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Abstract

The identification of the glucagon-like peptide-1 receptor in the central nervous system has led to an array of
studies exploring the functions of central GLP-1 signalling. Originally identified as a gastrointestinal incretin hormone
responsible for the potentiation of insulin secretion following ingestion of nutrients, the role of GLP-1 has been
expanded to include specific neural activities. Two distinct actions of GLP-1 receptor activation in the brain have
been identified, namely the regulation of appetite via promotion of satiety, as well as anti-inflammatory and anti-
apoptotic activity to promote neuronal cell survival. Both of these features are now being exploited clinically, with
GLP-1 receptor agonists, initially designed and marketed for the treatment of hyperglycaemia in type 2 diabetes,
now being directed towards use in obesity and as potential neuroprotective agents. This review gives a summary of
the functional role of GLP-1 in the central nervous system, in terms of promoting satiety, modulating food intake and
aiding in the regulation of peripheral glycaemia. In addition, the molecular mechanisms underpinning the beneficial
effects of central GLP-1 receptor agonist therapy in protecting against neuronal cell inflammation and death,

including neurodegenerative processes, are described.
L J

Regulation of endogenous GLP-1 activity occurs through rapid
proteolytic inactivation in the circulation by dipeptidyl peptidase-4
(DPP-4), such that GLP-1 has a half-life of approximately 3 minutes.
While the short half-life of GLP-1 limits the therapeutic utility of the
native protein as a diabetes treatment, the development of degradation
resistant forms of GLP-1 and inhibitors of DPP-4 (DPP-4i) has proved
an important therapeutic advance in the management of type 2
diabetes [7]. Furthermore, due to the glucose-dependent nature of
incretin-mediated insulin release, GLP-1 receptor agonists and DPP-4i
are associated with a minimal risk of inducing hypoglycaemia [8].

Keywords: Glucagon-like peptide-1; Central nervous system;
Glucose metabolism; Satiety; Neuroprotection

Introduction

Glucagon-like Peptide-1

Glucagon-like peptide-1 (GLP-1) is a peptide hormone secreted
from specific populations of cells in both the distal gut and central
nervous system (CNS). In response to nutrient intake, GLP-1 exerts its
insulinotropic activity via direct stimulation of pancreatic B-cells to
potentiate insulin secretion in a glucose-dependent manner [1]. Thus,
the principal metabolic function of GLP-1 is that of an incretin
hormone. GLP-1 further lowers blood glucose levels by slowing gastric
emptying, thereby reducing postprandial hyperglycaemia. In addition,
GLP-1 participates in the gut-to-brain axis by transmitting nutritional

The GLP-1 receptor (GLP-1R) has been localised in tissues outside
the pancreas, including the heart, kidney and brain [9]. It is widely
distributed throughout the central nervous system (CNS), with
expression in the thalamus, hypothalamus, hippocampal region,
cerebellum, cortex and brain stem [10]. Interestingly, GLP-1 has also
been identified as a neuropeptide, and is produced by preproglucagon

signals to the CNS, resulting in increased satiety [2].

The GLP-1 peptide is produced through posttranslational
processing of proglucagon in the intestinal L-cells and preproglucagon
neurons in the hindbrain [3]. Native GLP-1 is 37 amino acids in length
and is proteolysed by prohormone convertase 1/3 to give rise to the
major active circulating peptide; GLP-1(7-36)-amide [4]. This peptide
engages and activates the GLP-1R on the surface of pancreatic p-cells
when plasma glucose levels =5 mMol/L, resulting in a rise in
intracellular Ca2+ and consequent secretion of insulin. GLP-1
mediated signalling also reduces the expression of pro-inflammatory
and pro-apoptotic mediators, leading to enhanced pancreatic -cell
viability [5,6].

neurons of the nucleus of the solitary tract (NTS) located in the caudal
brainstem [11,12]. Furthermore, GLP-1 positive cells have been
identified in the hippocampus and cortex in rodents and GLP-1 is
secreted from microglial cells via a cyclic AMP (cAMP) dependent
pathway [13]. It has also been observed that the GLP-1 peptide can
cross the blood brain barrier [14].

