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Introduction 
Viruses use the host built device to imitate by developing the 

instruments to misuse the host nucleic acids replication and protein 
interpretation mechanical assembly [1]. Viral proteins need a 
target to localized in different cellular compartments [2,3]. Human 
Cytomegalovirus [HCMV] is a widely distributed host-specific member 
of the Herpesviridae family and classified under Betaherpesvirinae 
subfamily [4-6]. Mature virions of HCMV range in diameter from 200 
to 300 nanometers and it is the largest double-stranded DNA virus 
with a genome size of about 235 kb HCMV encodes over 200 ORF 
[open reading frames] [7-9]. Serological surveys have demonstrated 
global prevalence rates of maternal antibody is 30% to nearly 100%, 
reflecting wide variation in infection rates between populations. In 
India, serological studies have indicated 80-90% prevalent of CMV 
IgG antibodies in women of childbearing age [10-12]. The danger 
of seroconversion amid pregnancy has suggested 2.0-2.5% [13,14]. 
HCMV is an important agent of numerous diseases [15] including 
pneumonitis, hepatitis, retinitis, and gastrointestinal infections [16], 
especially in organ transplant recipients, immunocompromised 
patients, and the fetus or newborn infants [17,18].

HCMV may down-regulates expression of traditional class-I major 
histocompatibility complex [MHC-I] at the infected cells surface. 
This allows the infected cells to avoid acknowledgment by cytotoxic 
T cells. HCMV encodes MHC-I heavy chain homologs that may work 
in immune response evasion [19]. The first CMV gene [HCMV-H301] 
recognized as homologous to MHC class-I antigen [latter known as 
UL18 glycoprotein] [20]. Fahnestock et al., [21] hypothesized that the 
expression of UL18 of HCMV in Chinese hamster ovary [CHO] cells 
similar to class-I molecules [21].

Sequence arrangements and correlations proposed that the 
HCMV-UL18 contains the portrayed groove that serves as the coupling 
site in MHC molecules [22,23]. In an uninfected cell, peptides obtained 
from self-proteins are bind to MHC molecules. On the other hand, 
in an infected cell, MHC molecules are possessed by peptides from 
viral proteins, to which T cells respond by slaughtering the cell [24]. 
Ongoing research in last few years has indicated that the role of these 
homologs in the virus-infected cell is to draw in NK cell inhibitory 
receptors, in this manner keeping the lysis that would regularly happen 
because of down-regulation of MHC class-I molecules [25-27]. Over 
200 ORFs, there is a lack of evidence for analysis of every quality of 
all ORF through bioinformatics approaches. Along these lines, the 
acceptance of real capacity and structure of a significant number of 
these varieties still anticipates further affirmation. For relative genomic 
approaches, conserved ORF of the unique quality and moderated 
spaces are necessary to comprehend the hereditary differing conditions 
and coding limit of HCMV strains. In the present study, we have 
focused on generally accessible online and offline bioinformatics 
tools to examine the practical and fundamental properties of the most 
conserved domain [CD] of UL18 protein of HCMV along with the 
class-I MHC molecule and sequences of Ig superfamily.
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Abstract
Viral replication occurs using the host cell synthesis mechanisms and they are able to exploit the mechanisms of 

