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Introduction
In 1967/68 a group of 1,256 women were recruited for the Swiss 

Analgesic Study [1,2]. Women were age 30-49 years and lived in the 
Basel, Switzerland area. The purpose of the study was to investigate 
whether there was an association between intake of phenacetin-
containing analgesics and prevalence and incidence of kidney disease. 
To measure phenacetin intake a urinary metabolite (N-acetyl-P-
aminophenol (NAPAP)) was assayed from a urine sample in the clinic 
and from 2 additional urine samples collected at home on 2 separate 
days within 1 week of the clinic visit. Serum creatinine was used as 
a measure of kidney function. Women were seen at follow-up visits 
in 1969, 1970, 1971, 1972, 1975 and 1978. In the primary paper, 
mean NAPAP over the 3 replicates was categorized and related to 
both prevalence and incidence of kidney disease where an abnormal 
creatinine was defined as >1.5 mg/dl. In the present paper, we represent 
NAPAP and serum creatinine at the baseline clinic visit in 1968 as 
continuous variables and compute the correlation coefficient between 
these two measures. To distinguish phenacetin intake from general 
use of analgesics, urinary salicylates were also assessed in triplicate at 
baseline as an indication of intake of aspirin-containing analgesics. 
If we let X=NAPAP at the baseline clinic visit, Y=salicylates at the 
baseline clinic visit and Z=serum creatinine at the baseline clinic visit, 
then we wish to test the hypothesis 0 1:  vs :ρ ρ ρ ρ= ≠xz yz xz yzH H            (1)

where xzρ  is the population correlation between X and Z and yzρ is 
defined similarly.

There already exist methods for comparing dependent correlation 
coefficients for normally distributed random variables obtained from 
the same subjects. In an excellent review paper on this subject [3] it is 
noted that in previous simulation studies, several methods are clearly 
inappropriate, while other methods preserve type I error under a variety 
of conditions. Among the latter are the method of Williams [4] which 
is an enhancement of a procedure initially proposed by Hotelling [5]. 

Hotelling’s procedure is exact, but only under the condition that the 
sample and population standard deviations are the same for both X and 
Y (i.e., sx=σx, sy=σy). To test the hypotheses in (1) Williams proposes the 
test statistic
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Where RXZ=corr(x,z),Rxy and Ryz are defined similarly, N=sample 
size an
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and we reject H0 if 1 3, 1 /2| | NT t α− −> and tN-3,p=pth percentile of a tN-3
distribution. 

In addition, Olkin and Finn [6] used a similar approach to compare 
more than 2 correlated correlation coefficients. Since in finite samples, 
the Fisher z transformation better approximates a normal distribution 
than the sample correlation coefficient, Dunn and Clark [7] proposed 
the test statistic

( ) ( ) ( )1/2*
1 , 03 / 2 2 ~ 0,1  under = − − −xz yz xz yzZ N Z Z s N H

where
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Abstract
There already exist methods for comparing dependent Pearson correlation coefficients. However, each of the 

variables (X, Y) has associated random error; and a related question is after correcting for random error, which variable 
correlates most highly with the outcome variable Z. In this paper, we present methods for comparing dependent 
deattenuated correlation coefficients. This is a generalization of previous work for obtaining confidence limits for a 
single deattenuated correlation coefficient. In addition, we extend this work to the comparison of dependent Spearman 
correlation coefficients. The methods are illustrated with two examples. The first example concerns the comparison of 
nephrotoxicity of phenacetin and aspirin intake as measured by repeat biomarkers obtained from the same subjects. 
The second example is a comparison of the validity of different storage conditions for measuring HbA1c from dried blood 
specimens as compared to the gold standard of immediate processing. Results from using these methods indicate that 
phenacetin intake is more highly correlated with serum creatinine levels than aspirin intake and that short-term storage 
is preferable to long-term storage for assessment of HbA1c levels. We have available SAS software for comparing 
dependent deattenuated Pearson correlation and dependent Spearman correlations with and without deattentuation.

      Journal of Biometrics & Biostatistics       Jo
ur

na
l o

f B
iometrics & Biostatistics

ISSN: 2155-6180

l 


Citation: Rosner B, Wang W, Eliassen H, Hibert  E (2015) Comparison of Dependent Pearson and Spearman Correlation Coefficients with and without 
Correction for Measurement Error. J Biom Biostat. 6: 226. doi:10.4172/2155-6180.1000226

J Biom Biostat
ISSN: 2155-6180 JBMBS, an open access journal

Page 2 of 9

Volume 6 • Issue 2 • 1000226

( ) ( )( )
( )( )

2 2 2 2 2

, 2 2

1 0.5 1

1 1

− − − − − −
=

− −
xy xz yz xz yz xz yz xy

xz yz
xz yz

R R R R R R R R
s

R R

Zxz=0.5 ln [(1+ Rxz)/ (1- Rxz)], Zyz is defined similarly, and we reject 

H0 if 
*
1 1

2

| | α
−

>Z z , where zp=pth percentile of a N(0,1) distribution. 

