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Introduction
Diagnostic testing in medicine is the process of identifying 

the patients with and without a particular disease. Accuracy of the 
diagnostic test is the ability of the test to correctly identify the true 
disease status of the patient [1]. The test or procedure that determines 
the true disease status without an error is called the gold standard test. 
However, even with the existence of a gold standard test, verification 
for the disease status of each patient may not be obtained due to various 
reasons such as the invasive nature or too costly gold standard test. 
For example, the Prostate Specific Antigen (PSA) blood test is used as 
a screening test for diagnosis of prostate Cancer with a ranging cost 
from $60 to $80. However, the true diagnosis is generally confirmed by 
invasive procedures such as prostate biopsy with a ranging cost from 
$1600 to $1800. Thus patients with a high risk or a prostate screening 
test positive are more likely to be offered the gold standard test than 
those with low risk or a negative screening test. Furthermore, the 
inference about the measures of diagnostic accuracy such as sensitivity, 
specificity, positive predictive value (PPV) and negative predictive 
value (NPV) may be biased because individuals who are selected for the 
gold standard test based on the diagnostic test results are not a random 
sample [2]. Many authors have referred to this bias as, work-up bias 
[3] or verification bias [4]. Therefore, in the presence of verification
bias, the efficiency of a diagnostic test heavily depends only on those
patients whose disease status has been verified. In addition if there is a
positive association between patient selection for verification and the
test results will produce more bias results [5].

When the true disease status is missing among patients who were not 
selected for verification, the framework of the missing data mechanism 
proposed by Rubin can be applied for verification bias correction. If the 
probability of selecting patients for verification is independent of both 
observed and unobserved data then missingness in the disease status 
is considered missing completely at random (MCAR). Missingness in 
the disease status is considered missing at random (MAR) when the 
probability of selecting patients only depends on the observed data and 
it is considered missing not at random (MNAR) when the probability 
depends on unobserved data [6]. This is most likely to occur when 

there is long time lag between the initial test and verification, when 
there are multiple investigators at various institutions, when the patient 
population is very heterogeneous or when the disease process is not 
well understood.

Begg and Greenes [4] proposed a method of verification bias 
correction for binary diagnostic tests by using Bayes’ theorem 
under the MAR (i.e. conditional assumption). Zhou [7] derived the 
maximum likelihood estimators for sensitivity and specificity and their 
variances under both MAR and MNAR mechanisms. However, under 
the MNAR assumption, Zhou [7] assumed that two known ratios need 
to be quantified. Zhou [8] showed that the estimators of PPV and NPV 
are unbiased and consistent if the probability of selecting patients for 
disease verification does not depends on the true disease status of the 
patient (i.e. MAR assumption). Some authors have tried to use multiple 
imputation methods to correct for verification bias under ignorable 
missingness [9]. However, the validity of that approach was debated by 
De Groot et al. [10]. In dealing with multiple diagnostic tests and the 
presence of covariates,  Baker [11] Kosinski and Barnhart [12] suggested 
regression approaches to deal with the MNAR missing mechanism.
However, their models require the use of multiple tests or covariates in 
order to achieve identifiability. Martinez et al. [13] have tried to address 
the issue of verification bias in the MNAR setting by using a Bayesian 
approach with a beta prior distribution. Some authors have tried using 
Gibbs sampling techniques as a Bayesian approach to correct the 
verification bias in MNAR estimates [14]. All these available methods 
require iterative methods to compute the estimates of measures for 
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Abstract
In diagnostic medicine, the test that determines the true disease status without an error is referred to as the gold 

