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Introduction
Diagnostic biomarkers are used frequently in epidemiologic and 

clinical work. The ability of a diagnostic biomarker to discriminate 
between subjects who develop disease (cases) and subjects who do not 
(controls) is often measured by the area under the receiver operating 
characteristic curve (AUC), with values close to 1.0 indicating high 
diagnostic accuracy. The AUC can be interpreted as 

= ( < )obs obs obsAUC Pr Y X

 where X obs is the value of the diagnostic biomarker for a randomly 
selected case and Yobs is the value of the diagnostic biomarker for a 
randomly selected control. AUC takes values between 0.5 and 1. AUC 
close to 0.5 indicates no diagnostic accuracy; AUC close to 1.0 indicates 
high diagnostic accuracy.

Under the normality assumption that ( )2
, ,N ,i X obs X obsX m σ , 

( )2
, ,N ,j Y obs Y obsY m σ

, and Xi and Yj, i = 1,….,m, j = 1,…,n, are all independent, 

AUC is calculated as [1]: 

( )=obs obsAUC δΦ

where 
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It is extensively documented in the medical literature that diagnostic 
biomarkers may be subject to errors of measurement [2], which may 
be attributed to variation in performance of laboratory equipment, 
variation between technicians, temporal changes, biologic variability, 
etc. It has been reported [1,2] that ignoring measurement error can 
cause biased estimation of AUC. In many cases, the biases can result in 
misleading interpretation of the efficacy of a diagnostic biomarker [3]. 
For example, not adjusting for measurement error can result in useful 
diagnostic biomarkers being overlooked. In general, an increase in 
measurement error moves the receiver operating characteristic (ROC) 
curve towards the diagonal (non-informative) line, and the value of the 
AUC is decreased [4,5].

The biases of estimators usually can be corrected by resampling 
methods (e.g., jackknife or bootstrap). However, resampling methods 
are not appropriate when biases are caused by non-sampling errors, 

such as measurement error [2]. Several methods [1- 3,6] have been 
proposed in the literature to correct estimates of the AUC when 
accounting for measurement error. Coffin and Sukhatme [1] and Coffin 
and Sukhatme [2] assumed the following measurement error model: 
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F (a,b) is a cumulative distribution function (CDF) with mean a 
and variance b, and Xi,true, Yj,true, iε , and jξ , i = 1,….,m, j = 1,…,n, are 
mutually independent. FY,true, AUCobs

Coffin and Sukhatme (1995) [1] assumed Fx,true, FY,true, Fε , and Fξ  
are CDFs from an exponential family and derived an approximate bias 
C of the observed AUC due to measurement error and then obtained 
estimates of the corrected AUC by adding this bias term to the 
observed AUC, i.e., corrected obsAUC AUC C≈ + . Coffin and Sukhatme’s [1] 
Monte Carlo simulation studies showed that the bias of the corrected 
AUC (AUCcorrected) is generally an order of magnitude smaller than 
the bias of the AUC without measurement error correction (AUCobs). 
Also the corrected AUC estimate (AUCcorrected) has comparable mean 
square error (MSE) to AUCobs. Coffin and Sukhatme [2] noted that 
the AUC estimated by the Mann-Whitney U statistic is also subject to 
measurement error. Paralleling to Coffin and Sukhatme [1], Coffin and 
Sukhatme [2] used a non-parametric approach to derive an approximate 
bias C for the AUC estimated by the Mann-Whitney U statistic. The 
simulation studies in Coffin and Sukhatme [2] showed that for several 
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Abstract
Diagnostic biomarkers are used frequently in epidemiologic and clinical work. The ability of a diagnostic biomarker 

to discriminate between subjects who develop disease (cases) and subjects who do not (controls) is often measured by 
the area under the receiver operating characteristic curve (AUC). The diagnostic biomarkers are usually measured with 
error. Ignoring measurement error can cause biased estimation of AUC, which results in misleading interpretation of the 
efficacy of a diagnostic biomarker. Several methods have been proposed to correct AUC for measurement error, most 
of which required the normality assumption for the distributions of diagnostic biomarkers. In this article, we propose a 
new method to correct AUC for measurement error and derive approximate confidence limits for the corrected AUC. The 
proposed method does not require the normality assumption. Both real data analyses and simulation studies show good 
performance of the proposed measurement error correction method.

