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Introduction
Indeed, cancer remains a major cause of death in both developing 

and developed countries; see the statistics of Health World 
Organization (WHO) [1]. The term cancer represents numerous 
diseases that can affect any part of the body. It can similarly be referred 
to as malignant tumours and neoplasms. The unique procedure that 
cancer cells adopt includes their ability to multiply rapidly, exceeding 
their normal boundaries, and accordingly invading the adjacent organs 
and spreading the disease. Cancer is the most challenging disease to 
treat, although great research effort dedicated to revealing the relation 
between the tumour cells and immune system. The desired outcome 
from cancer treatment should be destruction of all cancer cells in 
the body, while maintaining the minimum level of healthy cells. 
Chemotherapy is one of the most highly adopted cancer treatment 
modalities, however, it was proved to be not the most convenient 
solution for tumour regression [2,3]. Progress is currently being 
made in attempting to eliminate tumour cells in the host by using an 
experimental form of immunotherapy [4,5].

Immune system (IS) is responsible for monitoring substances that 
be normally present the body. Any new substance in the body that 
the IS does not recognize raises an alarm, causing the IS to attack it. 
Substances that cause the IS response are called antigen1. Cancer cells 
are different from normal cells in the body and usually have unusual 
substances on their outer surfaces that can act as antigens. However, 
cancer cells look very much like normal cells and are tricky, as they 
put almost a cape over themselves so that the IS cannot recognize the 
cancer cell [6].

The immunity (or defence against pathogens or cancer cells) has 
basically two categories: innate immunity and adaptive immunity [7]. 
The innate immune system represents a nonspecific (no memory) 
response to substance to which the body regards as foreign or 
potentially harmful. The innate system represents the first line of 
defence and quickly response to certain general signs of infection so 
that is unable to memorise the same pathogen should the body be 
exposed to it in the future. In most cases, the innate immunity can 
suffice to clear pathogens, but sometimes it is insufficient. In fact, 
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Abstract
Herein, we present a mathematical model of tumour-immune interactions in presence of chemotherapy 

treatment. The model is governed by a system of delay differential equations with optimal control variables. A 
discrete time-delay is considered to justify the time-needed for the effector cells to develop a suitable response to 
the tumour cells. The control variables are included to justify the best treatment strategy with minimum side effects 
by reducing the production of new tumour cells and keeping the number of normal cells above the average of its 
carrying capacity. The numerical simulations show that the optimal treatment strategy reduces the load of tumour 
cells increases the effector cells after few days of therapy.

pathogens possess ways to overcome the innate barrier and successfully 
canalize the host. The adaptive immunity is, however, very specific, it is 
called into action against pathogens that can evade or overcome innate 
immune defences. This takes time to develop, but the adaptive immune 
system ’remembers’ antigens that it has previously encountered and 
responds immediately the next time they try to infect. There are two 
types of adaptive immune responses: humoral immunity, mediated by 
antibodies produced by B lymphocytes, and cell-mediated immunity, 
mediated by T-lymphocytes [8]. In fact, the innate immune response 
develops first and occurs on the order of minutes or hours; While 
adaptive immunity follows, innate and occurs on order of days or 
weeks. Each has inherit time-delay τ in their developments [9].

The interactions between tumour cells and immune system are very 
complex and need sophisticated models to describe such interactions 
[10]. Mathematical models, based on ordinary differential equations, 
delay differential equations, partial differential equations, have proven 
to be useful tools in analysing and understanding the IS interactions 
with viral, bacterial infections and cancerous cells. Several mathematical 
models have been suggested to describe the interactions of tumour and 
immune system over time (see e.g. the research papers [11-15]). Most 
of these papers describe the interactions between tumour cells and 
immune cells, tumour cells and normal cells alone [16], or consider 
the interactions of tumour-immune system with chemotherapy 
treatment [2,3]. In this paper, we provide a mathematical model of 
tumour-immune interactions in presence of chemotherapy treatment 
and optimal control variables. The control variables are incorporated 
to justify the best strategy of treatment and minimize side effects of 
the external treatment by reducing the production of new tumour 
cells, while keeping the number of normal cells above the average of its 
carrying capacity.

1Antigens may be contained within or on bacteria, viruses, other microorganisms, 
or cancer cells.