standard. Even when a gold standard exists, it is extremely difficult to verify each patient due to the issues of cost-
effectiveness and invasive nature of the procedures. In practice some of the patients with test results are not selected 
for verification of the disease status which results in verification bias for diagnostic tests. The ability of the diagnostic 
test to correctly identify the patients with and without the disease can be evaluated by measures such as sensitivity, 
specificity and predictive values. However, these measures can give biased estimates if we only consider the patients 
with test results who also underwent the gold standard procedure. The emphasis of this paper is to apply the log-linear 
model approach to compute the maximum likelihood estimates for sensitivity, specificity and predictive values. We 
also compare the estimates with Zhou’s results and apply this approach to analyze Hepatic Scintigraph data under the 
assumption of ignorable as well as non-ignorable missing data mechanisms. We demonstrated the efficiency of the 
estimators by using simulation studies.
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verification bias. To demonstrate this idea, define two random variables 
I and J , each with two levels i = 1,2 and j = 1,2 . Let JR  be the missing 
data indicator for variable J, such that = 1JR  if J is being observed and 

= 2JR , if J is missing. Similarly, let = 1IR  if we observe in variable I. 
Consider I J×  cross-classified Table 3 with total sample size of 1n++ + , 
each with two levels with one supplemental margin (in the terminology 
of Dempster and Baker 1992) with cell count ijabn . The cell counts with 

= = 1I JR R  is denoted as 11ijn . The supplemental margin for variable J 
when = 2JR  is denoted by 12in + . In these cases, the symbol ’+’ denotes 
the summation over the corresponding index. Furthermore, denote the 
expected cell counts by 1ij kλ , cell probabilities for I, J, IR  and JR  by ijklπ  
and the marginal probabilities by ..ijπ  for  Table 3. 

 Log-linear models are widely used to analyze contingency tables. 
Missing data indicators for contingency tables with supplemental 
margins can be incorporated in log-linear models in the same way as they 
incorporate the other variables. In terms of λ , the homogenous log-linear 
model (presence of only two-way interactions) for partially observed one 
variable is ( )1log = ( ) ( ) (1) ( ) ( ) ( 1) ( )ij k I J R R IJ IR IRI J I J

i j k ij i ikµ λ λ λ λ λ λ λ λ+ + + + + + +

( 1) ( ) (1 )JR JR R RI J I J
j jk kλ λ λ+ + +                   (1)

Because this is an over parameterized model, we add the 
side conditions that the sum of each λ  term over each of the 
indicated subscripts is zero. For computational purposes, 
it is convenient to use an alternative parameterization of 
the model. Let 0ijm ≥ , 0ijb ≥  and ( ) 11 =ij ij

i j
m b n++ ++∑∑  such 

that 11 =ij ijmµ  and 12 =ij ij ijm bµ . In terms of log-linear models 
= exp{ ( ) ( ) (1) (1) ( ) ( 1) ( 1) ( 1) ( 1)ij I J R R IJ IR JR JR JRI J I J I J

m i j ij i i j jλ λ λ λ λ λ λ λ λ λ+ + + + + + + + +

(11)}R RI J
λ+

Taking advantage of the side conditions, we can derive the 
following expression for ijb : 

= 2exp{ (1) ( 1) ( 1) (11)}ij R IR JR R RJ J J I J
b i jλ λ λ λ− + + +

 The detailed derivation can be found in the Appendix. 

Denote, 

( ) 11
1

1

= = 1, = 1| = , = = ,ij
I Jp Pr R R I i J j

n
µ

++ +

( ) 12
2

1

= = 1, = 2 | = , = = .ij
I Jp Pr R R I i J j

n
µ

++ +

In probabilistic terms, ijm  and ijb  can be expressed as follows, 

1 1=ijm n p++ +

12 12 1 2

11 11 1 1

= = =ij ij
ij

ij ij

n pb
n p

µ µ
µ µ

++ +

++ +

For Table 3, the total expected count is 

( )
2 2 2 2 2 2 2 2 2

1 1 11 12
=1 =1 =1 =1 =1 =1 =1 =1 =1

= = = 1ij k ij ij ij ij
i j k i j i j i j

m bµ µ µ µ++ + + +∑∑∑ ∑∑ ∑∑ ∑∑

diagnostic accuracy especially under MNAR mechanism. However, 
by using the log-linear model approach, the explicit solutions for the 
measures of diagnostic accuracy estimates can be computed by the use 
of a simple algebraic formula (computationally convenient) under all 
missing data mechanisms.