Furthermore, Meng, Rosenthal, and Rubin [8] propose a statistic 
that is asymptotically equivalent to the Dunn and Clark procedure, but 
with a simpler expression for var(Zxz -Zyz) given by:

( ) ( ) ( ) 0
3 ~ 0,1  under 

2 1
−

= −
−xy xz yz

xy

NZ Z Z N H
R h

where

( ) ( )2 21 / 1 ,= − −h fR R

and

( ) ( ){ } ( )2 2 2 2min 1 / 2 1 ,1 and / 2  = − − = + xy xz yzf R R R R R

In addition, Bilker, Brensinger, and Gur [9] propose a combined 
permutation-bootstrap approach to test the hypothesis in (1) based on 
the test statistic 

( ) ( ){ }1/ 2
/= − −xy xz yz xz yzZ Z Z var Z Z

which is computationally intensive, but avoids the necessity of 
specifying the underlying distribution of Zxy. Finally, the R package [10] 
cocor maintained by Diedenhofen [11] provides software to implement 
a variety of methods for comparing dependent Pearson correlation 
coefficients.

However, an assumption of [4-8] is that the joint distribution of 
(X, Y, Z) is multivariate normal. We relax this assumption and use the 
method of moments and the delta method to estimate var(Zxz -Zyz). 
Furthermore, in the Swiss Analgesic dataset, there is considerable intra-
individual variation among replicate measures in both X and Y and the 
more important question is whether the true (underlying) mean value 
of X and Y at baseline, denoted by μx and μy are more highly correlated 
with Z. Thus, we wish to test the hypothesis

( ) ( ) ( ) ( )0 1: , , vs : , ,µ µ µ µ= ≠X Y X YH corr Z corr Z H corr Z corr Z . 

This is an extension of previous work [12] that provides confidence 
limits for a single deattenuated correlation. Another issue is that 
it is clear that neither X nor Y is normally distributed. Hence, the 
Spearman correlation coefficient may be a more appropriate measure 
of association than the Pearson correlation coefficient in this dataset. 
Hence, we extend our methodology to the comparison of dependent 
Spearman correlation coefficients both with and without correction for 
measurement error. To our knowledge, there is no previous literature 
on the comparison of dependent Spearman correlation coefficients. 

In this paper, we first describe the methodology and propose both 
an asymptotic test and an exact test. Second, we present a simulation 
study to assess the validity of the asymptotic test in finite samples and 
compare it to existing procedures for comparing dependent correlation 
coefficients. Finally, we describe two examples based on real data 
illustrating the use of these methods.

Comparison of Dependent Deattenuated Pearson 
Correlations
Hypothesis testing

We consider a classical measurement error model for Xi and Yi of 

the form

1               1, , , 1, , α µ= + + = … = …
i ijij x X xx e i n j k  	                (2)

1              1, , , 1, , α µ= + + = … = …
i ijij y Y yy e i n j k

where

 ( ) ( ) ( )2 2 2 2
 , ( )  , ( ) , ( ) , , and ,  µ σ σ µ σ σ µ µ= = = =

i ij i ij i ij i ijX Ax x ex Y Ay y ey X x y yvar var e var var e e e are 
respectively independent, ( , ) 0≠

ij ijx ycorr e e if replicate measures of X and 
Y are obtained from the same subjects. 

We define the true correlation between (X and Z) and (Y and Z) by 

( ), ,  ρ µ=
ixz true X icorr Z  				                   (3)

( ), ,  ρ µ=
iyz true Y icorr Z

Based on equations (2) and (3), it is straightforward to show that 

, 
ρρ = xz

xz true
xICC

 				                 (4)

, 

ρ
ρ = yz

yz true
yICC

where ( ) ( ),  ,  ρ ρ= =xz ij i yz ij icorr X Z corr Y Z

and

( ) ( ) ( )2 2 2 2 2 2
1 2 1 2 ( , ) / , , /σ σ σ σ σ σ= = + = = + =x ij ij Ax Ax ex y ij ij Ay Ay eyICC corr X X ICC corr Y Y

the intra class correlations obtained from repeated measures of X and 
Y based on (2). We wish to test the hypothesis:

0 , , 1 , , :  vs :ρ ρ ρ ρ= ≠xz true yz true xz true yz trueH H

Note that it is possible that  ρ ρ=xz yz , while , , ρ ρ>xz true yz true  if the 
reproducibility of X is worse than that of Y (i.e., ICCx<ICCy). Similarly, 
it is possible that ρ ρ<xz yz , while , , ρ ρ=xz true yz true .

It is usually more efficient to base inferences for correlations based 
on Fisher’s z statistic. Thus, we will test the hypothesis

0 , , 1 , , :  vs := ≠xz true yz true xz true yz trueH Z Z H Z Z

Where

( ) ( ), , , 
1 ln 1 / 1
2

ρ ρ = + − xz true xz true xz trueZ  and Zyz,true is defined similarly. 

We will use the delta method to estimate

( ) ( ), , , 
ˆ ˆ ˆ∆ ≡ −z true xz true yz truevar var Z Z

and obtain the test statistic

( )
( ),

, 

,

ˆ
~ 0,1  for large .

ˆ
∆

=
∆

z true
xy true

z true

V N N
var

	  	                 (5)

We have:

( ) ( ) ( ) ( ), , , , , 
ˆˆ 2 ,ˆ ˆ ˆ∆ = + −z true xz true yz true xz true yz truevar var Z var Z cov Z Z  	               (6)

Where

( ) ( ), ,, ˆ ˆ
xz true yz truevar Z var Z and ( ), , 

ˆ ˆ,xz true yz truecov Z Z  are derived in Appendices 
A, B and C of the supplementary materials, respectively. 