The pleiotropic actions of GLP-1 to preserve B-cell function and
reduce inflammation have led to the hypothesis that GLP-1 receptor
activation could also have beneficial effects in the CNS. In addition to
the regulation of satiety following a meal, experimental data also
suggest an important role of GLP-1 in neuroprotection. An overview
of these data is provided below, with a focus on the effect of GLP-1
receptor activation in the modulation of food intake and glucose
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homeostasis, as well as the neuroprotective and anti-inflammatory
properties of GLP-1 in ischaemic stroke and neurodegenerative
disorders.

Central Activity of Glucagon-Like Peptide-1

Regulation of food intake

Ingestion of food leads to GLP-1 secretion from entero endocrine
L-cells in the distal gut. As a consequence, insulin release from the
pancreas is stimulated in a glucose-dependent fashion and satiety is
increased through both central and peripheral effects [15]. There are
several possible mechanisms through which GLP-1 modulates food
intake. Firstly, GLP-1 transmits nutritional signals to the brain via
activation of the enteric nervous system and/or vagus nerve in the
gastrointestinal tract [16,17]. It has also been suggested that a small
proportion of GLP-1 may escape degradation by DPP-4 and enter the
systemic circulation to cross the blood brain barrier, where it may
directly activate its receptor and increase satiety [18]. Moreover, food
intake may lead to the release of GLP-1 from neurons in the nucleus of
the solitary tract (NTS), and the activation the GLP-1R in the CNS
[19]. GLP-1 additionally adds to the regulation of energy intake by
decreasing gastrointestinal motility, thereby contributing to feelings of
fullness [20].

In the absence of nutrient ingestion, central administration of
GLP-1 limits food intake [18]. Intracerebro ventricular (ICV) injection
of GLP-1 in rodents slowed gastric emptying, through non-adrenergic
and non-cholinergic pathways [21]. The mechanisms through which
this centrally mediated reduction in gastric motility occurs have not
been completely elucidated, however a role for vagal afferent nerves
has been proposed. Nutrient stimulated secretion of GLP-1 from the
distal gut led to activation of hepatic vagal nerves [22], and the
suppression of food intake mediated by peripherally administered
GLP-1 was abolished in vagotomised individuals [23]. Targeted
administration of GLP-1 receptor agonists in the hypothalamus and
hindbrain diminished food intake, suggesting that both of these
cerebral areas are important for GLP-1 mediated anorexia [24,25].
Furthermore, GLP-1 reactive nerve fibres extend from the NTS to the
hypothalamus, a major centre in the brain for regulation of eating
behaviour, and activation of hypothalamic GLP-1R inhibits feeding
and promotes satiety [19,26]. In addition, ICV administration of the
GLP-1 receptor agonist, exendin-4, gave rise to activation of
neuropeptide Y, neurotensin, ghrelin and proopiomelanocortin
neurons in the hypothalamus, leading to upregulated expression of
appetite-regulating neuropeptides [27]. More recently, it was found
that nestin-Cre mediated site-specific knockdown of the GLP-1
receptor in the hypothalamus and brain stem rendered high-fat fed
rodents resistant to reductions in body weight and food intake induced
by the long-acting GLP-1 analogue, liraglutide [28].