In this paper, we provide the log-linear model approach to correct 
for verification bias in order to compute the estimates of diagnostic 
measures (i.e. Sensitivity, Specificity, PPV and NPV) under various 
assumptions of missing data mechanisms. We also confirm by 
simulations that the estimators are asymptotically unbiased and more 
efficient than complete cases estimates. In next section, we will show 
the impact of verification bias by using hypothetical example. The 
following sections will focus on the method of log-linear models to 
correct the verification bias for diagnostic measures and comparision 
with Zhou [7] results. Furthermore, we illustrate the log-linear model 
approach by application to the Hepatic Scintigraph data.

Impact of Verification Bias
In diagnostic medicine, it is a common practice to refer only patients 

who are test positives for a gold standard test for disease verification. 
To illustrate the impact of bias, we considered a hypothetical study 
of 1000 patients to measure the sensitivity, specificity, PPV and NPV 
(Tables 1 and 2).

The hypothetical data are summarized in Table 1. If every patient 
is being referred for verification for the gold standard then the true 
sensitivity from Table 1 is 0.71. Furthermore, the true specificity, PPV 
and NPV are 0.87, 0.37 and 0.96 respectively. However, if we consider 
that only 10% of those who have a test negative result receive the gold 
standard for verification, then the data are summarized in Table 2. 
From Table 2, the observed sensitivity, specificity, PPV and NPV are 
0.96, 0.4, 0.37 and 0.96 respectively. Overall if positive test results are 
more likely to receive disease verification, (i.e. MAR) then by using 
only verified cases, the estimates for sensitivity and specificity are 
biased, in fact, sensitivity is being overestimated and specificity is being 
underestimated. However, under the MAR assumption, the estimates 
of PPV = ( | )P D T+ +  and NPV = ( | )P D T− −  from complete cases are 
unbiased [8,15,16].

Methodology
Log-linear parameterization

Baker et al.[17] used the homogeneous log-linear model approach 
to adjust the expected cell counts for a two way table with missing data. 
We can use the similar approach (BRD model approach) to compute 
the estimates for measures of diagnostic accuracy correcting for 

  Verified  2*Unverified  2*Total
-3  D +  D −   

T +  71  120  0  191 
T −  29  780  0  809

 1000

Table 1: Hypothetical data.

  Verified  2*Unverified  2*Total
-3  D +  D −   

T +  71  120  0  191 
T −  3  78  728  809 

 1000

Table 2: Hypothetical data with unverified cases.

  Verified  Unverified
RJ=1 RJ=2

 J=1  J=2  
 (D +) (D −)  

RI = 2  (T +) I=1 n1111 n1211 n1+12 
 (T −) I=2 n2111 n2211 n2+12

n++1+

Table 3: Two way table with one supplementary margin.  
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12 22
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mSpecificity MCAR
m m

π
+

Similarly, the estimates for PPV ( )=1| =1..ˆ j iπ  and NPV ( )=2| =2..ˆ j iπ  can be 
computed from equation 3. 

MAR estimates
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From equation 4 the estimates of the Sensitivity and Specificity can 
be obtained as follows

( )
( )

( ) ( )
11 1.

=1| =1
11 1. 21 2.

ˆˆ 1
ˆ= =

ˆ ˆˆ ˆ1 1
i j

m
Sensitivity MAR

m m

β
π

β β

+

+ + +
                (6)

 ( )
( )

( ) ( )
22 2.

=2| =2..
12 1. 22 2.