Journal of Biometrics & BiostatisticsJo
ur

na
l o

f B
iometrics & Biostatistics

ISSN: 2155-6180



Citation: Rosner B, Tworoger S, Qiu W (2015) Correcting AUC for Measurement Error. J Biom Biostat 6: 270. doi:10.4172/2155-6180.1000270

J Biom Biostat
ISSN: 2155-6180 JBMBS, an open access journal

Page 2 of 7

Volume 6 • Issue 5 • 1000270

the measurement error correction for sensitivity, specificity, and 
sensitivity at a given value of specificity, but not for AUC.

Most of the aforementioned AUC measurement correction 
methods require the normality assumption. However, the normality 
assumption is often violated in real data analysis. Some of these 
methods assumed the location-shift hypothesis: 

( ), ,( ) = ,X true Y trueF z F z η−

for 0η ≠ , where Fx,true, and FY,true, are the cumulative distribution 
functions of the biomarker for cases and controls, respectively. The 
location-shift hypothesis is reasonable for symmetric distributions, but 
may not be ideal for skewed distributions as the mean is no longer a 
good summary of the distribution center.

In this paper, we aim to extend the method of Reiser [6] by relaxing 
the normality assumption. The paper is arranged as follows: In section 
2, we first present a measurement-error-correction method for AUC 
under the probit-shift hypothesis without requiring the normality 
assumption. We then construct confidence intervals for the corrected 
AUC. In Section 3, we present a simulation study. In Section 4, we 
present results from data analysis of a real example based on the Swiss 
Analgesic Study. Section 5 is a discussion.

Methods
AUC for non-normally distributed diagnostic biomarkers 
measured without error

We first consider how to handle the non-normality for a diagnostic 
biomarker M measured without error. We propose a probit-shift model 

{ } { }1 1
, ,( ) = ( ) ,Y true X trueF z F z m− −Φ Φ + 			                     (5)

or equivalently 

{ }1
, ,( ) = ( ) ,Y true X trueF z F z m− Φ Φ + 

 where Φ  is the CDF of the standard normal distribution. That is, after 
probit transformations, the distributions of cases and controls satisfy 
the location-shift property.

Thus, the AUC is a function of m. If we let { }1= ( ) ( )X Xw H x F x−≡ Φ  
then based on (??) it follows that 
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We can use a first order Taylor series approximation to approximate 
the above integration (c.f. Online Supplementary Document Section A, 
Equation A1) and obtain: 

( ) .
2trueAUC mm  ≈ Φ 

 
AUC for non-normally distributed diagnostic biomarkers 
measured with error

We assume the following measurement error model for probit 
transformed data: 

( )
( )
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		                 (6)

where ( ) ( ){ }1
, ,=X true X trueH z F z−Φ , ( ) ( ){ }1

, ,=X obs X obsH z F z−Φ , Xe  is independent of 
,X trueH , and ,Y trueH  and ,Y obsH  are defined similarly. , ( )X trueF z , , ( )X obsF z , 

, ( )Y trueF z , 

families of distributions (normal, gamma, or t distributions), bias-
corrected AUC have much smaller bias and comparable MSE to the 
AUC estimated by the Mann-Whitney U statistic.

Faraggi [3] derived an exact relationship between the observed 
AUC and the true AUC by assuming that Fx,true, FY,true, Fε , and Fξ are 
CDFs of normal distributions and by assuming equal variance (i.e., 

2 2 2= =e ε ξσ σ σ  and 2 2 2= =X Yσ σ σ ), whereby 

( ){ }1 2= 1 ,true obsAUC AUC θ−Φ Φ + 			                  (2)

where 2 2 2= /eθ σ σ . Faraggi [3] also derived a 95% confidence interval 
(CI) for AUC true when 2θ is known. Faraggi [3] showed numerically 
that not taking measurement error into account can give seriously 
misleading results that understate the diagnostic effectiveness (i.e., the 
coverage probability of the unadjusted confidence interval can be far 
from its nominal value when measurement error is present).

