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Abstract

The capabilities of the human body motion seem endless, through the long evolutionary process. The progresses
made from the first step of a baby to an Olympic performance suggest that human movements have attained
perfection in their specialized functions. However, the ability to predict how the whole body will move and how it will
exchange forces with environment is becoming very vital for performances optimization or development of devices
or safety; particularly in the fields of research of sport sciences, ergonomics, safety, clinical sciences and industries.
Modeling human body motion is a huge issue due to the requirement of multifaceted researches obviously extremely
diverse to apply. Indeed, they require the understanding of internal/external biological and physical principles that
make possible and guide human movement and coordination, as well as, the capacity of giving them a realistic
representation with high-fidelity.

Since over 30 years of research Biomechanics, the research area studying human motion has undertaken
progress in the modeling human motion. But the results are mitigated. The purpose of this review is to report the
state of knowledge and progress of the biomechanics regarding its application to the field of sport.
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Introduction
Human systems have great capabilities, highly specialized through

long evolutionary system. The study of human locomotion for
evaluating joint forces and moments that control motion and posture
[1,2] has been the fundamental to understand the mechanics of normal
and pathological movement. It is an interdisciplinary task that
describes, analyzes, and study human movement [2,3] for the diagnosis
and treatment of patients with motor deficiencies [3], for building
intelligent devices which can be utilized for industrial, scientific and
medical purposes.

Biomechanics, the field of science that uses laws of physics and
engineering concepts to describe motion undergone by various body
segments and the forces acting on these body parts during normal
daily activities [4] has widely contributed in the progress of currents
knowledge on human locomotion. Particularly, biomechanics of the
human body has deal with body movements, with the forces that some
parts of the human body exchange internally or externally, and with
the effects that these movements and forces have on organs, and on the
tissues that form them. Accordingly, the domains of interest of
biomechanics are very huge, ranging across various great fields
including:

• Physiology with a special focus on the musculoskeletal,
cardiovascular, respiratory and digestive apparatuses;

• Pathology, specialised on orthopedics and traumatology,
maxillofacial surgery, dentistry and orthodontist, cardiovascular
and respiratory surgery;

• Forensics, specialised on accident reconstruction, crime scene
investigation;

• Ergonomics and workplace safety, defense and social security,
specialised on combat and law enforcement protection,
effectiveness of projectile weapon; and

• Sport which is specialised on performance optimization,
protection device.

Therefore, the realistic representation of biomechanical modeling of
human movement is an issue which require the characterization of
individual units of movements and incorporate them in sets of global
movements and take in account the physiologic component involved.
But, despite impressive evolution of Biomechanics, progresses made for
modeling human motion are not great as one may have expected since
over 30 years of research. Indeed, major questions still open. For
examples, is it possible to know how to optimise movement in order to
minimise the loads on the joints? How to better understand mechanics
of injury and thus improve prevention? Other question related to the
medical or technical equipment like- how to design the equipment to
optimally suit the patient’s or athlete’s requirements in terms of
mechanical behavioural? Or question related to body protection per se,
as is the case for better design a cyclist helmets. Herein, we review the
state of progress of the biomechanics of modeling of human body
movement, regarding to application on sport.

Fundamental issues of human motion control
The motor unit and basic human body movements: The smallest

subunit that can be controlled is called a motor unit [5] because it
innervate separately by a motor axon. Neurologically, the motor unit
consists of a synaptic junction in the ventral root of the spinal cord, a
motor axon, and a motor end plate in the muscle fibers. Normal
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motion planning is initiated in the central nervous system (CNS). The
sensorimotor control system in the brain generates a sequence of
neural activation that innervates the muscle causing them to contract
and generate the force required to drive a skeletal system to a desired
position. Then sensory information such as muscle length, and
skeleton motion parameters are fed back to the sensorimotor control
skeletal muscle.

The bipedal movement: The difficulties associated with simple
standing in upright humans are highlighted by increased risk of falling
seen in the elderly, even with minimal reductions in control system
effectiveness [6]. Bipedal movement requires many mechanical and
neurological adaptations. The efficient energy means of standing in
bipedal position involve constant adjustment of balance without
overcorrection [6]. One of the illustrations can be demonstrated in
infants who have not yet developed toward the ability to stand up. They
can nevertheless run with great dexterity, provided they are supported
in a vertical position and offered the stimulus of a moving treadmill
beneath their feet [7]. Accordingly, walking is characterized by what
researchers termed as an “inverted pendulum [8]” movement, in which
the body vault over a stiff leg with each step. The model of inverted
pendulum was applicable to all walking organisms regardless of the
number of legs as the bipedal locomotion does not differ in term of
whole body kinetics [9]. This contrast with running [10] which is
characterized by a spring-mass movement, whereby the kinetic and
potential energy are in phase, and energy is stored and released from
spring-like limb during foot contact [11,12]. As well, all these
movements required strong leg muscles and a functioning aerobic
system [13]. Therefore, the realistic anatomical modeling for achieving
high-fidelity of human animation was the major challenge to face in
computer graphics, requiring many algorithms models that have been
developed thus far [14-18].