ˆˆ 1
ˆ= =

ˆ ˆˆ ˆ1 1
i j

m
Specificity MAR

m m

β
π

β β

+

+ + +
        (7)

can be obtained. Similarly, from equation 5 the estimates of PPV 
( )=1| =1..ˆ j iπ  and NPV ( )=2| =2..ˆ j iπ  can be computed.

MNAR estimates
2

. 12 11
=1

ˆˆ ˆ= =ij j i ij ij
j

m n m nβ +∑
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For Model ( ). jβ , equation 8 provides the estimates of Sensitivity 
and Specificity as follows 

( )
( )

( ) ( )
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=1| =1
11 .1 21 .1
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ˆ ˆˆ ˆ1 1
i j
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Sensitivity MNAR

m m
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β β
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+ + +

( )
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22 .2

=2| =2..
12 2. 22 .2

ˆˆ 1
ˆ= =

ˆ ˆˆ ˆ1 1
i j

m
Specificity MNAR

m m

β
π

β β

+

+ + +

 while equation 9 provides the estimates of PPV ( )=1| =1..ˆ j iπ  and NPV 
( )=2| =2..ˆ j iπ

It is possible to obtain negative maximum likelihood estimates for 
.̂ jβ  in MNAR model. If any solution is negative ( .1β̂  or .2

ˆ < 0 ), the 
estimates still can be computed by maximizing the likelihood function 
by using the limited memory algorithm for constrained optimization 
Byrd [18]. Optim function can be utilized in statistical softwar R 2.15.1 
or higher versions.

Inference about diagnostic measures

In this section, the multivariate delta method is used to draw the 

and in general notation the marginal and conditional probabilities can 

be expressed as : 
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..

1

1
= = , = = ij ij
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m b
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++ +
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The likelihood ratio statistic with respect to a model fitting the data 

perfectly is, 

112 12 12
11 12 12

,
,

= 2 log log logˆ ˆˆ ˆ ˆ
ij i
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i j iij ij ij ij ij

j i j
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∑ ∑ ∑ ∑

Models parameter estimates

Baker et al. [17] identified nine different models for the two-way 
table with three supplementary margins based on the dependence 
of missingness on one or the other or its own realization. For Table 
3, when bij equals to β.., βi.or β.j, there are three different identifiable 
models. First and second subscripts to the parameter β correspond to 
variable I and J respectively. The subscript " . " indicates that parameter 
is constant over corresponding index. In addition, each model has a 
unique interpretation. For example, Model (β..) can be interpreted as 
the missingness in J is constant (MCAR). Similarly, Model  (βi.) can 
be interpreted as the missingness in J depends on the realization of I 
(MAR) and when the missingness in J depends on its own realization, 
then we consider Model β.j to be MNAR. 

Assuming Poisson distribution for cell counts, the maximum 
likelihood estimates for mij and β can be derived from log-likelihood 
functions for each model. Detailed derivation of the estimates are 
provided in Appendix. The likelihood ratio statistics for each model 
can also be found in the Appendix.

MCAR estimates

11 1 1112
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11 1 11
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From equation 2, the estimates for Sensitivity and Specificity are

( ) 11
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11 21
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mSensitivity MCAR
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π
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inferences about the diagnostic measures for Model (βi.)  (MAR). A 
similar method can be used for Model (β..) (MCAR) and Model (β.j)   
(MNAR). To derive the asymptotic variance of the estimates, we have 

 ( )
( )| .. | ..

| ..

ˆ
0,1 .

ˆ
i j i j

i jVar

π π

π

−
 

However, to ensure better normal approximation, we derived the 
asymptotic distribution of 

( ) ( )| .. | .. | ..ˆ ˆ ˆLogit = log 1i j i j i jπ π π −  . By using multivariate delta method 
for Model(βi.) , we have 

( )| .. | ..ˆLogit (logit , )i j i jπ π −T 1
2C I C                  (10)

 where | .. | .. | .. | .. | .. | ..