Citation: Rihan FA, Rihan NF (2016) Dynamics of Cancer-Immune System with External Treatment and Optimal Control. J Cancer Sci Ther 8: 257-
261. doi: 10.4172/1948-5956.1000423

J Cancer Sci Ther, an open access journal 
ISSN: 1948-5956 Volume 8(9) 257-261 (2016) - 258 

Boundedness and Non-Negativity of the Model 
Solutions

To show that the solutions of model (2) are bounded and remain 
non-negative in the domain of its application for sufficiently large 
values of time t, we recall the following Lemma:

Lemma 1 

(Gronwall’s Lemma [19]) Let x, ψ and χ be real continuous 
functions defined in [a,b], χ ≥ 0 for t ∈ [a,b]. We suppose that on [a,b] 
we have the inequality

( ) ( ) ( ) ( ) .
t
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x t t s x s dsψ χ≤ + ∫
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Therefore, we arrive at the following Proposition:

Proposition 1

Let (E(t), T (t)) be a solution of system (2), then E(t) < M1 and T (t) 
< M2 for all sufficiently large time t, where
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For the proof, we refer to [9].

Corollary 1

If  ,
T

ρ µ
η

≥
+

 then the solutions (E,T) for model (2) are non-negative 

for any non-negative initial condition. However, if ,
T

ρ µ
η

<
+

 then 

there exist non-negative initial conditions such that E(t) becomes 
negative in a finite time interval.

Model with Chemotherapy and Control
To include external chemotherapy in model (2), we should 

consider extra two variables namely amount of chemotherapy u(t) and 
normal cells N (t) with two control variables v(t) and w(t) (Figure 1). 
We assume the homogeneity of the tumour cells, then the model takes 
the form
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The drug kills all types of cells, with different killing rate for each 
type of cells: ( ) (1 )u

i iF u a e−= −  is the fraction cell kill for a given amount 
of drug, u(t), at the tumour site. The parameters a1, a2, and a3 are the 
three different response coefficients. v(t) represents the amount of dose 
that is injected into the system, while d1 is the decay rate of the drug 
once it is injected. In this case, the quantity we will control directly 

Mathematical Models
We first present a simple model that describes the dynamics of 

tumour cells, T(t), and activated effector cells, E(t), such as cytotoxic 
T-cells, macrophages, and natural killer cells that are cytotoxic to the 
tumour cells. We adopt a predator prey formulation of the tumour 
immunity problem as a battle between immune cells and tumour cells 
(predators and prey, respectively). The model takes the form
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                                       (1)

with initial conditions: E(0) = E0, T (0) = T0. Of course, the 
interaction between the effector and tumour cells leads to a reduction in 
the size of both populations with different rates, which are expressed by 
-µE(t)T(t) and -nE(t)T(t), respectively. Because of this interaction, the 
immune effector cells decrease the population of tumour cells at rate 
n. While, tumour cells infect some of the effector cells and therefore, 
the population of uninfected effector cells decreases at the rate µ. If one 
considers T(t) as prey and E(t) as predator, then F(E,T) is assumed to 
be Michaelis-Menton form, so that

( ) ( )( , )
( )

E t T tE T
T t

ρ
η

=
+



 
In this term, ρ is the maximum immune response rate and η is 

the steepness of immune response. The presence of the tumour cells 
virtually initiates the proliferation of tumour-specific effector cells 
to reach a saturation level parallel with the increase in the tumour 
populations. Hence, the recruitment function should be zero in the 
absence of the tumour cells, whereas it should increase monotonically 
towards a horizontal asymptote [17]. Here σ represents the normal 
rate (not increased by the presence of the tumour) of the flow of adult 
effector cells into the tumour side (region). The source of the immune 
cells is outside of the system, so it is reasonable to assume a constant 
influx rate σ. Furthermore, in the absence of any tumour, the cells will 
die at a rate δ.

