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Introduction
Antimicrobial peptides neutralize a broad range of microbes–

an ancient but effective defense mechanism used by multicellular 
organisms throughout the animal and plant kingdom [1]. Most 
peptides with antimicrobial properties are positively charged and 
preferentially target microbial membranes which contains large 
amounts of negatively charged molecules. In general, cationic 
antimicrobial peptides are believed to cross the bacterial cell wall via a 
mechanism of self-promoted uptake, and subsequently cause lethality 
by permeabilizing the cytoplasmic membrane and inducing leakage 
of cellular contents [2-5]. The underlying molecular mechanisms for 
membrane permeabilization by antimicrobial peptides, however, 
remain poorly defined and additional alternative modes of action to 
kill bacteria may exist [3,6].

Defensins are a major group of small, cationic antimicrobial 
peptides, which constitute important components of the innate 
immune defense against microbial infection [7-10]. Human defensins 
are cysteine-rich, cationic peptides with molecular masses ranging 
from 3 to 5 kDa. Based on the connectivity of the six conserved cysteine 
residues and sequence homology, human defensins are classified 
into α and β families [11]. They primarily act as “natural antibiotics” 
against a wide range of microorganisms, including bacteria [12-14], 
viruses [15], and certain protozoa [16,17]. More recently, defensins 
have been recognized as potentially important modulators of adaptive 
immunity also [18-20]. Here, we will review our current understanding 
of the antibacterial activities of human α-defensins with emphasis on 
interactions with the microbial membrane, their anti-bacterial toxin 
properties, and their expanding role in host immunity.

Human α-Defensins
Human defensins were first described as natural peptide antibiotics 

in neutrophils, and were termed Human Neutrophil Peptide 1-3 or 
α-defensin 1-3 [21]. HNP1-3 is synthesized in vivo as pre-propeptides, 
consisting of a signal sequence, an N-terminal pro domain and the 
defensin domain. The pro domain is important for correct folding and 
trafficking of HNP1-3, and is proteolytically removed prior to storage 
by an as yet unknown enzyme [22]. They are stored in azurophil 
granules of neutrophils, and are released during phagocytosis to act 
against ingested microbes. The processed HNP1-3 peptides contain 29-
30 amino acid residues and differ by only a single amino acid residue 
at the N-terminus [23]. A few years later, a fourth, much less abundant 

α-defensin was discovered in neutrophils, termed HNP-4, which shares 
only 30% sequence similarity with HNP1-3 [24-26]. More recently, two 
additional α-defensins were described, termed Human Defensin 5 and 6 
[27,28]. HD-5 and HD-6 are stored in granules of specialized epithelial 
cells called Paneth cells in the small intestine [29]. In contrast to HNPs, 
HD-5 and HD-6 are secreted in response to bacterial stimulation as 
propeptides and processing occurs extra-cellularly [30].

Human defensins of the α family are characterized by a unique 
connectivity of the six conserved cysteine residues; Cys1-Cys6, 
Cys2-Cys4 and Cys3-Cys5. In addition, α-defensins contain a highly 
conserved Arg-Glu pair forming a salt bridge, which together with 
the three intra-molecular disulfide bonds stabilizes a conserved three-
stranded β-sheet core structure [31-33]. Dimerization or even higher 
order structures have been suggested for certain defensins, although 
any functional consequences are largely not well understood [31,34].

Antibacterial Activity of α-defensins: The Microbial 
Membrane

Primarily, defensins act in vivo as antimicrobial “first responders” 
against predominantly bacterial threats. This notion is underscored 
by the presence of increased plasma levels of HNP1 in patients 
with septicemia or bacterial meningitis [35]. In addition, elevated 
concentrations of HNPs were reported in plasma, blood and body 
fluids, such as pleural fluid, bronchoalveolar lavage fluid, urine and 
cerebrospinal fluid from patients with a variety of infections, including 
bacterial and non-bacterial infections and pulmonary tuberculosis [36]. 
Also, lower than normal levels of HNPs or inactivation of the peptides 
have been linked to an increased risk of caries in the oral cavity [37], 
as well as infections of the airways, including cystic fibrosis [38,39]. 
A specific deficiency in HD-5 was observed in patients suffering from 
ileal Crohn’s disease, a chronic inflammation of the gastrointestinal 
tract [40]. This observation has been underscored by a number of 
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Abstract
Human defensins were originally identified as natural antimicrobial peptides that protect the host from infections. 