11 12 21 22 1. 2.

logit logit logit logit logit logit
= , , , , ,i j i j i j i j i j i j

m m m m
π π π π π π

β β
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TC  and 

2I  is the Fisher information. The detailed derivation of 2I  is provided 
in the Appendix. Therefore, the ( )100 1 %δ−  confidence interval for 

| ..i jπ  is 
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In case of negative estimates for MNAR model, the variances for 
the measures of the diagnostic accuracy can be estimated by bootstrap 
method. 

Comparison with Zhou’s result

Zhou [7] derived the estimates for Sensitivity and Specificity under 
MAR and MNAR assumptions. The estimates obtained in previous 
section for Sensitivity and Specificity under MAR assumption are 
equivalent to Zhou’s estimates (Appendix). However,under MNAR 
assumption Zhou [7] assumes that the two ratios 

( )
( )

( )
( )0 1

= 1| = 2, = 1 = 1| = 1, = 1
= =

= 1| = 2, = 2 = 1| = 1, = 2
J J

J J

P R I J P R I J
e e

P R I J P R I J

are known to estimate the Sensitivity and Specificity. However, the log-
linear model approach does not require such assumptions to estimate 
MNAR parameters.

Simulation Study
A simulation study was conducted to illustrate the reduction in bias 

and root mean squared error (RMSE) of the estimators for sensitivity 
and specificity for MAR model compared to complete case analysis 
(Table 4).  

Two variables “Test Results” and “Disease Status” with different 
sample sizes (N) were generated from the multinomial distribution 
with marginal probabilities of 1ˆ = 0.5π+  and 2ˆ = 0.5π+  under different 

sensitivity ( 11

1

= π
π+

) and specificity ( 22

2

= π
π+

) values. We cross-classified 

these variables in a 2 2×  contingency table. This process was repeated 
2000 times. In each complete contingency tables, we generated missing 
values in “Disease Status” in such a way that missingness in “Disease 
Status” depends on the realization of the “Test Results” to ensure the 
MAR missing mechanism. Table 4 represents the results from our 
simulation for MAR model when 50% of negative tests and 10% of 
the positive tests were not verified for the disease. Table 4 shows that 
correcting for the verification bias using the log-linear model approach 
will substantially reduce the bias as well as improve the performance 

of the estimators compared to complete case analysis. We obtained 
similar results with 10% missigness in T+ with different amounts 
of missingness in T− such as 70%, 60%, 40%, 30% and 20% and/or 
various marginal probabilities. In addition to this, we carried out an 
extensive simulation for Model .( )jβ  by simulating the MNAR missing 
mechanism to estimate PPV and NPV. We observed the reduction in 
bias and RMSE compared to complete case analysis under different 
amounts of non-ignorable missingness on the disease status.

Application
In this section, we will demonstrate the log-linear modeling 

approach to compute the measures of diagnostic accuracy under various 
missing mechanisms by using the Hepatic Scintigraph data published 
by [19]. In the Hepatic Scintigraph data, 650 patients underwent 
hepatic scintigraphy of which 429 patients had positive scans while 221 
patients had negative hepatic scans. Only 263 patients out of 429 and 81 
patients out of 221 were referred for status verification using procedures 
such as liver biopsy, exploratory laparotomy or autopsy within 6 weeks 
of their scans. Table 5 represents the verified and unverified cases by 
hepatic scan results. Table 6 shows the Maximum likelihood estimates 
for model parameters (Tables 5-7). 

Table 7 represents the estimates of sensitivity, specificity , PPV 
and NPV and 95% confidence intervals under three different models 
by using the log-linear model approach to Table 5. By using Zhou [7] 
method the estimates of Sensitivity and Specificity can range from 
(0.68,0.95) and (0.37,0.86) respectively depending upon the values of 

0e  and 1e . From Table 7, it can be confirmed that under MAR and 
MCAR assumptions the estimates of PPV and NPV and under MNAR 
assumption the estimates of sensitivity and specificity can be obtained 
from complete cases [8].