nucleic acid replication and protein translation machinery. Viral proteins require a target to fit subcellular compartments 
of the host cell and localized in different cellular compartments including the nucleus. Human Cytomegalovirus down-
regulates expression of traditional class-I MHC [Major Histocompatibility Complex] molecules at the infected cell surface 
and allows the infected cells to avoid acknowledgment by cytotoxic T-cells. In the present study, we have focused on 
generally accessible online and offline computational tools to examine practical and fundamental characteristics of the 
most conserved domain [CD] of UL18 gene along with the viral class-I MHC molecule. Six open reading frames [ORF] 
were reanalyzed by selecting start codon. Site-specific homology was determined to the MHC class-I molecule [19 to 
197 residual position; ID: pfam00129, E-value: 3.26e-14]. The predicted protein architecture contained about 28.90% 
helices [107 residues] and 10.32% strands [38 residues]. The tertiary structure represented that 276 residues [75% of 
sequence] were modeled by the single highest scoring template with 100% confidence and the structure represents a 
peptide-binding viral MHC mimic, apprenticed to a host inhibitory receptor [pdb code-3d2u]. Thus, our analysis suggests 
that the homologous sequence corresponding to MHC class-I gene is situated between 19 and 200th residues of UL18 
ORF and the recognition domain was identified with significant E-value. Our study also demonstrated that the ORF18 
is homologous to the Ig-superfamily in 229-289th position. Therefore, these domains were found to date homologous in 
HCMV proteins suggesting a particular functional role during infection. In light of the above, further experimental steps 
are needed to elucidate the exact role of the UL18 during infections.
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situated between 19 and 300 residues of UL18 ORF and recognition 
domain was identified with highly significant E-value (Table 4). Thus, 
these domains were found to date homologous in HCMV proteins 
suggesting a particular functional role during infection. Prediction of 
the transmembrane helix has performed through TMHMM server v 
2.0 (Figure 3). Out of total 368 amino acids, 41.56% transmembrane 
helices were predicted, where 18.84% was found in the first 60 amino 
acids [outside: 1-323; TMhelices: 320-347; Inside: 347-368]; and 0.46% 
was predicted as N-terminal signal sequences. We also performed to 
extend our search for conserved domains through the BLASTp search 
for homologous proteins to HCMV ORF18. All total 21 homologous 
proteins were classified with highly significant E-values (Table 2). All 
these proteins were from herpesvirus origin and homologous to MHC 
class-I origin of various organisms. A PSI-BLAST search with either full-
length ORF performed for more distant homologs. The PSI-BLAST search 
identified Human MHC-I as the homolog to HCMV-UL18. Therefore, the 
HCMV UL18 is most likely to possess a viral MHC class-I domain rather 
than any other currently characterized protein fold.

Materials and Methods
Sequence retrieval and ORF selection

The HCMV-UL18 of the laboratory strain AD169 and human 
MHC-I sequences were extracted and retrieved using the accession 
numbers X17403.1 and ACR55720.1 respectively from the NCBI 
protein database (Table 1). The accession numbers of HCMV-ORF18 
homologs were identified by BLASTp are summarized in Table 2. Six 
open reading frames [ORF] of UL18 were reanalyzed and recalculated 
by selecting the start codon through ORF finder [28,29]. The most 
conserved domain was distinguished utilizing the NCBI-conserved 
domains database [NCBI-CDD] and BLASTp algorithms [30-32].

Computational analysis of sequences

A variety of openly accessible online and offline bioinformatics 
programs were used for the analysis of shortlisted sequences. Unless 
expressed in the content the default settings were utilized for the 
examination. Multiple sequence alignment [MSA] was generated 
using ClustalW2 and BLASTp algorithms. Homologous proteins were 
distinguished using BLASTp, position-specific iterated [PSI]-BLAST, 
and GenThreader [31,33,34]. Protein sequences of all organisms were 
searched via nonredundant [nr] protein database with BLASTp and 
PSI-BLAST.

Predictions, analysis and homology modeling of secondary 
structure

The likely secondary structure predictions were determined using 
Phyre2.0 [35,36]. Annotation of protein transmembrane segments 
and helix forecasts were made using TMHMM2.0 [37,38]. Protparam 
Server validated various physiological parameters of selected proteins 
from expasy platform [http://web.expasy.org/protparam/] [39]. 
Homology modeling and analysis were determined using Swiss-Model 
of expasy platform [http://swissmodel.expasy.org/] [40]. Structural 
homology between UL18 and MHC-I were compared through iPBA 
web server [http://www.dsimb.inserm.fr/dsimb_tools/ipba/] [41]. Ig-
sequences were also manually compared for structural examination in 
light of likeness in the spine neighborhood compliances [42,43].

