabolites [12]. Numerous 
studies demonstrate secondary metabolite production by symbionts 
such as the synthesis of the bicyclic glycopeptide theopalauamide 
by an associated delta-proterobacterium in the sponge, Theonella 
swinhoei [13], the synthesis of bryostatin by bacterial symbionts in the 
bryozoan, Bugula neritina [14], or the antimicrobial activity of different 
bacterial strains isolated from the sponges, Aplysina aerophoba and A. 
cavernicola [15]. Bio-foulers like some microbes play a double role in 
chemical interactions with higher organisms like the corals. They can 
be harmful and are repelled by chemical defences or they may be useful 
symbionts for their hosts by providing protection and camouflage 
against predators hunting by visual or chemical cues [16,17]. Soft corals 
and sea cucumbers have evolved mechanisms that enable them to 
distinguish between beneficial and detrimental biofoulers. Secondary 
metabolites act as a controlling factor in this host-biofouler interaction. 
They are used as a defence strategy against unwanted colonization 
(infection) by bio-foulers. These sessile invertebrates, soft corals, 
sponges, and sea cucumbers (Figure 2), produce an astonishing variety 
of anti-biofouling compounds (structures in Figure 3) [18], which help 
them to ward off surface colonization [19,20].

The aim and objective of this review is to focus on chemical defence 
mechanisms of some hard and soft corals, sponges and sea cucumbers 
against multiple fouling organisms or epibionts in the field.

Abstract
The fouling process is an ecologically complex web of interactions between basibionts e.g., corals, surface-colonizing 

microbes e.g., bacteria, and fouling biota e.g., Balanus species which are all mediated by chemical signalling. Sessile 
invertebrates, such as soft corals, sponges and sea cucumbers, evolved in an intense competitive milieu for space, light 
and nutrients, therefore they have developed chemical defence mechanism by producing secondary metabolites e.g., 
Terpenes to ward off bio-foulers and maintain clean body surfaces. The settlement of surface-colonizing organisms, 
commonly referred to as bio-fouling organisms, occurs naturally in a turbulent environment, yet the effects of waterborne 
versus surface-adsorbed chemical defences have not been compared in flow, therefore limiting our understanding of 
how they respond to toxic surfaces of the basibionts. Here, we reviewed the evidence that basibionts chemically inhibit 
the propagules of fouling organisms under natural conditions, and that chemosensory mechanisms may allow the larvae 
of bio-fouling animals to detect and avoid settling on chemically protected basibionts.
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sea cucumbers, bio-fouling and epibiosis must either be tolerated or 
overcome due to the setbacks associated with a colonized surface, 
these include; inhibition of photosynthesis, blockage of filter feeding 
apparatus, and increased risk of mechanical dislodgement or predation 
[21]. In response to this, a variety of chemical compounds are secreted 
by benthic invertebrates like soft corals, sea cucumbers, sponges 
to prevent surface fouling [22]. Some of these compounds prevent 
settlement much more effectively than organotin compounds and 
at the same time are far less toxic [23]. Chemical-based settlement 
inhibition against bacteria and other bio-foulers has been reported in 
sponges [24-30], Ascidians [24,31,32] and Cnidarians [30,33-36] and 
Bryozoans [23,37].

Because they lack physical defences, soft-bodied sessile 
invertebrates such as soft corals often use a refined chemical weapon as 
antifouling agents such as terpenoids, steroids, acetogenins, alkaloids, 
and polyphenolics [38]. These compounds can act enzymatically 
by dissolving the adhesives, interfering with the metabolism of the 
fouling organisms (e.g., nervous pathway interference), inhibiting 
the attachment, metamorphosis or growth, promoting negative 
chemotaxis, altering the surface of the organisms and as repellents 
[39-41]. Octocorals (class Anthozoa, subclass Octocorallia, and 
order Alcyonacea, family Alcyoniidae) were one of the first benthic 
invertebrate groups that were systematically screened for secondary 
metabolites (Tursch, 1976). These compounds, especially cembranoid 
diterpenes [42], have a function in chemical defence, in competition 
for space (allelopathy) and against fouling [43-46]. These diterpenes 
e.g., from Sinularia flexibilis, although lipophilic, are highly soluble 
in seawater and as anti-fouling agents are selectively absorbed onto 
bio-membranes of fouling organisms. Triterpene glycosides from 
two sponges, Erylus formosus and Ectyoplasia ferox, were tested for a 
suite of activities including predator deterrence, bacterial attachment, 
fouling, and overgrowth by competitors. The results showed a strong 
inhibition of fouling by invertebrates and algae over a 27-day period 
[47]. Soft corals may chemically affect the larvae of other corals, 
interactions at the interface of antifouling and allelopathy. Scleractinian 
coral recruitment was depressed in a current-dependent directional 
manner around the soft corals Sinularia flexibilis and Sarcophyton 
glaucum, and settlement did not occur on plates containing an extract 
of S. flexibilis [48]. The diterpenes flexibilide, dihydroflexibilide, and 
sinulariolide from S. flexibilis were toxic to fertilized eggs of the hard 
corals Montipora digitata and Acropora tenuis during the first 24 hr 
[49]. The Atlantic species Eudistoma olivaceum produces a range of 
over 20 alkaloids termed eudistomins [50]. The antilarval activity of 
these compounds was traced to a pair of isomeric carboline alkoloids, 
eudistomins G and H. Both of these compounds from the ascidian were 
found to inhibit settlement of Bugula neritina larvae at 2 μg per square 
cm due to their toxicity in bioassay trials [51]. Secondary metabolites, 
such as 1-methyladenine from Aplysilla glacialis [25], extracts from 
Crambe crambe [26], as well as aerothionin and homoaerothionin 
from Aplysina fistularis [52] showed strong antibacterial and bryozoan 
larval properties. Dendronephthya spp, a Cnidarian, was also reported 
to contain horamine (N-methyl-4-picolinic acid) that significantly 
inhibited growth of the co-occurring benthic diatom Navicula 
salinicola [30,33]. The antifouling activity of a series of extracts and 
secondary metabolites, such as bromopyrrole or diterpene alkaloids, 
from the epibiont-free Mediterranean sponges, Irciniaoros spinosula, 
Cacospongia scalaris, Dysidea sp., and Hippospongia communis was 
investigated by Hellio et al. [53]. A number of the tested metabolites 
had anti-settlement activity when tested against barnacle, Balanus 
amphtirite, cyprids. The effect of sponge extracts and metabolites on 