The method proposed by Faraggi [3] requires that the ratio 
2θ  of intra-individual to inter-individual variation was accurately 

known (e.g., based on prior experience). If 2θ  is unknown, either 
repeated measurement or an external validation study is required to 
estimate 2θ . Reiser [6] generalized the formula for 2θ by allowing 
different variances and provided an estimate of 2θ  based on repeated 
measurements Xik,obs and Yjl,obs, where the subscripts k and l indicate the 
k-th and l-th replicates for the i-th case and the j-th control, respectively. 
The measurement error model that Reiser [6] assumed is 
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and ,i trueX , 
,j trueY , ikε and jξ 

, = 1, ,i m

, = 1, , ik m

, = 1, ,j n

, 
= 1, , jn   are mutually independent. Based on (??), it follows that 

( ) ( ) 2 2= , = / .true true true X Y X YAUC δ δ m m σ σΦ − + 	          	                 (4)

 The relationship between AUC true and AUC obs again has the form 
(??), where 

( ) ( )2 2 2 2 2
, ,= / .X true Y trueε ξθ σ σ σ σ+ +

Reiser [6] used the delta method to obtain the approximate 
variance of the estimate 

t̂rueδ , then obtained the 95% CI for trueδ  and 
( )=true trueAUC δΦ .

Li et al. [7] provided an alternative method to obtain the variance 
of the estimate t̂rueδ  by using the method of variance estimates recovery 
(MOVER), which allows the variance estimate to change with the 
underlying parameter values.

Schisterman et al. [4] proposed a AUC correction method for the 
case where no repeated measurements are available, but an external 
validation data set is available. In addition to the normality assumption, 
Schisterman et al. [4] assumed that the distributions in the external 
validation data set are the same as those in the main study. Li et al.[7] 
method can also be used for the case where an external validation data 
set is available.

Tosteson et al. [5] extended the measurement error model (??) by 
assuming that Fx,true, and FY,true, are CDFs of normal distributions, but 
the error terms iε  and jξ have non-normal distributions. They derived 
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and , ( )Y obsF z  are the cumulative distribution functions of the underlying 
true/observed values of the diagnostic biomarker M, respectively. We 
assume that Xe  and Ye are independent.

To derive the relationship between the true AUC and the observed 
AUC, we first consider the conditional observed AUC: 

( ) ( )

, ,=

, = < ,

= ( ) ( ).

obs Y X obs obs Y X

Y obs X obsx

AUC e e Pr Y X e e

F x dF x

m
∞

−∞∫
Note that 

{ }1
, ,( ) = ( ) .Y obs X true YF x H x em−Φ + +

Hence, 

( ) { }, ,=
, = ( ) ( ).obs Y X X true Y X obsx

AUC e e H x e dF xm m
∞

−∞
Φ + +∫

Note that 

{ }
{ }
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, , ,

( ) = ( ) ,

( ) = ( ) ( ).
X obs X true X

X obs X true X X true

F x H x e

dF x H x e dH xφ
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Thus, 

( ) { } { }, , ,=
, = ( ) ( ) ( )obs Y X X true Y X true X X truex

AUC e e H x e H x e dH xm m φ
∞

−∞
Φ + + +∫

Upon integration and use of the delta method (c.f. Online 
Supplementary Document Equation (A7)) 

{ }1

2 2
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1
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m
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−

 
 
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  +  +
  

  

or equivalently, based on Online Supplementary Document Equation 
(A9), 

( ) ( ){ }1

1 1

.
2

X Y
true obs

ICC ICCAUC AUCm m−

 
+ 

 ≈ Φ Φ ×
 
 
 

	               (7)

where XICC  and YICC  are intra-class correlations 

2 2
1 1= , = .