Therefore, from Appendices A, B and C of the supplementary 
materials, we obtain ( ),

ˆ  ∆ z truevar  and the test statistic Vxy,true in (5), 

with asymptotic p-value 

= ( ),2 x 1 − Φ xy trueV , where Φ=standard normal c.d.f. 
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Similarly, we can also test the hypothesis 0 1:  vs : ρ ρ ρ ρ= ≠xz yz xz yzH H  
based on the large sample test statistic

( )
( )

ˆ
 ~ 0,1  for large N

ˆ
∆

=
∆

z
xy

z

V N
var 	  		              (7) 

where ˆ ˆ ˆ−∆ =z xz yzZ Z  and based on the delta method

( ) ( ) ( ) ( ) 
ˆ ) ˆ ˆ ˆ ˆ ˆ2 ˆ(  ,∆ = − = + −z xz yz xz yz xz yzvar var Z Z var Z var Z cov Z Z          (8)

( ) ( )
( )

22

2 22 2
[ (ln )] ln

1 1
 = +  − −

yzxz
xz yz

xz yz

RR var R var R
R R

 
( )( ) ( )2 2

2 ln( ), ln
1 1

 −  − −
xz yz

xz yz
xz yz

R R
cov R R

R R

and

( ) ( ) ( )(ln , (ln  and ln( ), ln           xz yz xz yzvar R var R cov R R are given in 
Appendices A, B and C, respectively of the supplementary materials.

Interval estimation

It is also of interest to obtain confidence limits for
, , ,ρ ρ ρ∆ = −true xz true yz true . It is not possible to translate confidence limits 

for , Z true∆  to corresponding confidence limits for , trueρ∆ . Instead, we 

will use  

, , ,  /   /  ∆ ≡ − ≡ −x yR true xz yz xz true yz trueR ICC R ICC R R as a point estimate of

, ρ∆ true . To obtain , var( )∆R true we use the formula:

( ) ( ) ( ) ( ), , , , ,2 ,∆ = + −R true xz true yz true xz true yz truevar var R var R cov R R  (9)

Since , xz trueR  is a ratio estimator, we first consider ( ),   xz truevar ln R  
and use the delta method to obtain

( ) ( )2
, , , ln ≅  xz true xz true xz truevar R R var R  			                (10)

Furthermore, from the delta method,

( ) ( ) ( ), 
1ln ln ln
4

   = +     xxz true xzvar R var R var ICC  	              (11)

where ( )ln  xzvar R  and ( )ln 
 xvar ICC  are obtained from Appendix A 

of the supplementary materials. Similarly,

 ( ) ( )2
, , , ln ≅  yz true yz true yz truevar R R var R  			                 (12)

 ( ) ( )2
,

1ln ln
4

   = +     
yyz true yzR var R var ICC

where ( )ln  yzvar R  and ( )ln 
 yvar ICC  are obtained from Appendix B of 

the supplementary materials. Finally, from the delta method we have:

( ) ( ) ( ), , , , , ,, ln , ln ≅  xz true yz true xz true yz true xz true yz truecov R R R R cov R R  	                (13)

 ( ) ( ) ( ), ,
1 ln ), ln( ln , ln
4

   = +     
x yxz true yz true xz yzR R cov R R cov ICC ICC

where ( )ln ), ln(  xz yzcov R R  and ( ) ( )ln , ln 
 x ycov ICC ICC are given in Appendix 

C of the supplementary materials.

Hence, if we combine (9)-(13) and assume asymptotic normality 
of , ∆̂R true . we have an approximate 100% × (1-α)CI for , ρ∆ true  given by

( ), 1 /2 , 
ˆ ˆ

α−∆ ± ∆R true R truez var  				               (14)

Similarly, we can obtain confidence limits for  
given by 

( )1 / 2
ˆ ˆ

α−∆ ± ∆R Rz var  				                (15)

where

∆̂ = −R xz yzR R

( ) ( ) ( ) ( )ˆ 2 , ∆ = + −R xz yz xz yzvar var R var R cov R R  

( ) ( ) ( ) ( )2 2
 ln  ln 2  ln , ln   = + −      xz xz yz yz xz yz xz yzR var R R var R R R cov R R

Small-Sample Inference

When sample size is small, permutation methods can be used 
to estimate levels of significance. The permutation distribution is 
generated by randomly shuffling the X, Y labels and computing the 
empirical distribution of ,  anˆ ˆd ∆ ∆z true z  in (5) and (7), respectively. The 
rank of ,  anˆ ˆd ∆ ∆z true z  based on the observed data with reference to their 
permutation distributions can be used to estimate exact two-sided 
p-values given by 

( ), , , , , 

1

ˆ ˆ  
2 x  

=

 ∆ ≥ ∆
 − =  
  
∑
M z true permutation m z true observed

m

I
p value

M                           (16) 

And similarly for ˆ
z∆ , where M is the size of the permutation 

distribution and I(a)=1 if a is true,=0 if a is false.

Comparison of Dependent Spearman Correlations
Hypothesis testing

We can also consider the comparison of dependent Spearman 
correlations whereby we test the hypothesis

0 , , 1 , ,:  vs  :ρ ρ ρ ρ= ≠xz s yz s xz s yz sH H  			                  (17)

where ,ρxz s =population Spearman correlation between X and Z and 
,ρ yz s  is defined similarly.