Results
Sequence retrieval and UL18 domain analysis 

To comprehend the protein capacity is to distinguish the potential 
area and folds present in the polypeptide. The most conserved domain 
was obtained from six ORFs of the HCMV-UL18 region and domain 
architecture was analyzed within the amino acid sequences through 
SMART [Simple Modular Architecture Research Tool: http://www. 
http://smart.embl-heidelberg.de/] in normal mode. The repeats and 
motifs of the sequence prepared by SMART based on the principle 
of hidden Markov models. In the full-length HCMV-UL18 envelope 
glycoprotein domain, only recognizable domain has been reported 
which is most significant. The Figure 1 represents the residual 
positions of sequence homology to MHC class-I molecule and Ig 
superfamily including with transmembrane region of the UL18. Site-
specific homology was determined to the MHC class-I molecule in 
residual position [19 to 197; ID: pfam00129, E-value: 3.26e-14], and 
Ig superfamily [229 to 289; ID: pfam07654, E-value: 1.38e-06] (Table 
3) (Figure 2). The outlier region and homolog of the structure were 
determined via SCOP [Structural classification of protein] based 
on similarities of their structures and amino acid sequences. Thus, 
our hypothesis confirmed that the MHC class-I and Ig superfamily 

Common name Source Accession No. Size [bp]
UL18 HCMV(AD169 strain) X17403.1 368

MHC class-I Homo sapiens ACR55720.1 365

Table 1: Retrieved HCMV homologs of human MHC class-I molecules.

Sl. Description E-value Accession
1 MHC class-I antigen [Homo sapiens] 1e-15 ACR55720.1
2 MHC class-I antigen [Homo sapiens] 2e-15 ACN89845.1
3 MHC class-I antigen [Homo sapiens] 3e-15 CCB78856.1
4 MHC class-I antigen [Homo sapiens] 3e-15 CAL85437.2
5 MHC class-I antigen [Homo sapiens] 3e-15 CBL87902.1
6 MHC class-I antigen [Homo sapiens] 3e-15 BAG32141.1
7 MHC class-I antigen [Macaca mulatta] 3e-15 ABU68109.1
8 MHC class-I heavy chain [Equus caballus] 3e-15 NP_001075975.1
9 MHC class-I heavy chain [Equus caballus] 3e-15 CAA56263.1
10 MHC class-I antigen [Pan troglodytes] 3e-15 AAF72771.1
11 MHC class-I antigen [Alouatta seniculus] 3e-15 AKE50309.1
12 MHC class-I antigen [Saguinus labiatus] 5e-15 AEL31262.1
13 MHC class-I antigen [Bos taurus] 6e-15 AAZ73464.1
14 MHC class-I antigen [Phoca vitulina] 6e-15 AFU81672.1
15 MHC class-I antigen [Macaca nemestrina] 6e-15 AAO84306.1
16 MHC class-I antigen [Homo sapiens] 7e-15 CCP46976.1
17 MHC class-I alpha chain [Bison bison] 1e-14 ABJ53222.1
18 MHC class-I antigen [Tupaia belangeri] 1e-14 AFN37215.1

19 MHC class-I antigen [Elaphurus 
davidianus] 2e-14 AFX84568.1

20 MHC class-I antigen [Macaca fascicularis] 2e-14 BAI40345.1

21 MHC class-IB antigen [Chlorocebus 
sabaeus] 4e-14 AEE37103.1

Table 2: The sequence of AD169 strain [X17403.1] showing homology with 
nonredundant protein database through BLASTp.

Name Start End E-value
MHC class-I [Pfam00129] 19 197 3.26e-14

C1-set [Ig superfamily] [pfam07654] 229 289 1.38e-06
Transmembrane region 320 347 N/A

Table 3: Confidently predicted domains, repeats, motifs and features.

Name Start End E-value
SCOP:d1i4fa2 19 197 9e-11

SCOP:d1hdma1 229 300 4e-9

Table 4: Outlier homologs and homologs of known structure.
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The secondary structure of HCMV ORF18

A characteristic pattern of the secondary structure represents 
protein fold into domains, and the secondary structure predictions can 
give knowledge into the potential protein design. The likely secondary 
structure of HCMV ORF18 was determined using PSIPRED [Protein 
Sequence Analysis Workbench] (Figure 4). In our study, the predicted 
protein architecture contained about 28.90% Helices [107 residues] 
and only 10.32% of strands [38 residues], which connected with 60.59% 
coils [223 residues]. Therefore, the architecture of the UL18 shared by 
helices and strands; and provided as consistent with its function as a 
glycoprotein along with the transmembrane region. The molecular 
model of UL18 was created on the basis of its sequence homology to 
classical MHC-I. The protein identification with homologous tertiary 
structure may provide clues about function and mechanisms of 
proteins. HCMV UL18 previously reported being a homolog of the 
class-I MHC molecule [1]. We sought to extend these observations in 
the context of the whole protein and generated the tertiary structure of 
ORF18 to give a global perspective. Thus, we conclude that a consistent 
fold prediction was achieved for the conserved domain of UL18 
proteins. The tertiary structure was made using Phyre2.0 [Protein 
Homology/analogY Recognition Engine V 2.0], where 276 residues 
[75% of the sequence] modeled by the single highest scoring template 
with 100.0% confidence (Figure 5A).