1 1X Y
e eX Y

ICC ICC
σ σ+ +

We assume there exists at least one replicated observation for each 
subject in the data set or in a subset of the data set and that the replicates 
are distinguishable, so that we can determine unique probit scales for 
each subject and each replicate and then can estimate the intra-class 
correlations XICC  and YICC  by using the variance components from a 
one-way ANOVA. We used the function ICCest of the package ICC[8] 
from the statistical software R[9] to calculate ICCs. Furthermore, because 
the probit transformation is a rank-invariant transformation, we can use 
the Mann-Whitney statistic to estimate ( )obsAUC m  [10] (c.f. Formula A13 
in the Online Supplementary Document Section D.1). When we estimate 

( )obsAUC m , only the data in the main study were used (replicates were not 
used). Replicates were used only to estimate ICCs.

The relationship (??) between ( )trueAUC m  and ( )obsAUC m  provides 
a method to correct measurement error for the observed ( )obsAUC m . 
Hence, we also refer to ( )trueAUC m  as the corrected AUC and denote 
it as AUC corrected.

Confidence limits for ( )trueAUC m

 We use the delta method to derive the variance of the true AUC. 
Denote 

( )( )1

1 1

= , = .
2

x y
obs

ICC ICC
a AUC bm−

+
Φ

 We have 

( ) ( )=trueAUC a bm Φ ×

An approximate 100% (1 )α× −  CI for ( )trueAUC m  is given by 
{ }1 2( ), ( )c cΦ Φ , where 

( ) ( ) ( ) ( )1 2 1 /2 1 /2
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( , ) = , ,c c a b z se a b a b z se a bα α− −

 × − × × + × 
	 (8)

 The detailed derivations of 1c  and 2c  are shown in the online 
supplementary document Sections C and D.

A Simulation Study
 To evaluate the performance of the proposed AUC estimate 

( )ˆ ˆtrueAUC m  that corrects for measurement error, we conducted 3 
simulation studies. In each simulation study, we generated 1000 
simulated data sets, each of which contains 100 cases and 100 controls. 
We then ran each simulation study 100 times to obtain the mean 
performance measure over the 100 simulations and to estimate the 
95% confidence interval (CI) of the performance measures, such as 
bias, mean square error (MSE), and coverage.

We also compared the performance of AUC corrected in (??) with 
that proposed by Reiser [6] in equation (??). Both methods require the 
availability of replicate observations.

Simulation model I

In the first simulation study, we assumed that there are replicate 
observations for each subject and generated simulated data using 
Reiser’s [6] model (c.f. Formula (??)). That is, ,i trueX , ,j trueY , Xi

e  and Yj
e  

were generated from normal distributions. To generate replicates, we 
generated another set of error terms Xi

e
′  and Yj

e
′ , but kept the values of 

true observations ,i trueX , ,j trueY , so that the 2 observations for the same 
subject would be dependent.

Simulation model II

In the second simulation study, we assumed that ,i trueX  and ,j trueY  
were from log-normal distributions, while the error terms ,X iε  and 

,Y jε  were from normal distributions: 

( ) ( ) ( )
( ) ( ) ( )

2 2
, , , , , ,

2 2
, , , , , ,

= , log N , , N 0, ,

= , log N , , N 0, ,

= 1, , , = 1, , .

i obs i true X i i true X true X i X
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X X X

Y Y Y

i m j n

ε

ε

ε λ m σ ε σ

ε λ σ ε σ

+ +

+

 

 

 

    (9)

To generate replicates, we generated another set of error terms ,X iε ′  
and ,Y jε ′ , but kept the values of true observations ,i trueX , ,j trueY , so that the 
2 observations for the same subject would be dependent.