If the data are transformed to the probit scale then from Rosner 
and Glynn [13]. 

( ) ( )1 1
, ,

6 6 / 2  , / 2ρ ρ
π π

− −  = ≡  i ixz s xz probit x zsin sin corr H H  	              (18)

( ) ( )1 1
, ,

6 6 / 2  , / 2ρ ρ
π π

− −  = ≡  i iyz s yz probit y zsin sin corr H H

where ( )≡   ix x iH probit F X  and is estimated by 
( )1 ,

1
−  

Φ  + 
irank X

N  where 

Φ=c.d.f. of a N(0,1) distribution, ,  ρ =xz probit population correlation 
between the probit of X and the probit of Z and ,  ρ yz probit is defined 
similarly.

Thus, the hypothesis test in (17) is equivalent to the hypothesis test in 
(7) after transformation to the probit scale yielding a test statistic based 

on , , ,∆̂ = −z probit xz probit yz probitZ Z  given by ( ), , ,
ˆ ˆ/= ∆ ∆xy probit z probit z probitV var

Interval estimation

It is also of interest to obtain confidence limits for , , ,ρ ρ ρ∆ = −s xz s yz s  
which we estimate by , , ,∆ = −R s xz s yz sR R . Based on the delta method and 
(18), we obtain:

( ) ( ) ( ) ( ), , , , , ,2 ,− = + −xz s yz s xz s yz s xz s yz svar R R var R var R cov R R               (19)

( ) ( )
2 2

, ,
, ,2 2

, ,2 2

9 9

1 1
4 4

π π

   ≅ +      
− −      

   

xz probit yz probit
xz probit yz probit

xz probit yz probit

R R
var ln R var ln R

R R
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, , , , , ,∆̂ = −R s true xz s true yz s trueR R

Simulations

We conducted simulation studies to assess the validity of the 
asymptotic procedure in (7) for comparing dependent correlations in 
finite samples and to compare this procedure with the procedures of 
Dunn and Clark [7] and Meng, Rosenthal and Rubin [8]. We simulated 
data for (X, Y, Z) from a multivariate normal distribution N(μ, Ʃ) with

( )
1 0.732

0,0,0 and 0.732 1  
1

ρ
µ ρ

ρ ρ

 
 

= =  
 
 

∑
xz

yz

xz yz

We performed 4,000 simulations for each combination of N=100, 
400 and 

( ) ( ) ( ) ( ), 0.305, 0.305 , 0.500,0.500  and 0.305,0.500ρ ρ =xz yz
. 

We also simulated data from a log normal distribution (X*, Y*, Z*), 
where X*=exp(X), Y*=exp(Y) and Z*=exp(Z). The results are given in 
Table 1. We see that in the case of a normal distribution that all three 
procedures have appropriate type I error (designs 1-4) , particularly in 
the case of n=400. Similarly, the power of the procedures (designs 5-6) 
is also comparable. However, in the case of a log normal distribution, 
type I error is more adequately preserved by the method of moments 
procedure, particularly for n=400. As the sample size increases, the 
inconsistent estimate of the variance provided by the Dunn and Clark 
and Meng procedures in the setting of a non-normal distribution yields 
variance estimates that are too low and type I errors that are too high. 
Conversely, as n increases the method of moments procedure yields 
consistent variance estimates and actual p-values that are close to 
nominal levels. Alternative approaches if non-normality is suspected 
would be to compare dependent Spearman correlations rather than 
Pearson correlations. 

To assess the accuracy of the procedure in (5) to compare dependent 
deattenuated Pearson correlations we used the same data designs as 
in designs 1-6. We performed each set of simulations in two ways. 
First, we assumed that the intra class correlation between replicate 
measures of X (and Y) was known without error and set to 0.67. Thus,

( ) ( ) ( ) ( )ln ln ln ,ln 0     = = =          x y x yvar ICC var ICC cov ICC ICC in equations (A3), 

(B1) and (C2). Second, we generated replicate values of (X1, X2, Y1, Y2) 
from a multivariate normal distribution denoted by N (μR, ƩR) where 
μR=(0,0,0,0) and

1 0.67 0.60 0.50
0.67 1 0.50 0.60

 
0.60 0.50 1 0.67
0.50 0.60 0.67 1

 
 
 =
 
 
 

∑R

and estimated ICCx and ICCy from the replicate data. For each set of 
simulations we estimated the empirical type I error of Vxy, true, and the 
bias and variance of ( ), , 

ˆ ˆ−xz true yz trueZ Z  in (5). The results are given in 
Table 2.

We see in Table 2 that the median theoretical variance and the 
empirical variance of , , ,ˆ ˆ

xz true yz trueZ Z  and ,∆̂ z true  are very similar both 
for the case where the ICC is assumed known (Type 1) and where it is 
estimated from the simulated data (Type 2). In addition, the empirical 
type I error is close to 0.05 (range from 0.039 to 0.061) for all parameter 

( ), ,
, ,2 2

, ,2

9
2 ), (

1 1
4 4

π

 −    
− −    

  

xz probit yz probit
xz probit yz probit

xz probit yz probit

R R
cov ln R ln R

R R

where

( ) ( ) ( ) ( ), , , ,   , ln  and  ,ln          xz probit yz probit xz probit yz probitvar ln R var R cov ln R R  are given 
in Appendices A, B and C, respectively, of the supplementary material.