Figure 1: Bio-fouling stages [6,71].

 
ure 2: Examples of marine invertebrate groups commonly reported in the literature for studying production of Figure 2: Examples of marine invertebrate groups commonly reported in 

the literature for studying production of anti-fouling repellent substances. 
a: Coral; b: Gorgonian; c: Sponge; d: Soft coral. (Underwater images from 
the Red Sea) [72].

Figure : 3. Structures of some assayed sponge metabolites with anti-biofoulant properties (Hellio et al., 2005) 
Figure 3: Structures of some assayed sponge metabolites with anti-
biofoulant properties [53].

Chemical Defensive Mechanism against Bio-Fouling
Secondary metabolites are widespread among benthic invertebrates 

and understanding their functional roles in the producing organism 
has been under intense study in recent times. The hypothesis that sessile 
or slow-moving organisms, without obvious escape mechanisms and 
physical protection, are likely to be chemically defended has recently 
been explored with greater frequency in the marine environment.

For any long-lived sessile benthic organisms like soft corals and 
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the settlement of barnacles was tested by Hellio et al. using cyprids 
of Balanus amphitrite. The results of the effectiveness of the sponge 
extracts or metabolites in inhibiting B. amphitrite settlement is 
presented in Table 1 and Figure 4.

In a study reported by Limnamol et al. [54], thirty six species of 
sponges collected from the Gulf of Mannar, India, were tested for their 
inhibitory effect on fouling bacterial strains and cyprids of Balanus 
amphitrite. The results showed that Fasciospongia cavernosa and 
Petrosia nigricans had a high significant inhibitory or anti-settlement 
activity against the fouling bacteria and Iotrochota baculifera larvae.

The experiment carried out by Yang et al. [55] to test 
for the anti-fouling property of two- compound extracts 
(10b-formamidokalihinol-A and kalihinol A) from sponge, Acanthella 
cavernosa, against the bacterial and larval settlement of a major 
fouling polychaete, Hydroides elegans. The results showed that both 
compounds inhibited the growth of bacteria isolated from the natural 
environment whereas kalihinol A suppressed larval settlement due 
to modification of bacterial communities on their surfaces which has 
influence on larval settlement of fouling organism (Figures 5 and 6).

Blihoghe et al. [56] reported that agelasine derivatives, from sponges 
and soft corals, inhibited settling of larvae of Balanus improvisus in 
an anti-fouling bioassay as well as the growth of planktonic forms of 
biofilm forming bacteria, Staphylococcus epidermidis.

Several studies conducted have shown that soft corals can yield large 
quantities of promising antifouling metabolites [57]. Chambers et al. 
[58] reported that 17.95% of potential antifouling natural compounds 
are from cnidarians (e.g., soft coral). One of the most promising natural 
antifouling agent identified so far is an isogosterone isolated from an 
unspecified  Dendronephthya [37]. Lai et al. [59] evaluated the anti-
fouling property of diterpenoids, designated as sinulariols A–S, from 
Chinese soft coral Sinularia rigida on Balanus species and concluded 
that they inhibited the larval settlement of both Balanus amphitrite and 
B. neritina. Pereira et al. [60] and Epifaino et al. [61] showed that the 
diterpene 11β, 12β -epoxypukalide extract from Phyllogorgia dilatata, 
an octocoral, displayed antifouling property when tested on Perna perna 

and barnacles. Roper et al. [62] revealed that haliclonacyclamine A and 
halaminol A isolated from the sponge, Haliclona sp, have similar effects 
on sponge, polychaete, gastropod, and bryozoan larvae by inhibiting 
their settlement and metamorphosis. Qi et al. [63] demonstrated that 
subergorgic acid, isolated from a gorgonian, inhibited settlement of 
larvae of B. amphitrite and B. neritina, with EC50 values of 1.2 and 3.2 
µg/mL respectively and LC50 values of >200 µg/mL. Peters et al. [64] 
showed that two bromophysostigmines, isolated from the bryozoan, 
Flustra foliacea, inhibited bacterial quorium sensing (QS) and the 
growth of bacteria, suggesting the presence of potential anti-fouling 
compounds.