Several of the cellular pathways through which GLP-1R activation
in the CNS modulates appetite have been identified. GLP-1 stimulates
signalling cascades downstream of cAMP and protein kinase A (PKA)
in the NTS, resulting in inhibition of food intake [29]. In particular,
hindbrain GLP-IR activation suppresses energy intake via a PKA-
mediated reduction in adenosine monophosphate protein kinase
(AMPK) activity and concurrent upregulation of mitogen-activated
protein  kinase (MEK)/extracellular signal-related kinase-1/2
(ERK-1/2) pathways [24]. This has been proposed to ultimately lead to
Ca2+-dependent depolarisation of GLP-1R expressing neurons, and
long-term cAMP response element-binding protein (CREB)-mediated

transcriptional changes in genes responsible for regulation of food
intake [30]. Surprisingly, a role for the central cytokines interleukin-1p
(IL-1pB) and IL-6 was found in GLP-1 mediated suppression of food
intake [31]. Ablation of IL-1p or IL-6 activity through either receptor
blockade or knock-out gave rise to a reduction in GLP-1 mediated
anorexia and loss of body weight in mice.

In clinical studies, infusion of GLP-1 led to increased satiety and
reduced energy intake in obese individuals and also in patients with
type 2 diabetes [32,33]. Similarly, GLP-1 dose-dependently reduced
nutrient intake in lean and overweight individuals [34]. Interestingly,
functional magnetic resonance imaging (fMRI) of the brain has shown
that infusion of GLP-1 attenuates blood-oxygen level dependent signal
changes in fasted individuals who were presented with images of food
[35]. Likewise, continuous administration of exenatide, a GLP-1
analogue, reduced food intake in obese men which correlated with
enhanced hypothalamic activity, as measured by fMRI [36]. The
favourable effects of GLP-1 on reducing appetite and food intake have
been exploited in a recent clinical trial, where liraglutide therapy for 56
weeks resulted in clinically significant weight loss in non-diabetic
obese individuals [37] With additional human studies underway
[38,39], it is highly likely that a new therapeutic indication for GLP-1
will be established in the coming years, to aid in the reduction of
excess body weight in obese individuals through augmentation of
central GLP-1R mediated appetite suppression.

Glycaemic Control and Peripheral Glucose
Homeostasis

While the chief physiological function of GLP-1 is in the glucose-
dependent stimulation of insulin secretion to regulate systemic
glycaemia, a glucose lowering effect of GLP-1 has also been recognised
in the brain. In healthy male subjects administered glucose via IV
infusion, GLP-1 leads to decreased glucose concentrations in all
cerebral areas with an increase in glucose metabolism through
enhanced hexokinase activity during hyperglycaemia [40]. Similarly,
glucose transport across the blood brain barrier (BBB) is down-
regulated by GLP-1 in healthy individuals with normal blood glucose
levels [41]. In the presence of hypoglycaemia, GLP-1 does not affect
brain-glucose concentrations, nor does it influence glucose
metabolism or transfer across the BBB [42].

A further role of central GLP-1 is to regulate peripheral glucose
homeostasis (Figure 1). As evidenced in animal studies, stimulation of
the GLP-1R in the CNS leads to increased insulin secretion and greater
hepatic glycogen storage, during hyperglycaemia [43]. Interestingly,
GLP-1 signalling in the CNS facilitates glucose-uptake into skeletal
muscle in an insulin-dependent and non-insulin dependent manner,
as seen in MIRKO mice, a muscle insulin receptor knock-out model.
In another study, ICV administration of GLP-1 in rodents augmented
glucose-dependent insulin release, and decreased glucose production
in the liver [44]. Moreover, it was demonstrated that antagonism of
arcuate GLP-1 receptors in the rat brain increased the magnitude of
glycaemic excursion during a glucose tolerance test. GLP-1 regulates
peripheral glucose levels via activation of the afferent nervous system,
through slowed gastric emptying and a concomitant reduction in
absorption of glucose into the bloodstream [45]. Furthermore, GLP-1
can promote enhanced energy expenditure, through CNS signalling
pathways; ICV administration of GLP-1 gave rise to increased
thermogenesis in brown adipose tissue of C57BL/6 mice, which the
authors suggest contributes to the mechanisms by which GLP-1
regulates energy balance [46].
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Figure 1: Functions of GLP-1 in the regulation of glycaemia. Upon ingestion of food, GLP-1 is secreted from the L cells in the lower gut and
potentiates (glucose-dependent) insulin secretion from pancreatic B-cells, whilst also stimulating centrally mediated signals that give rise to a
reduction in appetite, and peripheral uptake of glucose in both liver and muscle.
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Sisley et al. recently observed that CNS expression of the GLP-1R is
not necessary for peripheral glucose regulation, as administration of
liraglutide reduced glucose excursions in the absence of neuronal
GLP-1R [28]. This implies that pancreatic GLP-R activation is
sufficient for the glucose lowering activity of GLP-1; however previous
evidence suggests a direct role of central GLP-1R activation in the
modulation of systemic glucose homeostasis [43,44]. Finally,
administration of the GLP-1 receptor agonist liraglutide to patients
with type 2 diabetes gave rise to a decrease in fasting endogenous
glucose release due to a reduction in hepatic glycogenolysis, although
the role of central GLP-1R signalling in this process is unclear [47].