Simulation model III

In the third simulation study, we assumed that ,i trueX  and ,j trueY  
,X iε  and ,Y jε  were all from log-normal distributions: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2
, , , , , ,

2 2
, , , , , ,

= , log N , , log N 0, ,

= , log N , , log N 0, ,

= 1, , , = 1, , .

i obs i true X i i true X true X i X

j obs j true Y j j true Y true Y j Y

X X X

Y Y Y

i m j n

ε

ε

ε λ m σ ε σ

ε λ σ ε σ

+ +

+

 

 

 

(10)

 To generate replicates, we generated another set of error terms 
,X iε ′  and ,Y jε ′ , but kept the values of true observations ,i trueX , 

,j trueY , so 
that the 2 observations for the same subject would be dependent.
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Parameter settings

For Simulation Model I, the true AUC value is ( )=trueAUC δΦ , where 
( ) ( )2 2

, ,= /X Y X true Y trueδ m m σ σ− + . We set = = 100m n , = = 2i jm n , 2 2
, ,= = 1X true Y trueσ σ , 

2 2= = 0.5ε ησ σ , = 0Ym , and = 0.25,0.5Xm , or 1.

For Simulation Models II and III, we can show 
that (c.f. Online Supplementary Document Section E) 

( ) { }2 2
, ,= < = /true true true X X true Y trueAUC Pr Y X m σ σΦ + . We set = = 100m n , = 0λ , 

2 2 2 2
, ,= = = = 1X true Y true X Yε εσ σ σ σ , = 0Ym , and = 0.25Xm , 0.5, or 1.

For Simulation Models I, II, and II, the true AUC values are 0.57 
(for = = 0.25X Ym m m− ), 0.64 (for = = 0.5X Ym m m− ), and 0.76 (for 

= = 1X Ym m m− ), respectively.

To evaluate the effects of sample size and unequal variance on the 
performances of the three methods, we also performed an addtional 
set of simulations with = = 50m n  and 2 2

, ,/ = 2X true Y trueσ σ  ( 2
, = 2X trueσ , 

2
, = 1Y trueσ ) and the same set of other parameters as above.

To further evaluate the effect of the value of 

( ) ( )2 2 2 2 2
, ,= / X true Y trueε ξθ σ σ σ σ+ +  (i.e., the degree of measurement 

error), we performed another set of simulations with = = 50m n , 
2 2

, ,/ = 2X true Y trueσ σ  ( 2
, = 2X trueσ , 2

, = 1Y trueσ ), and 2 = 3θ  ( 2 2= = 4.5ε ξσ σ ).

Results of simulation studies

Tables 1-3 and online supplementary Figure 1 summarized 
the results of the three simulation studies. We observed that (1) the 
observed (i.e., uncorrected) AUC estimates obsAUC  underestimated the 
true AUC for all 9 scenarios (i.e., the estimated biases were negative 
and the estimated coverages were less than the nominal value 0.95); 
(2) The MSE of obsAUC  was much larger than those of the proposed 
method and Reiser’s method when = 1m ; (3) as the value of m 
increases, the absolute bias and MSE generally increased for all 3 types 
of AUC estimates; (4) for Simulation Study I (i.e., data were generated 
under Reiser’s model), the probit method had similar performance to 
Reiser’s method; (5) for Simulation Studies II and III (i.e., data were 
generated from non-normal distributions), the coverages estimated by 

the proposed method were close to the nominal value 0.95, while the 
coverages of the uncorrected AUC and the coverages of the corrected 
AUC estimated by Reiser’s method were smaller than the nominal 
value, especially when the value of m was large; (6) for Simulation 
Studies II and III, the proposed method had much smaller absolute 
bias than the other two methods.

Tables S1, S2, and S3 in the online Supplementary Documents 
showed the results for the simulations with smaller sample size 

= = 50m n  and with unequal variance 2
, = 2X trueσ  and 2

, = 1Y trueσ . The 
results are similar to those shown in Tables 1-3.