Modeling of Basic Human Body Movements
From the difficulty to construct bipedal robot and/or their

locomotion which involved only wheels, treads, or multiple legs, recent
progress has made two-legged robot more feasible. Some notable biped
robots have been created such as ASIMO [19], HUBO [20] and QRIO
[21]. Accordingly significant progress focusing attention on
biomechanically modeling of various parts of the human body have
been developed, including the face [22], the neck [23], the torso
[14,24], the hand [25,26] and the leg [27,28]. However, due to the
complexity of the task, researchers have thus far shield away from
undertaking a detailed biomechanical modeling of the entire human
body. For example, the spine and torso which are particularly difficult
to modeling have been drastically simplified in prior works. Either they
were modeled in a strictly kinematic manner [29], grouping and
treating many articular vertebrae and ribs as compound rigid bodies
even in the most detailed dynamic models [24,30]. Relevant
information in the report typically included the time histories of
biomedical variables such as joint angle (kinematics) and joint
moment (kinetics) [31] have been, however, taken in account for the
development of custom applications. These information was
particularly developed for feedback training using specific variable
computed in real-time, such as a single angle [32] or a single joint
moment [33]. There were approximations neglecting certain
mechanical effects, such as inertial terms in the equation of motion
[33], often introduced to make feasible the real-time computation.
Accordingly, many real-time commercial systems are limited to
kinematic variable (joint angles) [32,34] and possibly joint moments,

but without muscle variable which is relevant for orthopedic or
neurological rehabilitation or for computationally the whole body
[35-37].

Recently, musculoskeletal models have been introduced to provide
additional information about muscle length changes [38] and muscle
forces [35,36,39,40] within the most of complexity of human
musculoskeletal system, which is due to the head-neck-trunk complex,
have been solved. These parts of the body have approximately 57
articular bones and many more muscle actuators. In addition, the ribs
form closed kinematic loops, which introduces additional complexities
for biomechanical stimulation. Nonetheless, the comprehensive
biomechanical modeling and control of the human upper body is the
most principled approach to stimulating the full range of motions and
deformation that is able to produce, from pronounced motions such as
flexing the arms and spine to more subtle motions such as respiration
and laryngeal movements or cardiac rhythms and so one.

Interestingly, more recently new devices have been developed with
detailed biomechanical model of the human upper body, comprising
the head, neck, trunk and arms for use in physics-based computer
animation [41]. This kind of musculoskeletal system device displayed a
full complement of muscle actuators and coupled finite element
stimulation of soft tissue deformations [42,43] giving more realistic
representations of human models.

Biomechanics Application to Sport
The complexity of geometry of anatomical structures often requires

a very high spatial resolution of the model leading to possibly demand
of computer power. Complex device have been yield with acquisition
of data by identification of anatomical structures of interest in 3D
dataset derived from medical data with Computed Tomography (CT)
or Magnetic Resonance Imaging (MRI) [44]. MRI advantage is to
visualise muscles and ligaments in addition to the bony structure
whereas CT gives a better representation of the bony structure. Both
methods creating two-dimensional images with a predefined cilice
thickness and slice distance of specified region. Devices description
joint kinematics and the individual ability of those models influence
human movement analysis, as reported for volleyball spikes [45] or a
long jump and standing backwards somersault which allows the
identification of the internal forces acting in the joints of
biomechanical model of the human body [46].

Other biomechanical modeling developed analysis dealing with
inverse problems, in which the important issue was the transfer of a
real motion to the model and to find an optimal description of
movement [47]. Some researchers have used reflective markers attach
to the surrounding soft tissue of the shank and thigh to document
general movement patterns, pathologies or sport related motions [42].
More comprehensive and complex biomechanical human models were
also developed. One of the tremendous was developed for swimming
athletes, with the stimulation framework implements the natural
dynamic couplings between the flesh and skeleton, as well as between
the deformable skin surface of the virtual human and the surrounding
water, in an interleaved manner [48].

However, some care must be taken with all these sophisticated
devices when interpreting results, because of the sensitivity regarding
the procedure of smoothing the kinematic data. Indeed, it is important
to collect a large number of video frames, particularly during the
sporting and landing phase of the motion and the information
provided by the measurements is either input for a model or used to
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validate the model, such as comparing the simulation results with
electromyography (EMG) data. In fact, the field of biomechanics
suffers, unfortunately, from one very severe restriction which limits its
full evolution. In general, it is not possible, for ethical reason, to
measure forces and pressure inside the human body. The typical
measurement technology in biomechanics works on the interface
between body and environment. Force platforms dynamically quantify
reaction forces when a person is walking or running across the sensor,
EMG monitors action potentials of contracting muscles with electrodes
attaches human skin. The information provided by measurement
technologies are very important to investigate the mechanics of
movements, but are not sufficient to answer some questions related to
human body movement. As example, it is still not possible to know
how to optimize movement in order to minimize the loads on the
joints. As well, it is not possible to better understand mechanics of
injury and thus improve prevention or to design the equipment’s for
optimally suit the patient’s or athlete’s requirements. Accordingly, the
interior of an automobile is still always evaluated with rigid robot [49]
for the impact of speed during accident or computer-aided engineering
analysis device introduced to speed up the design of new high-comfort
car seats. Thus, although the new devices are as realistic as possible,
their conception is still estimating the real representation of muscle
forces [50] with data which are not completely reflects of the reality.

Conclusion
Despite the impressive evolutions and the success of modeling

techniques, progresses made in the field of biomechanics modeling
seem emerged two major directions of development: the multi body
system that have yield important results in prevention and sport
[51-53] and the numerical models using finite elements or
computational fluid dynamics, successfully applied to a variety of
biomechanical problems such as improving injury prevention [54],
ameliorating the design of equipment [55] and for optimizing
movement techniques [56]. Each of the two models has his advantages
and disadvantages. Globally, numerical models enable the computation
of the whole body’s deformation, whereas multi-body models only
provide forces at a limited number of body points [57]. Thus the
increasing availability of computational resources will lead to more
complex models of the human body.
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