Thus, a 100% × (1-α)CI for , sρ∆  is given by

( ), 1 / 2 ,  ,   α−∆ ± −R s xz s yz sz var R R  (20)

Correction for measurement error

Rosner and Glynn [13] defined the deattenuated Spearman 
correlation by 

( ) ( )1
, , , ,6 / sin / 2ρ π ρ−=xz s true xz probit true  		               (21)

where , ,ρxz probit true  is the deattenuated correlation between 
probit scores for X and Z, respectively. Hence, the hypotheses 

0 , , , , 1 , , , ,:  vs  :ρ ρ ρ ρ= ≠xz s true yz s true xz s true yz s trueH H  are equivalent to the 
hypotheses

0 , , , , 1 , , , ,:  vs  :ρ ρ ρ ρ= ≠xz probit true yz probit true xz probit true yz probit trueH H

Furthermore, the latter hypotheses can be tested using (5), where 
the Fisher z transformation is performed based on probit scores, 
yielding a test statistic based on , , , , , ,

ˆ = −∆ z probit true xz probit true yz probit trueZ Z  
given by

( ), , , , , ,
ˆ / ˆ∆ ∆=xy probit true z probit true z probit trueV var  and

( ) ( ), , , , , , ,
ˆ ˆ ˆ≡ −∆ z true probit true xz probit true yz probit truevar var Z Z 	              (22)

( ) ( ) ( ), , , , , , , ,
ˆ ˆ2ˆ ˆ ,= + −xz probit true yz probit true xz probit true yz probit truevar Z var Z cov Z Z

and ( ) ( ), , , ,, ˆ ˆ
xz probit true yz probit truevar Z var Z  and ( ), , , ,

ˆ ˆ,xz probit true yz probit truecov Z Z c are 

obtained from equations (A3), (B1) and (C1), of Appendices A, B and 
C, respectively of the supplementary materials.

To obtain a 100% × (1-α)CI for , , , , , ,ρ ρ∆ = −R s true xz s true yz s true , we use 
a similar approach as in (19) and obtain:

( ) ( ) ( ) ( ), , , , , , , , , , , ,2 ,− = + −xz s true yz s true xz s true yz s true xz s true yz s truevar R R var R var R cov R R    (23)

( ) ( )
2 2

, , , ,
, , , ,2 2

, , , ,2 2

9 9

1 1
4 4

π π

   ≅ +      
− −      

   

xz probit true yz probit true
xz probit true yz probit true

xz probit true yz probit true

R R
var ln R var ln R

R R

( ), , , ,
, , , ,2 2

, , , ,2

9  
2 ),ln(

1 1
4 4

π

 −    
− −    

  

xz probit true yz probit true
xz probit true yz probit true

xz probit true yz probit true

R R
cov ln R R

R R

where 

( ) ( ) ( ) ( ), , , , , , , ,,  and  ,ln          xz probit true yz probit true xz probit true yz probit truevar ln R var ln R cov ln R R
 

are obtained from (11)-(13), respectively.

The corresponding large sample 100% × (1-α)CI for , , ∆R s true  is 
given by 

( ), , 1 / 2 , ,  
ˆ ˆ

α−∆ ± ∆R s true R s truez var  			                  (24)

where



Citation: Rosner B, Wang W, Eliassen H, Hibert  E (2015) Comparison of Dependent Pearson and Spearman Correlation Coefficients with and without 
Correction for Measurement Error. J Biom Biostat. 6: 226. doi:10.4172/2155-6180.1000226

J Biom Biostat
ISSN: 2155-6180 JBMBS, an open access journal

Page 5 of 9

Volume 6 • Issue 2 • 1000226

combinations considered. Furthermore, the bias in estimation of 
,∆̂ z true  is close to 0 for all parameter combinations considered. The 

above variances are slightly larger when the ICC is estimated (Type 
2) than when the ICC is assumed known (Type 1), particularly when

 0.5ρ ρ= =xz yz
.

In addition, we estimated the bias and variance of ,∆̂R true  and 
the associated coverage probability based on (14). The results are 
given in Table 3. We note that the bias is close to 0 in all designs 
considered. Furthermore, the empirical type I error in designs where 

, , ρ ρ=xz true yz true  is close to 0.05 and the coverage probability both when
, , ρ ρ=xz true yz true  and when , , ρ ρ≠xz true yz true  is close to 95% both for 

N=100 and N=400.

Examples
Association between analgesic intake and level of kidney 
function

We use data from the Swiss Analgesic Study where in 1967/68 

1,256 women provided a urine specimen in the clinic and 2 additional 
specimens at home on different days which were assayed for NAPAP, 
a metabolite indicating recent intake of phenacetin-containing 
analgesics and salicylates a metabolite indicating recent intake of 
aspirin-containing analgesics. In addition, serum creatinine, a marker 
of kidney function was also measured at the baseline clinic visit. We 
let X, Y and Z be the NAPAP, salicylates and serum creatinine at 
the baseline (1968) clinic visit. We wish to compare corr(X,Z) with 
corr(Y,Z). A total of 1168 women had complete data on X, Y and Z. 
Descriptive statistics for the (X,Y,Z) data are provided in Table 4.