If the degree of measurement error as characterized by 
( ) ( )2 2 2 2 2

, ,= / X true Y trueε ξθ σ σ σ σ+ +  is large ( 2 = 3θ  say), the bias of the 
probit method is smaller than the other two approches. However, the 
coverage of Reiser’s method and the probit-shit method tend to be 
somewhat larger than the nominal level 0.95 (c.f., Tables S4, S5, S6 in 
the online Supplementary Documents).

Examples
In this section, we used a real data set (the Swiss Analgesic Study 

data set) to evaluate the performance of the proposed measurement 
correction method for AUC estimation.

The Swiss Analgesic Study data set was collected starting from 
1967/1968 [11]. There were 1244 Swiss women participating in this 
study whose purpose was to evaluate the association of the use of 
phenacetin-containing analgesics with kidney function. NAPAP is a 
biomarker which is associated with recent use of phenacetin-containing 
analgesics. The NAPAP value was measured in a urine sample at the 
baseline clinic visit. There were additional follow-up collections of 
NAPAP values at home on 2 separate days within 1 week of the baseline 
clinic visit. In addition, serum creatinine was measured at the baseline 
clinic visit.

We wish to investigate whether excessive recent intake of phenacetin-
containing analgesics as determined by the urinary NAPAP level can be 
used as a screening test for identifying subjects with abnormal kidney 
function as determined by elevated serum creatinine. For this purpose, 

λ μY μX AUCtrue   MW* R* P*

0 0 0.25 0.570 Bias(×103) 
95% Cl 

−13 
(-17, -9)

0 
(-4,4)

0 
(-4,5)

        MSE(×104) 
95% Cl 

18 
(16,20)

19 
(18,22)

25 
(22,28)

        Coverage (%)
 95% Cl 

93.7 
(91.8,95.6)

95.1 
(93.4, 96.9)

94.9 
(93.0, 96.8)

0 0 0.5 0.638 Bias(×103) 
95% Cl 

-25 
(-28, -21)

0 
(-4,4)

0 
(-4,5)

        MSE(×104) 
95% Cl 

22 
(19,24)

18 
(16,20)

23 
(20,26)

        Coverage(%) 
95% Cl 

90.3 
(87.6, 93.0)

95.2 
(93.5, 96.8)

94.8 
(92.9, 96.7)

0 0 1 0.760 Bias(×103) 
95% Cl 

-42 
(-45, -39)

0 
(-4,3)

0 
(-3,4)

        MSE(×104) 
95% Cl 

31 
(27,34)

14 
(12,16)

17 
(15,20)

        Coverage (%) 
95% Cl 

76.6 
(73.0, 80.2)

95.2 
(93.3, 97.0)

94.4 
(92.4, 96.5)

*
MW: Mann-Whitney estimate (i.e., obsAUC ); R: Reiser’s (2000) method; P: Probit method.

**
Simulation I was run 100 times. Each time, we generated 1000 simulated data sets. Each data set consists of 100 cases and 100 controls. Each subject provides two 

replicate biomaker scores. Both true values and random errors are assumed to come from normal distributions with 2 2
, ,= =1σ σX true Y true , 2 2= = 0.5ε ησ σ . 

Table 1: Bias, mean square error (MSE), and coverage for ( )mtrueAUC  from simulation I ** .
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*  MW: Mann-Whitney estimate (i.e., 
obsAUC ); R: Reiser’s (2000) method; P: Probit method.

**
 Simulation II was run 100 times. Each time, we generated 1000 simulated data sets. Each data set consists of 100 cases and 100 controls. Each subject provides two replicate 

biomaker scores. True values were generated from log normal distributions and random errors were generated from normal distributions with 2 2 2 2
, ,= = = =1σ σ σ σX true Y true e eX Y . 

Table 2: Bias, mean square error (MSE), and coverage for ( )mtrueAUC  from simulation II ** .