Final Remarks
 Verification bias is an extremely common problem in diagnostic 

medicine. This paper shows that how the log-linear model approach 
in single binary-scale diagnostic tests correct the verification bias for 
estimating the diagnostic measures. Log-linear models also reduces 

N (Sen 
%,Sp%) 

 Complete Cases   Model Based

 Bias  Bias 
 (RMSE)  (RMSE) 

Sen Sp Sen Sp
200  (60,60)  0.1464  0.1269  0.0623  0.0375

(0.1438)  (0.1279)  (0.0005)  (0.0021) 
 (95,95)  0.0504  0.0229  0.0245  0.0195

(0.0375)  (0.0214)  (0.0004)  (0.0004) 
 (60,95)  0.1470  0.0230  0.0586  0.0200

(0.1424)  (0.0213)  (0.0014)  (0.0004) 
 (95,60)  0.1464  0.1279  0.0623  0.0375

(0.2235)  (0.3587)  (0.1585)  (0.1921) 
500  (60,60)  0.1461  0.1310  0.0389  0.0228

(0.1461)  (0.1310)  (0.0017)  (0.0017) 
 (95,95)  0.0396  0.0212  0.0160  0.0122

(0.0357)  (0.0210)  (0.0002)  (0.0008) 
 (60,95)  0.1450  0.0217  0.0354  0.0121 

(0.1450)  (0.0215)  (0.0001)  (0.0001) 
 (95,60)  0.0412  0.1301  0.0159  0.0234 

(0.0373)  (0.1301)  (0.0006)  (0.0006) 

Table 4: Bias and MSE comparison for 50% missing in T − and 10% missing in T + .
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the bias and improves the performance of the estimators compared to 
complete case analysis. In addition to this, explicit estimates for the 
measures of diagnostic accuracy under different missing mechanisms 
can be computed from simple algebraic formula, while other available 
methods require iterative methods to estimate the measures of 
diagnostic accuracy. Furthermore, this approach will allow us to test 
for MCAR assumption for particular data. However, the only way to 
confirm for MAR or MNAR missing mechanisms is to recollect the 
missing data. Although in diagnostic medicine due to the issue of cost-
effectiveness, we do not have the luxury of getting hold of the missing 
data. As a result, careful modeling of missing mechanisms to reduce the 
bias is more an important issue. Therefore, if the data are not MCAR 
then by using the scientific knowledge about the data we can assume 
a MAR or MNAR missing mechanism to compute estimates for the 
measures of diagnostic accuracy with log-linear models.
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Table 5: Hepatic scintigraph data.

 Model β̂  G2  P-Value

1̂β 2β̂
G2

Model ( )..β 0.89 35.84 < 0.001

Model ( ).iβ 0.63 1.73 - - 

Model ( ). jβ 0.39 2.4 - - 

Table 6: ML estimates for model parameters.

 Measure Model ( )..β  Model ( ).iβ  Model ( ). jβ  
Sensitivity 0.9  0.84 0.9 
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Table 7: Estimates of diagnostic accuracy measures.
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Appendix  
 Log-linear parameterization 
Expected counts for all verified cases can be modeled by using equation 1 in the following way  
 11 = exp{ ( ) ( ) (1) (1) ( ) ( 1) ( 1)ij I J R R IJ IR IRI J I J

i j ij i iµ λ λ λ λ λ λ λ λ+ + + + + + +  
 ( 1) ( 1) (11)}JR JR R RI J I J

j jλ λ λ+ + +  
 Expected counts for all un-verified cases can be modeled as the following way :  

 12 = exp{ ( ) ( ) (1) (2) ( ) ( 1) ( 2)ij I J R R IJ IR IRI J I J
i j ij i iµ λ λ λ λ λ λ λ λ+ + + + + + +  

 ( 1) ( 2) (12)}JR JR R RI J I J
j jλ λ λ+ + +  

 Some of the side conditions (the sum of each λ -term over each of the indicated subscript is zero) for the log-linear 
models are  

 
2 2 2 2
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 By using these conditions, we can get  
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 First solving for ˆ im +  
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 ( ) ( ) ( )11 12 . .