We note that the distributions of each of X, Y and Z are skewed 
and not normally distributed. There is moderate correlation between 
NAPAP and salicylates (Pearson correlation=0.423) in part because 
some analgesics contain both phenacetin and aspirin. Pearson 
correlations between NAPAP and salicylates vs. serum creatinine were 
0.190 and 0.068, respectively. The ICC for NAPAP and salicylates over 
the 3 determinations were 0.614 and 0.404, respectively, indicating 
moderate variability of intake on different days. 

Type I Error Power
Design Distribution ρxz ρyz N Method of 

Moments*
Dunn and 

Clark
Meng Method of 

Moments*
Dunn and 

Clark
Meng

1 Normal 0.305 0.305 100 0.061 0.054 0.052 --- --- ---
2 Normal 0.305 0.305 400 0.045 0.045 0.045 --- --- ---
3 Normal 0.5 0.5 100 0.063 0.054 0.052 --- --- ---
4 Normal 0.5 0.5 400 0.045 0.045 0.045 --- --- ---
5 Normal 0.305 0.5 100 --- --- --- 0.866 0.842 0.839
6 Normal 0.305 0.5 400 --- --- --- 0.987 1 1
7 Lognormal 0.305 0.305 100 0.102 0.162 0.16 --- --- ---
8 Lognormal 0.305 0.305 400 0.075 0.197 0.196 --- --- ---
9 Lognormal 0.5 0.5 100 0.116 0.247 0.244 --- --- ---

10 Lognormal 0.5 0.5 400 0.082 0.302 0.326 --- --- ---
11 Lognormal 0.305 0.5 100 --- --- --- 0.495 0.581 0.577
12 Lognormal 0.305 0.5 400 --- --- --- 0.812 0.919 0.919

*Based on equation 7
Table 1: Comparison of alternative methods for comparing dependent correlations.

         
,

ˆ
xz trueZ

  ,
ˆ

yz trueZ
    ,∆̂ z true

Type I error

Type ICCx(ICCy) ρxz (ρyz) N   Mean Variance Mean Variance Mean Variance
1 0.67 0.305 100 theoretical 0.391 0.0163 0.391 0.0162 0 0.0095 0.05

        empirical 0.395 0.0177 0.398 0.0178 -0.002 0.0103 0.061
  0.67 0.305 400 theoretical 0.391 0.0041 0.391 0.0041 0 0.0024 0.05
        empirical 0.392 0.0041 0.393 0.0042 -0.001 0.0023 0.045
  0.67 0.5 100 theoretical 0.71 0.0212 0.71 0.0212 0 0.0146 0.05
        empirical 0.72 0.0229 0.723 0.0233 -0.003 0.0161 0.058
  0.67 0.5 400 theoretical 0.71 0.0053 0.71 0.0053 0 0.0036 0.05
        empirical 0.712 0.0053 0.714 0.0055 -0.001 0.0036 0.044

2 0.67 0.305 100 theoretical 0.391 0.0166 0.391 0.0168 0 0.01 0.05
        empirical 0.395 0.0183 0.398 0.018 -0.003 0.0106 0.051
  0.67 0.305 400 theoretical 0.391 0.0042 0.391 0.0042 0 0.0025 0.05
        empirical 0.394 0.0042 0.393 0.0041 0.001 0.0026 0.048
  0.67 0.5 100 theoretical 0.71 0.0226 0.71 0.0222 0 0.0167 0.05
        empirical 0.724 0.027 0.728 0.0269 -0.004 0.0201 0.039
  0.67 0.5 400 theoretical 0.71 0.0056 0.71 0.0056 0 0.004 0.05

        empirical 0.715 0.0058 0.713 0.0057 0.002 0.0044 0.048

Theoretical variance estimates are medians over 4000 simulated samples; Type 1 simulations assume that ICCx, ICCy are known; Type 2 simulations estimates ICCx, 
ICCy, from the sample data; for both Type 1 and Type 2 simulations, the underlying ICCx, ICCy are provided in the 2nd column of the table. Simulation results are based 
on 4000 simulations.

Table 2: Simulation results for the test procedure in (5) and (6).
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Based on (7), the observed Pearson correlations were significantly 
different (Vxy=3.344, p=0.001) (Table 5). For comparison, we also 
analyzed these data using the Dunn and Clark [7] and Meng, et al. [8] 
procedures. Based on Dunn and Clark, we have *

1Z =3.929, p-value=8.5 × 
10-5. Based on Meng, et al, we have Zxy=3.919, p-value=8.9 × 10-5. As in the 
simulations, the se’s are inappropriately low for both of these procedures 
in the setting of these highly non-normal data, yielding p-values that are 
biased downward and type I errors that are too low. The deattenuated 
Pearson correlations were 0.243 and 0.108 for NAPAP (X) and salicylates 
(Y), respectively, vs. serum creatinine. Based on (5) there was a significant 
difference between these correlations, Vxy,true=2.640, p=0.008. 

Since NAPAP and salicylates were right-skewed, we also computed 
observed and deattenuated Spearman correlations which are presented 
in Table 6. 