λ μY μX AUCtrue   MW* R* P*

0 0 0.25 0.57 Bias(×103) 
95% Cl 

−23 
(-26, -19)

15 
(-18, -11)

4 
(-9,1)

        MSE(×104) 
95% Cl 

22 
(19, 25)

20 
(17,22)

32 
(28,26)

        Coverage (%) 
95% Cl 

91.2 
(88.5,93.9)

93.8 
(91.6, 95.6)

94.8 
(92.8, 96.8)

0 0 0.50 0.638 Bias(×103) 
95% Cl 

- 49 
(-52, -45)

-32
(-35, -28)

-7 
(-12, -2)

        MSE(×104) 
95% Cl 

39 
(35,44)

26 
(23,29)

36 
(31,41)

        Coverage (%) 
95% Cl 

76.3 
(72.1,80.5)

89.6 
(86.9, 92.2)

94.7 
(92.7, 96.8)

0 0 1.0 0.760 Bias(×103) 
95% Cl 

-104 
(-107, -101)

-74 
(-77, -70)

2 
(-4, 8)

        MSE(×104) 
95% Cl 

122
 (115, 130)

69 
(64,74)

53 
(46, 61)

        Coverage (%) 
95% Cl 

17.4 
(14.6, 20.3)

52.3 
(47.6, 56.9)

95.3 
(93.1, 97.5)

λ μY μX AUCtrue   MW* R* P*

0 0 0.25 0.570 Bias(×103) 
95% Cl 

− 26 
(-29, -22)

- 14 
(-19, -10)

0 
(-6,5)

        MSE(×104) 
95% Cl 

23 
(20, 26)

30 
(26,34)

41 
(35,46)

        Coverage (%) 
95% Cl 

90.3 
(87.5,93.1)

94.5 
(92.6, 96.5)

95.3 
(93.5, 97.1)

0 0 0.5 0.638 Bias(×103) 
95% Cl 

- 53 
(-56, -51)

- 31
(-34, -28)

2 
(-2,7)

        MSE(×104) 
95% Cl 

45 
(40,49)

38 
(33,43)

37 
(40,53)

        Coverage (%) 
95% Cl 

72.5 
(68.3,76.8)

91.4 
(88.8, 93.9)

95.7 
(93.9, 97.6)

0 0 1 0.76 Bias(×103) 
95% Cl 

- 111 
(-114, -108)

- 72 
(-76, -67)

17 
(11,24)

        MSE(×104) 
95% Cl 

138 
(131, 146)

83 
(75,90)

67 
(58,75)

        Coverage (%) 
95% Cl 

12.9 
(10.3, 15.6)

66.1 
(61.8, 70.5)

96.9 
(95.2, 98.7)

*MW: Mann-Whitney estimate (i.e., obsAUC ); R: Reiser’s (2000) method; P: probit method.
** Simulation III was run 100 times. Each time, we generated 1000 simulated data sets. Each data set consists of 100 cases and 100 controls. each subject provides two 
replicate biomaker scores. Both true values and random errors were generated from log normal distributions with 2 2 2 2

, ,= = = =1σ σ σ σX true Y true e eX Y . 

Table 3: Bias, mean square error (MSE), and coverage for ( )mtrueAUC  from simulation III**.

we dichotomized the baseline serum creatinine level. If a woman had 
elevated baseline serum creatinine (i.e., serum creatinine 1.5 /mg dL≥
), she was classified as a case; otherwise she was classified as a control. 
There were 1081 controls, 128 cases, and 35 subjects missing baseline 
serum creatinine. In the analysis, 1209 women without missing values 
were used. We would like to assess if NAPAP values could be used 
to discriminate between cases and controls. The AUC based on the 
NAPAP values measured at the clinic visit was used to measure the 
discrimination ability of the NAPAP assay. The 3 replicates were used 
to calculate ICC values. By examining the histograms of the NAPAP 
values for cases and controls, we found the distribution of the NAPAP 
value is quite skewed in both cases and controls in all 3 measurements 
(Figure 1). Hence, the normality assumption was violated.