More recently, novel biological functions of these peptides have been described, expanding their role as natural 
antimicrobials. Here, our current understanding of this expanding role of human α-defensins is reviewed, with 
emphasis on antibacterial killing, bacterial toxin neutralization and immunity. 
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recent animal model studies. Reduced expression of certain α-defensins 
resulted in increased susceptibility to oral infection by Listeria 
monocytogenes compared to wild-type mice [41]. Similarly, mice that 
lack mature cryptdins (the murine orthologue for α-defensins) are 
more susceptible to ileal colonization by non-invasive Escherichia coli 
spp. [42]. Furthermore, Paneth cell expression of Human Defensin-5 
rendered mice markedly resistant to oral, but not peritoneal challenge 
with a virulent strain of Salmonella typhymurium [43].

Exactly how defensins kill bacteria is not fully understood, despite 
their discovery more than three decades ago. The current prevailing 
view is that defensins and cationic antimicrobial peptides generally 
target the negatively charged bacterial membrane for destruction, 
causing leakage of the intracellular contents and ultimately, cell lysis 
and death. The importance of positive charge in bacterial killing by 
defensins is experimentally well supported [44-46]. These findings 
are further supported by observations that anionic residues in the 
pro-domain of defensins prevents their antibacterial activity, until 
enzymatic processing [30,47,48], although more recent evidence 
suggests that hydrophobicity of the pro-domain may be equally 
or more important [49]. A number of recent observations on the 
bacterial killing by defensins, however, could not fully be explained 
by the membrane disruption model. Firstly, this model assumes that 
stable formation of pores in the microbial membrane require peptide 
structure, oligomerization and structural amphiphilicity-separated 
clusters of hydrophobic and cationic residues. However, we and others 
have shown that a number of bacterial strains can be killed effectively 
independent of defensin structure [50,51]. Secondly, it has been 
noted for some time that α-defensins preferentially kill Gram-positive 
bacteria [12,52]. In contrast, β-defensins, while carrying more positive 
charges than α-defensins, kill Gram-negative bacteria more effectively, 
suggesting that cationicity alone is not the sole driving force for 
bacterial killing [45]. In light of this observed strain-selective killing, we 
recently showed that an HNP1 peptide composed entirely of unnatural 
D-amino acids show greatly reduced anti-bacterial activity against 
Staphylococcus aureus compared to the L-peptide [53]. Killing of 
Escherichia coli appeared comparable for both peptides, suggesting that 
differences in the composition of the bacterial cell wall between these 
strains could explain these findings. Recently, functional interactions 
of human and fungal defensins with Lipid II have been described 
[54,55]. Lipid II is an essential precursor of cell wall biosynthesis of 
Gram-positive species. Two additional fungal defensins, oryzeacin 
(from Aspergillus oryzae) and eurocin (from Eurotium amstelodami), as 
well as two invertebrate defensins, lucifensin (from the blowfly Lucilia 
sericata) and gallicin (from the mussel Mytilus galloprovinciali), were 
shown to bind Lipid II in that study [55]. More recently, the spectrum 
of defensins binding Lipid II was widened further to include Human 
β-Defensin-3 [56] and three oyster defensins [57].

In the case of S. aureus, the cell wall is primarily composed of a single, 
thick layer of peptidoglycan covered with (lipo) teichoic acid. The E. coli 
outer cell wall is composed of a thin layer of peptidoglycan, surrounded 
by an outer membrane largely composed of lipopolysaccharide (LPS) 
on the outside [58]. Cationic antimicrobial peptides can indeed 
associate with the negatively charged LPS or teichoic acid–an event 
thought to be important not only for antimicrobial selectivity, but also 
for the uptake across the bacterial cell wall [59-61]. Other structural 
components of the bacterial cell wall, such as peptidoglycan, may also 
play a similar role. Defensins have been shown to bind glycosylated 
proteins [53,62], and can be permanently retained on the Superdex 
resin made of highly cross-linked agarose covalently bound to dextran 
[63]. It is conceivable that certain defensins may be able to strongly 

interact with the peptidoglycan layer, thus attenuating the subsequent 
membrane permeabilization. 

The ability of many cationic peptides to permeabilize model 
membranes correlates with their bactericidal activity, supporting 
the notion that membrane disruption is the killing mechanism [60]. 
However, for a number of cationic peptides, this correlation does 
not exist [64,65], and alternative mechanisms have been suggested 
[3,6]. These include membrane-independent mechanisms, where the 
antibacterial peptide exerts its function through intracellular targeting 
[3]. In fact, HNP1 has been shown to inhibit DNA, RNA and protein 
synthesis, as well as synthesis of periplasmic β-galactosidase in E. coli 
[66]. More recently, however, HNP1 was found to be non-membrane 
disruptive for both bacterial outer and cytoplasmic membrane [67]. 
A second alternative mechanism is the so-called carpet model of 
antimicrobial induced killing [3]. In this model, microbial membranes 
are disrupted by the formation of an extensive layer of peptide oriented 
parallel to the surface of the lipid bilayer. This model has not been 
extensively investigated in the case of defensins, however, given the 
extraordinarily high in vivo concentrations (mg/ml range) of HNP1-
3 in neutrophil granules, as well as HD-5 in luminal crypts, certainly 
merits consideration.