Glucagon-like Peptide-1 and Neuroprotection

Anti-inflammatory properties of GLP-1 in the brain

The cytoprotective and anti-inflammatory effects of GLP-1 have
been demonstrated in several cell types, including pancreatic islets and
endothelial cells [48-50]. In addition, a recent study has shown that
stimulation of the GLP-1 receptor reduces the inflammatory response
in the kidneys of diabetic rodents, independent of GLP-1 blood-
glucose lowering activity [51]. In each of these studies, improvements
in cell viability and a concomitant reduction in the expression of pro-
inflammatory adhesion molecules and cytokines was observed.

In vitro experiments initially revealed that GLP-1 exerts
neuroprotective activity in neuronal cell culture, [52] promotes cell
survival and proliferation, and prevents apoptosis and oxidative-

stress-associated cell death in mammalian glial and hippocampal cells
(Figure 2). The pathways involved in GLP-1 mediated neuronal cell
proliferation are downstream of protein kinase A and
phosphoinositide 3-kinase activity, and enhanced cell survival arises
through modulation of apoptotic signal expression (decreased bax and
caspase-3, and increased bcl-2; Figure 3) [53-56]. GLP-1 further
regulates inflammatory cytokine expression in the brain;
lipopolysaccharide (LPS) challenge in activated microglia and
astrocytes gave rise to a significant increase in IL-1p, and this increase
was attenuated in the presence of GLP-1 [57]. This finding is in
contrast to that observed by Shirazi and colleagues, who showed that
GLP-1 promotes IL-1p expression in the brain, to reduce food intake
and appetite. Thus, GLP-1 may differentially influence the expression
of central cytokines, dependent on the initial stimulus or upon which
signalling pathway is activated. More recently, it was found that the
GLP-1 receptor agonist liraglutide enhanced cell viability and
prevented cytotoxicity and apoptosis in human neuroblastoma cells
exposed to methylglyoxal stress [58]. The mechanisms through which
this increase in cell viability occurs include activation of the
transcription factor p90RSK, which modulates the expression of genes
associated with the cellular response to stress.
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Figure 2: Glucagon-like peptide-1 activity in the brain gives rise to
neuroprotection, through various molecular mechanisms. The
mechanisms through which GLP-1 elicits a neuroprotective effect
in the brain are outlined. General mechanisms are indicated in
black, with specific molecular pathways in red. GLP-1 enhances
neurogenesis, neuronal cell proliferation and differentiation, as
evidenced by increases in the cell proliferation markers DCX and
BrdU. Stimulation of the GLP-1 receptor prevents apoptosis, with a
decrease in pro-apoptotic signalling molecules caspase-3 and bax,
as well as greater levels of anti-apoptotic bcl-2 observed. Favourable
effects on learning and memory are also seen, as reflected by
enhancements in long-term potentiation, a marker of synaptic
plasticity and a major mechanism underlying the processes of
memory and learning in the brain. Oxidative stress is ameliorated
through a reduction in reactive oxygen species. Finally, GLP-1
lowers blood glucose levels in the brain, preventing hyperglycaemia
associated inflammation and cell death during ischaemia [40].