, ,
= log log 1ij ij i i i ij i

i j i i j
L n m n m mβ β+ ++ − +∑ ∑ ∑  

 12

. .

= i
i ij

ji i i

nL m m
mβ β

+
+

+

∂
⋅ −

∂ ∑  



 12 12
i. .

.

ˆ ˆˆ0 = Therefore,theMLestimatesfor =ˆ ˆ
i i

i i
ii

n nm
m

β β
β
+ +

+
+

∴ − ∴  

 

( ) ( )11 12
ij i. ij . .

.

MLestimatesform forModel canbederivedbytakingthederivativeofLwithrespecttom = 1ij i
i i

ij ij i i

n nL
m m m

β β β
β
+

+

∂
∴ + ⋅ − +  

 ( )11 12
.

ˆ0 = 1
ˆ ˆ
ij i

i
ij i

n n
m m

β+

+

∴ + − +  

 ( ) 11 12
.

ˆ1 =
ˆ ˆ
ij i

i
ij i

n n
m m

β +

+

∴ + +  

 12 12
11ˆ ˆ1 =

ˆ ˆ
i i

ij ij ij
i i

n nm n m
m m
+ +

+ +

 
∴ + ⋅ + ⋅ 
 

 

 ( )12 11 12ˆ ˆ ˆ ˆ=i i ij ij i i ijm n m n m n m+ + + +∴ + ⋅ +  
 ( )12 12 11ˆ ˆ ˆ=ij i i i ij im m n n n m+ + + +∴ ⋅ + −  
 11ˆ =ij ijm n∴  

 Maximum likelihood Estimates for Model ( ). jβ  (MNAR) 

 ( ) ( )11 12 . .
, ,

= log log 1ij ij i ij j ij j
i j i j i j

L n m n m mβ β+

 
+ − + 

 
∑ ∑ ∑ ∑  

 12

. .

= i
ij ij

i ij ij j
j

nL m m
mβ β
+

 
 ∂

⋅ − ∂  
 

∑ ∑∑
 

 12

.

ˆ ˆ0 = ˆˆ
i

ij ij
i iij j

j

n m m
m β
+

 
 

∴ ⋅ − 
 
 

∑ ∑∑
 

 

( )12
.j ij .j i 12 .j ij .j

j.

ˆ ˆ ˆˆˆ ˆ= Fromequation ??,wecanguessMLestimatesfor is m =n .MLestimatesform forModel canbederivedbytakingthederivativeofLˆˆ
i

ij ij
i i ij j

j

nm m
m

β β β β
β

+
+

 
 

∴ ⋅ ∀ 
 
 

∑ ∑ ∑∑

 

 ( )11 12
. .

.

ˆ ˆ0 = 1ˆˆ ˆ
ij i

j j
ij ij j

j

n n
m m

β β
β

+∴ + ⋅ − +
∑

 

 ( ) 12
. 11 .

.

ˆ ˆˆ ˆ1 = ˆˆ
i

ij j ij ij j
ij j

j

nm n m
m

β β
β

+∴ + + ⋅
∑

 (12) 

 ( )11 .jˆ = WecaneasilycheckourguesssatiffyalltheMLequationforModelij ijm n β∴  
 

 Comparison of MAR Estimates with Zhou’s Result  
The  [] estimates for Sensitivity is  
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 From equation 6 the Sensitivity estimates from log-linear model are  
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 Similarly, we can show that the estimates for Specificity from log-linear models are equivalent to  [] Specificity 
estimates. 
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