The observed Spearman correlations between Z and (X,Y) were 
0.155 and 0.081, respectively, which were significantly different 
(Vxy,probit=2.395, p=0.017). After correcting for deattentuation, the 
Spearman correlations between Z and (X,Y) were 0.212 and 0.127, 
respectively, which only showed a trend towards statistical significance 
(Vxy,probit,true=1.849, p=0.064). Overall, the results from the comparison 
of correlation coefficients in Tables 5 and 6 were consistent with the 

     
 

 

,xz trueR
  ,yz trueR

R,∆̂ true  

Type I error Coverage 
probability

ρxz ρyz N   Mean Variance Mean Variance Mean Variance
0.305 0.305 100 theoretical 0.373 0.012 0.373 0.0122 0 0.0073 0.05 95

      empirical 0.37 0.0128 0.373 0.0131 -0.002 0.0075 0.051 94.6
    400 theoretical 0.373 0.0031 0.373 0.0031 0 0.0018 0.05 95
      empirical 0.373 0.003 0.372 0.0031 0.001 0.0019 0.048 95.1

0.5 0.5 100 theoretical 0.611 0.0086 0.611 0.0087 0 0.0065 0.05 95
      empirical 0.61 0.0094 0.612 0.0096 -0.002 0.0068 0.039 94.5
    400 theoretical 0.611 0.0022 0.611 0.0022 0 0.0016 0.05 95
      empirical 0.612 0.0022 0.611 0.0022 0.001 0.0017 0.048 95

0.305 0.5 100 theoretical 0.373 0.012 0.611 0.0087 -0.238 0.0071 ---- 95
      empirical 0.37 0.0132 0.612 0.0094 -0.242 0.0075 ---- 94.3
    400 theoretical 0.373 0.0031 0.611 0.0022 -0.238 0.0018 ---- 95
      empirical 0.373 0.003 0.611 0.0022 -0.238 0.0018 ---- 95

ICCx and ICCy estimated from simulated data (type 2 simulations). Simulation results are based on 4000 simulations 

Table 3: Simulation results for the estimation of ,R  true∆  in (14).

          Pearson (Spearman) correlation Pearson (Spearman)
  N mean sd (10th–90th percentile) X Y Z ICC

NAPAP (X) (o.d.) 1168 0.176 0.352 (0.000,0.675) 1 0.423 0.19 0.614
(0.353) (0.155) (0.515)

salicylates (Y) (mg%) 1168 15.8 19.2 (10.0,35.0)   1 0.068 0.404
(0.081) (0.389)

serum creatinine (Z) (mg/dL) 1168 1.02 0.37 (0.69,1.50)     1  

NAPAP value at the baseline (1968) clinic visit.
Individual salicylate values were obtained in grouped form (1=0-19 mg%/2=20-49 mg%/3=50-99 mg%/4=100+mg%) at the baseline (1968) clinic visit, and assigned scores 
of 10 mg%, 35 mg%, 75 mg% and 100 mg%, respectively.
Spearman correlations are estimated based on (18) 
N: Number of subjects with serum creatinine, NAPAP and salicylates, available at the baseline (1968) clinic visit
ICC: Intraclass Correlation among replicate urine values (based on urine specimens obtained at the baseline clinic visit and 2 additional urine specimens obtained at home 
on different days).

Table 4: Descriptive statistics for NAPAP, salicylates and serum creatinine at the baseline visit, Swiss Analgesic Study, n=1168.

Variable observed correlation Z transform deattenuated correlation Z transform
NAPAP, 1968 (o.d.) 0.19 0.192 0.243 0.248

salicylates, 1968 (mg%) 0.068 0.069 0.108 0.108
Difference between 

correlations
0.122 0.124 0.135 0.139

(95%CI) (0.051, 0.193) (0.035, 0.235)
se 0.037 0.053

V statistic 3.344 2.64
p-value 0.001 0.008

The V statistic for the observed and deattenuated Pearson correlations is based on (7) and (5), respectively.
Table 5: Observed and deattenuated Pearson Correlations between serum creatinine at baseline (1968) vs. each of NAPAP and salicylates at the baseline clinic visit 
(1968), Swiss Analgesic Study, n=1168.
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Variable observed Spearman 
correlation

observed probit 
correlation

Z transform deattenuated Spearman 
correlation

deattenuated probit 
correlation

Z transform

NAPAP, 1968 (o.d.) 0.155 0.162 0.163 0.212 0.221 0.225
salicylates, 1968 (mg%) 0.081 0.085 0.085 0.127 0.133 0.134
Difference between 
correlations

0.074 0.077 0.078 0.085 0.088 0.091

 (95% CI) (0.013, 0.134) (-0.005, 0.174)
se 0.033 0.049
V statistic 2.395 1.849
p-value 0.017 0.064

The V statistic for the observed and deattenuated probit correlations is based on (7) and (5), respectively.
Table 6: Spearman Correlations between serum creatinine at baseline (1968) vs. each of NAPAP and salicylates at the baseline clinic visit (1968), Swiss Analgesic Study, 
n=168.

observed Spearman 
correlation

observed probit 
correlation

Z transform deattenuated Spearman 
correlation

deattenuated probit 
correlation

Z transform ICCs

2 weeks of room 
temperature pre-shipping 
plus 4 weeks of freezer (X)

0.952 0.956 1.896 0.979 0.98 2.31 0.946

4 weeks of room 
temperature pre-shipping 
plus 12 weeks of freezer (Y)

0.711 0.727 0.922 0.776 0.79 1.072 0.835

difference 0.241 0.229 0.974 0.203 0.19 1.238
se 0.348 0.827
V statistic 2.797 1.497
p-value (large sample) 0.005 0.134
p-value (exact) 0.021 0.056

The V statistics are based on (7) and (5) using the probit transformation.
Table 7: Spearman Correlations between HbA1c levels determined immediately vs. HbA1c levels determined after 2 delay periods, N= NICC =12.

results from the primary paper (Dubach, Levy and Muller, [1]) which 
showed that NAPAP and salicylates were significantly associated with 
serum creatinine at baseline, although these analyses were based on 
categorical definitions of NAPAP, salicylates and creatinine.