The estimated AUC and 95% confidence interval (CI) of AUC 

are summarized in Table 4. The estimated AUC based on the Mann-
Whitney U statistic (i.e., the uncorrected estimate of AUC) was 
0.589  with 95% confidence interval (CI) [0.537,0.640] . The corrected 
AUC estimate based on Reiser’s [6] method was 0.611  with 95% CI 
[0.557,0.663] . The corrected AUC estimate based on the probit-shift 
method was 0.618  with 95% CI [0.549,0.684] . In this example, the 
number of women with replicated observations is 1193 , the estimated 
ICC based on probit transformed data was 0.648  for cases and 0.498  
for controls. Hence, the corrected AUC is similar for the Reiser’s and 
probit-shift methods, but the confidence limits are wider for the latter 
method.

Discussion
In this article, we presented a method to correct AUC for 
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Figure 1: Histograms of the NAPAP values. The upper panel: cases (left) and controls (right) measured at the clinic visit; The middle panel: cases (left) and controls 
(right) measured at the first home collection; The bottom panel: cases (left) and controls (right) measured at the second home collection. 
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MW R P

ˆ
trueAUC

95 % CI

 0.589
[0.557,0.663]

0.611
[0.557,0.663]

0.618
[0.549,0.684]

Table 4: Estimate of trueAUC  and its 95% confidence interval for the NAPAP data.

measurement error without making the assumption of normally 
distributed diagnostic biomarkers. Instead, we use the probit 
transformation to create a transformed diagnostic biomarker, which on 
the probit scale is approximately normally distributed. To implement 
our approach, one needs replicate data on at least a subsample of 
subjects to compute the intraclass correlation. The replicates should 
be close enough in time so that the assumption that the underlying 
mean diagnostic biomarker level is the same is not violated. Simulation 
studies support the validity of the methods based on moderate sized 
samples of 100 cases and 100 controls.

The simulation studies demonstrated that without correcting for 
measurement error would result in AUC biased toward the null value 
(0.5) Under the normality assumption, the proposed method has 
similar performance as Reiser’s method which requires the normality 
assumption in measurement error modelling. When the normality 
assumption is violated, the proposed method performed much better 
than Reiser’s method in terms of bias and coverage.

The probit-shift model assumes equal variance 2 2
, ,=X true Y trueσ σ . In 

the simulation studies, we evaluated the effects of unequal variance on 
the performance of the probit-shift model. The results were similar to 
Tables 1-3, if measurement error is small as characterized by 2θ . If 2 > 1θ
, then the probit-shift model still has minimal bias, but has observed 
coverage greater than nominal coverage. In future work, we will extend 
the probit-shift model to allow unequal variance scenario, in which the 
probit-shift model would have the following form: 

, 1 , 2( ) = ( ) ,Y true X trueH z c H z c+

where 1 , ,= /X true Y truec σ σ  and ( )2 , , ,= /m m σ−X true Y true Y truec .

In the real data analysis, the corrected AUC by the proposed method 
was similar to the corrected AUC by the Reiser’s method, although the 
distributions of the biomarker in both cases and controls were highly 
skewed. This is probably because the unknown true AUC is close to 
the null value 0.5. The three simulation studies also demonstrated this 
point. That is, when m is close to 0 or equivalently when trueAUC  is close 
to 0.5, the 3 AUC estimation methods gave similar results. However, 
confidence limits are wider with the probit-shift method.

An implicit assumption of our approach is that the distribution of 
diagnostic biomarkers is continuous. If instead, risk is defined based 
on a limited number of categorical risk factors, then the diagnostic 
biomarker distribution will be discrete and the assumption that the 
probit transformation results in a normally distributed scale will only 
be approximately satisfied and needs to be studied in more detail.

It is worth noting that several authors have developed 
measurement-error-correction approaches for estimating a variety 
of diagnostic performance measures other than AUC, including 
sensitivity, specificity, and the Youden index [12]. The probit-shift 
method may be useful in incorporating the effects of measurement 
error on these indices in the setting of non-normally distributed 
diagnostic biomarkers.
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