To make the mathematical model closer to the reality, one can 
incorporate a discrete time-lag τ in the model (1) to justify the time 
required to stimulate the effector cells and develop a suitable response 
to the tumour cells, after recognizing the tumour cells. The new model 
with discrete time-lag takes the form

2
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This model is called delay differential equations (DDEs), in which 
we must provide initial functions:

E(t) = ψ1(t) and E(t) = ψ2(t) for all t ∈ [-τ, 0], instead of initial 
values. In model (2), the presence of tumour cells stimulates the 
immune response, represented by the positive nonlinear growth term 
for the immune cells ρE(t-τ )T (t-τ )/(η +T (t-τ )). ρ and η are positive 
constants, τ ≥ 0 is the time delay that presents the time needed by 
the immune system to develop a suitable response after recognizing 
the tumour cells. The saturation term (Michaelis-Menton form) with 
the E(t) compartment and logistic term with the T(t) compartment 
are consoled. The presence of the tumour cells virtually initiates the 
proliferation of tumour-specific effector cells to reach a saturation level 
parallel with the increase in the tumour populations. Of course, the 
solution of DDEs model (2) should be bounded and nonnegative [18].
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is not u(t), but v(t). The tumour cells and normal cells are modelled 
by a logistic growth law, with parameters ri representing the growth 
rate of two types of cells: i=2 identifies the parameter associated with 
tumour, and i=3 identifies the one associated with the normal tissue. β1 
and β2 are the reciprocal carrying capacities of tumour cells and host 
cells respectively. The two terms -c1N(t)T (t) and -c2N (t)T(t) represent 
the competition between the tumour and host cells.

Let C = C([−τ, 0], R4) be the Banach space of continuous functions 
mapping the interval [-τ, 0] into R4 with the topology of uniform 
convergence. It is easy to show that there exists a unique solution (E(t), 
T (t), N (t), u(t)) of system (3) with initial data (E0, T0, N0, u0) ∈ C. For 
biological reasons, we assume that the initial data of system (3) satisfy 
E0 ≥ 0, T0 ≥ 0, N0 ≥ 0, u0 ≥ 0. For τ=0, the model is reduced to ODEs 
model developed by de Pillis and Radunskaya in [20].

The main objective in developing chemotherapy treatment, in 
system (3), is to reach either tumour-free steady state or coexisting 
steady state in which the tumour cells’ size is small, while the normal 
cells’ size is closed to its normalized carrying capacity. To keep the 
patient healthy while killing the tumour, our control problem consists 
of determining the variables v(t) and w(t) that will maximize the 
amount of effector cells and minimize the number of tumour cells. We 
use cost functional of the control with a constraint that to keep normal 
cells above the average of its capacity. Therefore, our objective is to 
maximize the functional ([9]).

2 2

,
0

max ( , ) ( ) ( ) [ ( )] [ ( )] ,
2 2

ft
v w

v w

B B
J v w E t T t v t w t dt

  = − − +    
∫             (4)

Where Bu, Bw are, respectively, the weight factors that describe the 
patient’s acceptance level of chemotherapy and immunotherapy with 
a constraint

( , , , , , , ) 0.75 0,k E T N u E T v N= − ≥t t 0 .ft t≤ ≤                          (5) 

We are seeking optimal control pair (v∗, w∗) such that

{ }* *( , ) max ( , ) : ( , ) ,J v w J v w v w W= ∈                                                                                   (6)

where W is, the control set defined by

{( , ) : ( , )W v w v w=  piecewise continuous, such that 

max max0 ( ) ,;0 ( ) , [0, t ]}.fv t v w t w t≤ ≤ < ∞ ≤ ≤ < ∞ ∈"             (7)

The existence of optimal controls v∗(t) and w∗(t) for this model 
is guaranteed by standard results in optimal control theory [21]. 
Necessary conditions that the controls must satisfy are derived via 
Pontryagins Maximum Principle [22]. The optimal control problem 
given by expressions (3)-(7) is equivalent to that of minimizing the 
Hamiltonian (See the Appendix):
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A standard application of Pontryagins Maximum Principle leads to 
the following result:

Theorem 1: There exists an optimal pair v*(t) and w*(t) and 
corresponding solutions E*, T*, N* and u* and that minimizes J(u(t), 
w(t)) over Ω. The explicit optimal controls are connected to the 
existence of continuous specific functions λi for i = 1, 2, 3, 4 satisfying 
the adjoin system

*

*

* *
1 1 1 2 1 [0, ] *

* * *
2 2 2 2 1 1 2

* * *
* *

3 2 [0, ] 1 * 2 *

3 2

*( ) 1 ( ) (1 ) ( ) ( ) ,

( ) 1 2 (1 )