Comparison of storage conditions for HbA1c measurements 
in plasma

Recently dried blood spot assays of HbA1c have been used as 
biomarkers in many epidemiologic studies and simplified specimen 
handling would be cost-effective for these large scale community-based 
studies. A study was conducted at Brigham and Women’s Hospital 
(BWH) to test the hypothesis that dried blood spot determinations for 
HbA1c are valid measurements with low-intensity storage conditions 
[14]. Blood samples were drawn into EDTA containing tubes and 
submitted for duplicate HPLC analysis of HbA1c (considered as the 
gold standard process). Blood for spotting was also drawn to identical 
EDTA tubes and then dropped randomly to blood-spot cards. After 
having been air-dried for at least 20 minutes these dried blood 
specimens were placed into single-sample, airtight bags with desiccant 
pouch. They were then stored at room temperature for 0, 2, or 4 weeks in 
the lab and were then shipped to Biosafe Laboratories, Inc. (Lake Forest 
IL) for immediate HbA1c analysis or placed in freezer storage [-80°C] 
for an additional 4 or 12 weeks. Dried blood spot determinations of 
HbA1c were performed in triplicate, blinded to storage conditions and 
protocol. Here we want to test the equality of the correlations between 
results from HPLC measures (Z) and results from dried blood spot 
measures after 2 weeks of room temperature pre-shipping followed by 
an additional 4 weeks of freezing after shipping (X), and the correlation 
between results from HPLC measures (Z) and results from dried 
blood spot measures after 4 weeks of room temperature pre-shipping 
followed by an additional 12 weeks of freezing after shipping (Y).

We refer to storage for 2 weeks at room temperature plus 4 
additional weeks in the freezer as short-term storage (X), storage for 
4 weeks at room temperature plus 12 additional weeks in the freezer 
as long-term storage (Y) and HPLC processing as Z. The observed and 
deattenuated Spearman correlations between Z vs. (X,Y) respectively 
are given in Table 7. We see that ρxz,s=0.952 while ρyz,s=0.711, which 
are significantly different both based on large-sample methods 
(p=0.005) and also more appropriate exact methods (p=0.021). After 
deattenuation, we obtain ρyz,s, true=0.979 and ρyz,s, true=0.776 (2-sided 
p-value=0.134 based on large sample methods and 0.056 based on exact 
methods). Thus, the length of storage has a borderline significant effect 
on the validity of the HbA1c assay with short-term storage preferable. 
Plots of ,

ˆ( )∆ z permutation  and , ,
ˆ( ) ∆ z true permutation in equation 16 over the 4,096 

elements of the permutation distribution are given in Figures 1 and 
2, respectively. The distributions are somewhat skewed to the right, 
particularly for , ,

ˆ( )∆ z true permutation , which indicates the necessity of using 
exact methods in a small-sample setting. 

Discussion
In this paper, we provide a method to compare two Pearson 

correlation coefficients , )(ρ ρxz yz  where the correlations are estimated 
from the same subjects. Unlike previous literature on the subject, we 
do not make the assumption that (X, Y, Z) are multivariate normal. 
It is shown in simulation studies that the method of moments 
estimator of the sampling variance of (Zxz-Zyz) is more appropriate than 
standard methods that assume normality, particularly in the setting 
of non-normal data such as in the analgesic intake data presented 
in the first example in this paper. We then extended our methods to 
provide for comparison of two deattenuated correlation coefficients 

, ,  ( , )ρ ρxz true yz true where the correlations are estimated from the same 
subjects. This method is generally applicable to compare the validity 
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Figure 1: Permutation distribution of ˆ
z∆  in equation 7 for the HbA1c data (M=212=4096).

 

Figure 2: Permutation distribution of  ,
ˆ

z true∆  in equation 5 for the HbA1c data (M=212=4096).

of two surrogate measures (X, Y) where validity is measured by the 
respective correlation with a third variable (Z) and both X and Y are 
subject to measurement error. Although the methods are asymptotic, 
we have shown in finite samples that the asymptotic properties of the 
test statistic and confidence limits are appropriate when N ≥ 100. In 
addition, we provide a method for confidence interval estimation of 
both ρ∆  and ,ρ∆ true . 

The methods were extended to the comparison of dependent 
Spearman correlations which may be more appropriate when (X, Y, 
Z) are not multivariate normal, which provide for the comparison 
of both ordinary and deattenuated Spearman correlations. To our 
knowledge, this is the first paper in the literature to discuss comparison 
of dependent Spearman correlations.
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In this paper, we have considered deattenuated correlations of the 
form corr(μx,Z) and corr(μy,Z) which account for error in the estimation 
of X and Y. However, it is likely that Z is also measured with error 
and a useful extension would be to estimate and compare corr(μx μz) vs 
corr(μy μz) , where error in X, Y and Z are taken into account. 

SAS macros for the comparison of dependent ordinary and 
deattenuated Pearson and Spearman correlations as discussed in this 
paper are available from the following website: 

https://sites.google.com/a/channing.harvard.edu/bernardrosner/
channing.
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