The role of GLP-1 in attenuating neuroinflammation has been also
demonstrated using animal models. Both liraglutide and its metabolite
GLP-1 (9-36) decreased the expression of pro-inflammatory markers
such as ICAM-1 and E-selectin after intracerebral haemorrhage in
mice [59]. Indeed, it was also found that liraglutide reduced the
number of neutrophils in the perihaematoma region, further
downregulating neuroinflammation. In addition, chronic irradiation-
induced inflammation in rodent brains was ameliorated by treatment
with GLP-1, with lower levels of markers such as interleukin-6 and
nitrite observed [60,61]. GLP-1 receptor stimulation through
treatment with the GLP-1 analogue exendin-4 minimised mild
traumatic brain injury induced deficits in mice, again through
reduction of oxidative stress associated inflammation [62]. This study
demonstrated that administration of GLP-1 gave rise to increased
levels of neuronal cell survival in response to challenge with the
oxidative stress mediator hydrogen peroxide, and also protected cells
against glutamate-induced toxicity.

Due to the modulatory effects of GLP-1 on neuroinflammation, a
key process in the pathogenesis of neurodegenerative disorders and
cerebral injury, it has been proposed that GLP-1 may be a viable
treatment option for targeting inflammation in the brain, and as such,
further clinical studies in this area are warranted

GLP-1 and Ischaemic Stroke

Diabetes is an established risk factor for the development of
ischaemic events, such as stroke. Persistently high blood glucose after
stroke correlates with larger infarct volume, and hyperglycaemia is an
independent predictor for increased functional impairment, disability

and mortality [63-66]. The mechanisms through which
hyperglycaemia may exert a deleterious effect in ischaemic stroke
include heightened lactic acidosis, enhanced production of free
radicals, oxidative stress and augmentation of inflammation. As
previously described, GLP-1 effectively lowers hyperglycaemia in the
brain and furthermore, ameliorates oxidative stress and inflammation
in preclinical models of brain injury and inflammatory challenge [40].
In addition, GLP-1 therapy resulted in favourable effects in a rodent
model of ischaemic stroke and concomitant type 2 diabetes, with a
dose-dependent reduction in hyperglycaemia, inflammation and
neuronal tissue damage [67]. Treatment of mice with the DPP-4
inhibitor linagliptin significantly enhanced circulating levels of GLP-1,
and lowered both fasting and fed blood glucose levels. Treated mice
also showed a marked decrease in ischaemic brain damage [68].

In a recent clinical study, patients with acute ischaemic stroke were
given subcutaneous exenatide for glycaemic control. It was observed
that blood glucose levels were effectively regulated, with minimal
incidence of hyperglycaemia and no symptomatic hypoglycaemia [69].
These promising preliminary results suggest that GLP-1 therapy may
be a viable treatment option for individuals with hyperglycaemia in
ischaemic stroke, with negligible glycaemic variability, and low risk of
hypoglycaemia. This may lead to improved outcomes for patients with
acute stroke, as hypoglycaemia has been associated with poorer
outcomes and an increased risk of morbidity and mortality [70].

The mechanisms through which GLP-1 exerts its beneficial effects
in stroke, in addition to glycaemic control, have been determined in a
variety of preclinical models. Administration of exendin-4 was shown
to reduce brain damage and improve functional outcome in a transient
middle cerebral artery occlusion stroke model, independent of its
blood glucose lowering activity [71,72]. Likewise, treatment of rats
with exendin-4 confers significant neurological protection following
cerebral ischemia as a consequence of middle cerebral artery occlusion
with a reduction in infarct size, oxidative stress levels and neurological
deficit [73]. In particular, exendin-4 was found to increase the levels of
superoxide dismutase (SOD), an antioxidative enzyme that reduces the
concentration of harmful superoxide within cells. More recently,
GLP-1 treated rats showed an improvement in behavioural score and
smaller infarct volumes after stroke [74]. A reduction in reactive
oxygen metabolites and an increase in the levels of vascular endothelial
growth factor (VEGF) were seen, reinforcing the premise that GLP-1
down-regulates oxidative stress and promotes oxygenation. It has also
been observed that administration of exendin-4 to rodents protects
against ischaemia-induced activation of microglial cells, thereby
preventing premature microglial cell death [75].