Three recent studies on further expand the role of α-defensins in 
antibacterial innate host defense. Two studies reported novel defense 
mechanisms of host cells in Mycobacterium infection. Mycobacterium 
tuberculosis is an intracellular pathogen that targets macrophages. 
Macrophages do not express defensins, however, were shown 
recently to acquire neutrophil granules from dying neutrophils as a 
cooperative defense mechanism to combat this intracellular pathogen 
[68]. Interestingly, eosinophils were shown to express and produce 
α-defensins in a mycobacterial infection model, expanding the 
defensin host cellular source beyond neutrophils and Paneth cells [69]. 
Importantly, HD-5 was recently shown to regulate the composition of 
the intestinal flora in mice, and as a result to influence the mucosal 
immunological response [70]. These findings suggest an important, 
active role for defensins under conditions of immune balance, in 
addition to their anti-infectious response. 

Antibacterial Activity of α-Defensins: Beyond the 
Microbial Membrane

Recently, the defensin spectrum of antibacterial activity has been 
widened significantly by the observation that defensins have the 
capacity to neutralize many secreted bacterial toxins. 

The ability of defensins to neutralize secreted bacterial factors 
was demonstrated first for S. aureus staphylokinase [71], which in 
combination with host plasminogen exerts fibrinolytic activity [72]. 
HNPs appeared to inhibit staphylokinase by binding to a region 
important for its binding to plasminogen (71). Close thereafter, toxin 
neutralization by HNPs was shown for the anthrax lethal toxin, as well 
as their ability to protect mice against fatal infection with B. anthracis 
lethal factor [73]. Anthrax lethal toxin is a binary complex of lethal 
factor and protective antigen, two proteins secreted by Bacillus anthracis 
[74]. Lethal factor is a Zn2+-dependent metalloprotease, which induces 
cell death in macrophages by cleaving essential cellular proteins. 
Defensins were shown to inhibit lethal factor in a non-competitive 
fashion, indicating that HNP1 binds to lethal factor away from its 
substrate binding site. In addition, HNP1 was shown to effectively 
kill germinating B. anthracis spores in neutrophils intracellularly 
[75]. Subsequently, HNP1-3 was shown to inhibit certain bacterial 
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ADP-ribosyltransferases, including diphtheria toxin and exotoxin 
A of Pseudomonas aeruginosa [76]. These toxin enzymes facilitate 
ADP-ribosylation of the host elongation factor 2, a modification 
that inhibits protein synthesis. Interestingly, HNP1-3 competitively 
inhibited against elongation factor 2, suggesting a different mode 
of inhibition to anthrax lethal factor [76]. Toxin B of Clostridium 
difficile was also reported to be inhibited by α-defensins [77]. Recently, 
neutrophil defensins were shown to protect erythrocytes against three 
cholesterol-dependent bacterial cytolysins, B. anthracis anthrolysin O, 
Listeria monocytogenes listerolysin O and Streptococcus pneumoniae 
pneumolysin, further expanding their role in toxin neutralization [78].

Role of Defensins in Adaptive Immunity: Receptor 
Studies

In recent years, studies on human defensins of both the α− and 
β-subfamilies have provided evidence for their role in innate and adaptive 
immune responses, expanding their role as mere antimicrobials [79]. 
Such functions include chemoattraction and immune cell activation 
and promotion of cell proliferation, often involving interactions with 
cellular receptors [18-21,80,81]. The capacity to chemoattractant 
monocytes was first described for Human Neutrophil peptides [81]. 
Subsequently, HNPs were shown to chemoattract different subsets of 
T lymphocytes and immature dendritic cells [82,83]. Similar functions 
were reported for β-defensins, which were shown to selectively 
chemoattract immature dendritic cells and memory T lymphocytes 
[19,84]. More recently, β-defensins were shown to act as endogenous 
ligands for Toll-like receptors on immature dendritic cells directly. 
This interaction mediated signaling for dendritic cell maturation and 
triggered a polarized immune response in vivo [18]. In the case of 
human β-defensin 2 (hBD2), the observed chemotaxis of immature 
dendritic cells and memory T cells was shown to result from directly 
binding the chemokine receptor CCR6 [19]. Subsequently, a murine 
β-defensin was shown to recruit tumor-infiltrating dendritic cell 
precursors through CCR6 also [85]. In contrast to these earlier studies, 
it was reported recently that β-defensins chemoattract mast cells and 
macrophages but not dendritic cells and lymphocytes, and that CCR6 
was not involved [86]. Members of the β-defensin family have been 
further shown to interact with Toll-Like Receptor 4 [18] and the 
melanocortin 1 receptor [87], causing black coat color in domestic 
dogs. Recently, the interaction between Human beta-defensin 6 and 
the chemokine receptor CCR2 was described in molecular detail [88].