Prediction of secondary and tertiary structure of MHC-I and 
Ig superfamily

Secondary structure of class-I MHC molecule [ACR55720.1] 
was determined and represents heavy chain complexed with β2 
microglobulin and pbm8 peptide [pdb ID: c2clvA]. Total 278 residues 
[76% of your sequence] have been modeled with 100.0% confidence 
by the single highest scoring template and structures consist of 
helices and strands (Figure 5B). The UL18 amino acid sequences were 
compared to establish and analyze the concept that the structure shows 
similarities with the viral MHC-I molecule and able to attach to a host 
inhibitory receptor. Ig sequences were manually retrieved from 229-
289 residual regions, as it was found similar in the UL18 region of 
HCMV (Figure 2) (Table 3). In our present study, we compared 19-
197 region of UL18 with MHC-I; and 229-289 region of UL18 with Ig 
superfamily respectively. High confidence of structural similarity was 
found between UL18 and MHC-I molecule. A total 175 residues [99%] 
modeled with 100% confidence by the single highest scoring template 
[pdb code-3d2u]; and 59 residues [97% of sequence] of Ig superfamily. 
The structure of Ig dominated by strands [37.3%] only and connected 
with coils; however the lack of helices were noticed in the structure 
(Figure 5C). 

Structure comparison of UL18 with MHC I molecules and Ig 
superfamily 

IPBA was used to align protein structures for examination 
and the structure of UL18 was compared to define the structural 
homology through the IPBA-web tool [http://www.dsimb.inserm.fr/
dsimb_tools/ipba/]. The closest adaptation of spine was characterized 
as pentapeptide dihedrals, utilizing Protein Squares [PBs] by a PB 
substitution network [42]. The comparative methodology was taken for 
redetermination of the outcomes through TM-align tool by calculation 
of grouping independent protein structure correlations [43]. Predicted 
representation of auxiliary superposition of UL18 with MHC-I and Ig 
molecules resulted that the MHC-I molecule was only sandwiched with 
HCMV UL18 protein with highly significant TM value (Figure 6A), 
but the Ig molecules only bound to the strands of UL18 proteins as 
expected (Figure 6B).

 

Figure 1: Sequence homology to MHC class-I molecule and Ig superfamily 
including with transmembrane region of the UL18 of HCMV. The repeats and 
motifs of the sequence prepared by SMART based on the principle of hidden 
Markov models. Domains with scores less significant than established cutoffs 
not shown in the diagram.

 
Figure 2: The only conserved domain for membrane glycoprotein UL18 of 
HCMV and the region homologous to class-I MHC and Ig superfamily.

Figure 3: Prediction of Transmembrane region of the UL18 domain through 
TMHMM server v2.0. [A], Feature predictions are colour coded onto the sequence 
feature as transmembrane regions are shown as red lines, inside regions as blue 
lines and pink lines representing outside region. [B], showing the amino acids of 
320 to 347 located in the transmembrane part and situated in the extracellular 
region of the host cell by connecting with C and N-terminal region.

Figure 4: Secondary structure map of the UL18 glycoprotein of HCMV. Feature 
predictions are colour coded onto the sequence feature as Alpha helices are shown 
as blue barrels, beta sheets as red arrows and black lines representing coils.