Interestingly, GLP-1 exerts cardioprotective activity in patients with
myocardial infarction (MI) and ischaemic heart disease. In a small
cohort of non-diabetic patients, treatment with GLP-1 led to an
improvement in left ventricular function (LVF) and a reduction in
ischaemic dysfunction after coronary balloon occlusion during
percutaneous coronary intervention [76]. Infusion of GLP-1 to
patients after acute MI enhanced LVF and increased recovery in the
peri-infarct area, and exenatide was shown to improve myocardial
salvage after ST-segment elevation MI [77,78]. Epidemiological data
has further found that individuals taking exenatide had a lower
incidence of cardiovascular disease, including stroke [79]. These
results, taken together with the above animal data, suggest that GLP-1
therapy may lead to favourable outcomes after ischaemic injury, both
in the heart and CNS. Indeed, GLP-1 may exert a dual protective effect
in the ischaemic brain, in terms of preventing hyperglycaemia
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associated neurological damage, and directly ameliorating neuro
inflammation and oxidative stress associated cell death.

Protective Role of GLP-1 in Neurodegenerative
Disorders

The risk of developing neurodegenerative disorders such as
dementia and Parkinson’s disease is significantly increased in
individuals with diabetes [80,81]. The pathogenesis of neurological
impairment and injury in these disorders includes premature neuronal
cell death, oxidative stress and neuro inflammation, processes that
may be attenuated by GLP-1 signalling in the brain. Interestingly,
GLP-1 receptor knockout mice demonstrated impaired learning,
memory and cognitive ability, as well as a reduction in recovery after
neurological insult, suggesting an intrinsic role for endogenous GLP-1
in maintaining normal brain activity [82,83].

Pre-clinical models of neuro degeneration have been used to show
that GLP-1 therapy is beneficial in preserving neurological function. In
a mouse model of Alzheimer’s disease, both short- and long-term
administration of the GLP-1 receptor agonist, liraglutide, resulted in
increased neuronal cell survival and proliferation, and enhanced
neurogenesis [84]. Furthermore, several studies have demonstrated
that GLP-1 preserves synaptic plasticity and further reduces the
accumulation of the pathogenic B-amyloid protein in the brain of
preclinical models of Alzheimer’s disease [61,85]. Administration of
GLP-1 dose-dependently conserved spatial memory in rats exposed to
B-amyloid, by protecting hippocampal long-term potentiation
between neurons. Similarly, GLP-1 was found to be protective against
neuro degeneration in a Parkinson’s disease model; administration of
exendin-4 reduced functional impairment and also increased the
number of neuronal precursor cells, showing protection against loss of
neurons [86,87]. Treatment with exendin-4 increased levels of L-
DOPA and tyrosine hydroxylase after challenge with 6-OHDA (a
selective inducer of Parkinsonism), suggesting that GLP-1 can rescue
dopaminergic neurons after damage has occurred. Finally, GLP-1
improves motor performance and extends survival in a murine model
of Huntington’s disease [88].

GLP-1 is currently being explored as a potential neuroprotective
agent in patients with dementia and Parkinson’s disease [89]. A recent
pilot study investigated the effect of exenatide treatment in addition to
regular therapy on neurological function in non-diabetic individuals
with Parkinson’s disease. Exenatide was well tolerated and patients in
the treated group showed a significant reduction in disease
progression and improvements in motor and cognitive skills [90].
Phase 1 studies have also been completed for a novel GLP-1 delivery
system, where CellBeads® containing mesenchymal stem cells that
overexpress GLP-1 are inserted directly at the site of injury in patients
with haemorrhagic stroke, with the aim of eliciting GLP-1 mediated
protection against neuronal cell damage [91]. Two further clinical
trials have been described, where the effect of liraglutide on glucose
metabolism and functional outcome in Alzheimer’s disease, and in
reducing reperfusion injury after acute stroke will be studied [92,93].
Moreover, GLP-1 has also been suggested as a prospective treatment
option for the cognitive impairments observed in individuals with
mood disorders [94].