Specific receptors for the chemotactic activity of α-defensins have 
not been identified. Several studies, however, have shown that also for 
α-defensins this activity is blocked by pertussis toxin, indicating the 
involvement of Giα-coupled receptors [83,89]. Interestingly, defensins 
and chemokines share common structural features, both having a 
three-stranded anti-parallel β-sheet structure stabilized by a disulfide 
core [90]. Many chemokines like defensins, are cationic and interact 
with their cognate receptors mostly via electrostatic attractions [91]. 
In addition, several chemokines have reported antibiotic properties 
[92,93], however, a possible reason for this functional overlap remains 
to be explained.

In addition to their chemoattractant properties, defensins anti-
viral capacity involves receptor-mediated interactions [15]. Here, we 
will briefly summarize defensin anti-HIV properties to illustrate some 
of the complexities defensin-viral-host cell interactions. As part of 
effective cervico-vaginal host defense, defensins act as key anti-HIV-1 
molecules [94,95]. The inhibition of HIV replication was first reported 

for synthetic rodent α-defensins [96], and more recently, anti-HIV 
activities have been described for human α- and β-defensins [63,97-
100]. To date, a plethora of distinct mechanisms of anti-HIV activity by 
defensins have been proposed, including direct interactions of defensins 
with the virus itself, as well as interactions of defensins with the host 
cell: (i) direct inactivation of HIV virions [101]; (ii) upregulation of 
chemokines [102]; (iii) downregulation of HIV co-receptors [103]; 
(iv) downregulation of CD4, a primary receptor for HIV [104]; (v) 
modulate protein kinase C signaling and viral replication [101]; (vi) 
inhibition of CD4-GP120 interactions [104]; (vii) inhibition of gp41-
membrane fusion [105], and (viii) receptor-mediated induction of 
the HIV restriction factor APOBEC3g [106]. In contrast to these 
studies, it was reported recently that certain α-defensins enhance HIV 
infection via as yet unknown mechanisms [107,108], only adding to 
the complexity. This could be partly explained by the observation that 
defensins induce cell death of CD4+ T cells in the absence of serum 
[109]. Intriguingly, it was reported recently that HNP-1 potentiates 
HIV-1 anti-GP41 antibodies at sub-inhibitory concentrations, even in 
the presence of serum [110].

Small as they are, human defensins are versatile effectors of 
immunity beyond their antimicrobial capacity. Primarily, they protect 
the host against microbial challenge. In doing so, defensins have 
evolved to combat a surprisingly diverse range of microorganisms, 
ranging from many bacterial species [12], enveloped and non-
enveloped viruses [15], and even certain protozoa [17]. The recent 
discovery of their capacity for neutralization of bacterial toxins only 
adds to their antibacterial versatility [111]. Defensins, in addition, 
seem to be important modulators of immunity. This is exemplified 
by their capacity to chemoattract and/or activate various immune 
cells, including monocytes, dendritic cells, macrophages and subsets 
of T lymphocytes [19,20,81,83,86]. This functional versatility may 
be explained in part by their promiscuity for binding to different 
molecular partners. Defensins reportedly interact with bacterial toxins 
[111], viral proteins [15], and a variety of host cellular receptors and 
proteins [112]. They also bind carbohydrates, nucleic acids, lipids and 
even self-associate, adding another layer of complexity [113]. In spite 
of immense progress in our understanding of defensin functional 
versatility, exactly how these peptides act at the molecular level remains 
not well defined, underscoring the notion that defensins are more than 
nature’s anti-bug spray.

Conclusion
A great challenge to defensin research lies in their intrinsic 

promiscuity, described above. Our understanding of the functional 
ramifications of this promiscuity will be of key importance. 
Nevertheless, based on our current knowledge, it seems clear that 
a “one-fits-all”-model for any individual function of defensins may 
not hold. In the case of bacterial killing, for example, strain-selective 
killing has been reported for α- and β-defensins. However, individual 
α-defensins use seemingly different mechanisms against Gram-
positive and Gram-negative strains. Thus, the bactericidal activity 
and membrane disintegration by defensins is more complex than 
previously believed, and may involve specific interactions with as yet 
unidentified cellular components. Breakthroughs in this field will 
provide critical insights into turning defensins into next-generation 
peptide antibiotics. Bacterial toxin neutralization, in particular, holds 
great promise, however, even more than for the bactericidal activity, 
will depend on detailed studies on individual toxins and defensins. 
Combined, we believe that studies in the foreseeable future in these 
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particular areas will facilitate the rational development of natural, 
defensin-based compounds into novel, next generation therapeutic 
agents for the treatment of pathogenic bacterial infections.
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