Figure 5: Tertiary structure of [A] HCMV-UL18, [B] Class-I MHC, and [C] Ig 
molecules identified by Phyre2.0. Feature predictions are colour coded onto 
the sequence feature as Alpha helices are shown as purple and beta sheets 
as yellow. This display affects only protein chains. Alpha helices are shown as 
“rockets”. Beta strands shown as planks. The entire protein chains shown as a 
smoothed backbone trace. [A] Class-I MHC molecule distributed helices and 
strands in the structure and linked with coils. [C], Ig molecule showing lacks of 
helices and contains only strands.
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Discussion 
Probably in light of the particular weight applied to the transparent 

framework, numerous viruses have advanced proteins that meddle 
with antigen presentation by major histocompatibility complexes 
through the entire assortment of astute methodologies to restrain the 
MHC class-I pathway [44]. Diefenbach et al., and others were reported 
that some of the viral MHC-I-like molecules either downregulate 
or debilitate the acknowledgment of specific ligands [45,46]. The 
quantitative measure of direct tying collaborations between viral MHC-
I-like proteins and their ligands reflect the quality with which these 
evasions can contend with host defensive or inhibitory components. 
To gain a better knowledge of the molecular basis of UL18 mediated 
downregulation of MHC-I we performed computational analysis and 
characterized structural and functional motifs. Our analysis indicates 
HCMV-UL18 does disrupt MHC-I signaling of host cells through their 
structural homology with MHC-I at 19-197 residual position. A similar 
hypothesis was suggested by Chensue in 2001 and believed that in host-
protein interactions these domains and motifs may involve [47]. Our 
UL18/MHC-I model suggests that the UL18 stretch of residues 19-197 
plays a central role in the increased binding. Side chains are involved 
in a network of hydrogen bond interactions. Lucjan and Rychlewski 
suggested that most of the recognized MHC-fold proteins are involved 
in the binding of peptides in order to present either internal (Class-I 
MHC) or external (Class-II MHC) antigens in the process of acquired 
immune response [48]. The majority of proteins belonging to the MHC 
fold contain additional immunoglobulin-like domains. The model 
of UL18 was superposed on MHC-I and Ig in this study. The entire 
UL18/MHC-I and the UL18/Ig complex were subjected to energy 
minimization. We found the same at 229-289 residues of UL18 ORF. 
The presence of an MHC class-I homologue in the CMV genome, 
encoded by the UL18 gene was previously reported [49,20]. Here, we 
investigated the level of utilization of human cell repression parts by 
viral proteins; and demonstrate that homology of the class-I MHC 
molecules of the host cells with HCMV-UL18 may down regulate 
the immune system. The HCMV UL18 ORF encoded 368-residues 
of type-I glycoprotein, whose extracellular region shares 25% amino 
acid sequences identical to the extracellular region of human class-I 
molecules [20]. A comparative alignments between UL18 and MHC 
class-I sequences revealed that UL18 is more likely to adhere a fold of 
MHC-like peptide binding groove (6A and 6B). Peptide termini fitted 
with conserved residues at each end of the groove. Previous studies 
indicated that UL18, the HCMV class-I homolog, binds the MHC 
class-I and associated with endogenous peptides [25,27]. A similar 

comparative alignment of m144 and UL18 with class-I MHC sequences 
reported that UL18 is more conceivable than m144 to incorporate a 
fold that comprehends MHC-like peptide-binding groove [19].

The bioinformatic expectation of protein subcellular restriction 
broadly considered for prokaryotes and eukaryotes. Amino acids 
groupings are examined to foresee its auxiliary and tertiary structure 
through bioinformatics, computational demonstrating, and similar 
arrangement examination of UL18 to comprehend its method of 
activity in connection with the contamination. What so ever, this is not 
the situation for viruses whose proteins are regularly included in broad 
associations at different subcellular restrictions with host proteins [50]. 

Conclusion
All these investigations put together will readily benefit to 

fulfill our expectations to cure irresistible ailments and to build our 
comprehension of these proteins on their participation in host cells and 
hence could prove to be valuable for the outline of enhanced remedial 
intercessions. Such forecasts give a system to expound quickly viral 
proteomes with subcellular limitation data. In whole, these perceptions 
show that numerous HHV5 [Human Herpesvirus 5] ORFs offer traditional 
roots as a consequence of duplication, furthermore raise the likelihood that 
particular weights have kept up the copied qualities in groupings. HCMV 
encodes class-I MHC homologs. In light of the above, further experimental 
steps are needed to elucidate the exact role of the UL18 homologues, 
during the pathogenesis of Betaherpesvirinae infections.
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