GLP-1

l

GLP-1R

7\

PiK3 AC

VAN

Akt PKC PKA

N/

mTOR ERK/MAPK CREB

N /S

J- Bax, Caspase-3
™ Bcl-2

‘* Neuronal Cell Proliferation
J: Neuronal Cell Apoptosis

Figure 3: Summary of the principal signalling pathways through
which glucagon-like peptide-1 receptor activation promotes
neuronal cell survival. Stimulation of the GLP-1R on the surface of
neuronal calls activates protective signalling pathways, downstream
of phosphoinoside kinase 3 (PiK3) and adenylate cyclase (AC) [63].
Activation of protein kinase A (PKA) leads to modulation of pro-
survival gene expression via the extracellular signal-related kinase/
mitogen-activated protein kinase (ERK/MAPK) and cAMP
response element-binding protein (CREB) pathways [52,56].
Similarly, protein kinase C (PKC) and Akt signal through ERK/
MAPK and mTOR (mammalian target of rapamycin), respectively,
to promote neuronal cell proliferation and modulate levels of
apoptotic gene expression (decreased Bax and Caspase-3; increased
Bcl-2).

Conclusions

Characterisation of GLP-1R activation in the CNS, in both in-vitro
and pre-clinical models has enabled an understanding of the dual
regulatory activities of central GLP-1 signalling. First, GLP-1R
activation leads to increased satiety and a reduction in food intake
[95]. Second, GLP-1 signalling in the brain regulates peripheral
glucose metabolism, through modulation of glucose uptake. Thus,
GLP-1 has an important role in energy homeostasis; initially to
regulate food intake limiting nutrient ingestion and further to
influence how nutrient-derived energy is metabolised peripherally.

] Steroids Horm Sci
ISSN:2157-7536 JSHS, an open access journal

Volume 6 « Issue 1 « 1000.152



Citation:

McGrath RT, Glastras SJ, Hocking SL, Tjoeng I, Krause M, et al. (2015) Central Functions of Glucagon-like Peptide-1: Roles in Energy

Regulation and Neuroprotection. J Steroids Horm Sci 6: 152. doi:10.4172/2157-7536.1000.152

Page 6 of 8

Another consequence of central GLP-IR activation is in the
protection of neuronal cells against damage and premature cell death.
This neuroprotective activity of GLP-1 is achieved through
ameliorating inflammation and oxidative stress, processes that occur
in the brain after an ischaemic event and also during
neurodegeneration. In addition, GLP-1 may additionally protect
against the neurological consequences of hyperglycaemia. In turn, this
could potentially lead to improved outcomes in acute stroke and
neurodegeneration with several studies showing a correlation between
stress hyperglycaemia and functional outcome, morbidity and
mortality [96]. Furthermore, it has recently been hypothesised that
GLP-1 agonists could lower blood glucose levels without the risk of
hypoglycaemia in critically ill patients, thereby minimising the
occurrence of treatment-related morbidity [97].

By further elucidating the molecular mechanisms responsible for
the beneficial effects of GLP-1R activation in the brain, it may be
possible to harness the neuroprotective properties of GLP-1 for the
targeted treatment of ischaemic stroke and neurodegenerative disease.
Moreover, clinical trials are currently underway where GLP-1
analogues are being utilised as anti-obesity therapies, due to their
potent effects on satiety and food intake [98-101]. As such, GLP-1
could soon be added to our armamentarium as a therapeutic target
above and beyond its usefulness as a glucose-regulating agent in type 2
diabetes.
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