Discussion and Conclusion
Marine invertebrates are one of the major groups of biological 

organisms (Porifera, Cnidaria, Mollusca, Arthropoda, Echinodermata, 
etc.) that are significant for their source of a number of natural products 
and secondary metabolites with anti-biofoulant properties.

It is reported that the secondary metabolites of some species of 
basibionts can vary quantitatively and qualitatively, depending on 
the biogeographical location [65], while other species have similar 
compositions of these metabolites in different habitats [66]. Fusetani 
proposed that these organisms secrete chemicals that prevent larvae 
of other marine organisms from settling and growing on them [67]. 
From the data presented here, it can be concluded that extracts of 
the various basibionts control a number of epibionts and bio-foulers 
from settling on their surfaces. Walls et al. [68] and Shellenberger and 
Ross [69], reported a negative correlation between the presence of 
secondary metabolites, the antibacterial activity of the extracts and a 
reduction of fouling, which might indicate an antifouling function for 
secondary metabolites. Investigations on the Caribbean sponges, Erylus 
formosa and Ectyoplasia ferox, showed that triterpene glycosides has 
multiple ecological functions to deter predation, microbial attachment, 
and fouling of invertebrates and algae [47,70]. It was found that the 
metabolites are apparently restricted to the sponge surface and the 
biological effect is through direct contact with the sponge rather than 
by water borne interactions. These results support the hypothesis that 

Group I (Active and toxic metabolites/extracts) LC50 (ppm) EC (ppm)
Ircinin I&II 4.7 5.0

Ircinin I&II acetates 4.9 5.0
Furodysinin 18.1 5.0

Ircinin oros CH2Cl2 extract 21.7 50.0
7-Deacetoxyolepupuane 106.2 100.0

Dysidea sp. CH2Cl2 extract 52.5 65.9
Group II (Non-active and nontoxic metabolites/extracts) %Survival %Settlement Concentration (µg/mL)

Spongi-12-en-16-one 100 60.3 100
Hydroquinone A 100 59.4 100
Hydroquinone C 100 57.3 100

Fasciculatin 100 58.0 100
Dysidea sp. aqueous  extract 100 59.1 100

11β-Acetoxyspongi-12-en-16-one 100 53.5 100
Group II (Active and nontoxic metabolites/extracts) %Survival %Settlement Concentration (µg/mL)

Euryfuran 100 24.7 100
Hydroquinone A-acetate 100 19.9 100

Dihydrofurospongin II 100 11.2 100
Hydroquinone C-acetate 100 0.0 10

Dysidea sp. alcohol  extract 100 0.0 25

Metabolites/extracts are classified according to their activity on inhibition of settlement. In group I, results are expressed as effective concentration for 0% settlement (EC) 
and concentration including 50% lethality (LC50). For groups II and III, results are expressed as percentage of survival and of settlement for the reported concentrations.

Table 1: Settlement inhibition activity against Balanus amphitrite cyprids [53].
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Figure 4: Effect of the most active nontoxic metabolites/extracts (0 to 100 l g/mL) on B. amphitrite cyprid settlement. Results are expressed as percentage 
settled (± SEM) and percentage swimming (± SEM). Results significantly different from the control, *P<0.05; **P<0.001; ***P<0.001 [53].

Figure 5: Bacterial density on the surface of Phytagels1 embedded with 
kalihinol A and the control containing DMSO (n ¼ 3). The Phytagels1 were 
exposed to flow-through natural seawater for 3 d at 208°C in March 2005 [56]. 
DMSO: Dimethyl sulfoxide.

invertebrate metabolites are involved in the regulation of microbial 
and other bio-fouler distributions in the marine environment, and may 
act as a chemical defence aimed at controlling surface colonization. 
Therefore, it can now be concluded that surfaces of marine 
invertebrates, e.g., sponges, soft corals, are usually remarkably free of 
fouling organisms, supporting the assumption that this is achieved by 
secretion of anti-fouling compounds [71,72].

A lot of antifouling compounds have been isolated and reported 
from marine sponges, sea anemones, soft coral, etc but their 
molecular structures are too intricate to be artificially synthesized. 
Better understanding of the natural function of these secondary 
metabolites will to develop new strategies for the correct management 
and protection of these potentially important natural resources, the 
basibionts, for the future and find new biotechnological applications 
for these products in our day-to-day lives. Exploiting these marine 
biotas could lead to scarce supply of anti-fouling compounds widely 
used by many industries such as aquaculture, pharmaceutical and 
shipping.
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