              ( ) ,
( T )

( )

f

f

u
t

u

t

Tt t a e t nT t T
T

t r r T nE c N a e

E T Ec N t T E
T

t c

ρλ λ δ λ λ χ µ
η

λ λ β

ρ ρλ χ λ µ
η η

λ λ

−
−

−

−

  = − + + − + + + −   + 
 = + − + + + + − + 

 
+ + − + + + 

=

¢
t

¢

t

¢

t

( )*

* * *

* * *
1 3 3 3 2 2 3

* * *
4 1 1 2 2 3 3 4 1

2 (1 ) ,

( ) ( ) ( ) ( ) ( ) ,

u

u u u

T r r N c T a e

t t a e E t a e T t a e N t d

λ β

λ λ λ λ λ

−

− − −

− − − − − −

= − + + +¢

g

 (9)

with transversality conditions

( ) 0,i ftλ =  i = {1, 2, 3, 4} and
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f
tχ −
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Furthermore, the following properties hold
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(See the Delay Models with Optimal Control)

Discussion and Conclusion
In this paper, we provided a mathematical model with memory 

(time-delay) and optimal control variables to describe the dynamics of 
tumour-immune interactions in presence of chemotherapy treatments. 
The time-delay has been considered to describe the time needed by 
the immune system to launch a suitable response after recognizing 
the non-self-cells or foreign bodies. The numerical approximations 
of the optimal control problem are carried out using forward and 
backward Euler’s methods. Starting with an initial guess for the value 
of the controls on the time interval [0, tf], we solve the state system 

Figure 1: Schematic diagram of interaction of tumour cells, immune cells, and normal cells in the presence of chemotherapy treatment.
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with control variables (3) using forward Euler’s scheme. While, the 
adjoint system is solved using the solutions of the state system and 
the transversality conditions (9) backward in time. A Pontryagin-type 
maximum principle is derived, for optimal control problems with 
time-lag in the state variable. The control system is subject to a mixed 
control-state constraint to minimize the cost of treatment, reduce the 
tumour cells load, and keep the number of normal cells above 75% of 
its carrying capacity.

Figure 2 shows the impact of chemotherapy treatments (with 
optimal control) when we choose the parameter values in an unstable 
region (σ =0.2, ρ =0.2, and τ =1.5). The tumour cell population is 
growing up over time in the absence of chemotherapy, while the 
presence of treatment helps the immune system to keep the growth of 
the tumour cells under its control.

The Figure shows that the tumour cells can be eradicated at day 10. 
The numerical simulations show the rationality of the model presented, 
which in some degree meets the natural facts.

The theoretical results presented in this paper convey a general 
insight to biologists and can help to gain better understanding of 
interaction mechanisms of tumour-immune system. They can be used 
to evaluate control strategies and applied for real cases in the future 
research work.

Delay Models with Optimal Control
Mathematical modelling with delay differential equations 

(DDEs) is widely used for analysis and predictions in epidemiology, 
immunology, physiology [23-27]. The time delays in these models 
consider a dependence of the present state of the modelled system on 
its history. In life, things are rarely so instantaneous; There is usually 
a propagation delay before the effects are felt. This situation can be 
modelled using a DDE.

1 2( ) ( ( ), y(t ), ( ),..., ( ), ),dy t f y t y t y t t= − − −¢ t t t 0t t≥     (12)

where all the time-lags, τi, are assumed to be none negative 
functions of the current time t. Because of these delay terms it is no 
longer sufficient to supply an initial value, at time t=t0, to completely 
define the problem. Instead, it is necessary to define the history of the 
state vector, y(t), sufficiently far enough back in time from t0 to ensure 
that all the delayed state terms,

y(t − τi), are always well defined. Thus, it is necessary to supply an 
initial state profile of the form:

( ) ( ),y t tψ=  0 max 0 ,t t t− ≤ <t  and 0 0( )y t y= .                       (13)

It should be noted that ψ(t0-) need not be the same as y0. This 
immediately introduces the possibility of a discontinuity in the state, 
y(t).

We mention here that there are many problems in biosciences 
(such as epidemics, harvesting, chemostat, treatment of diseases, 
physiological control, vaccination) which can be addressed within an 
optimal control framework for systems of DDEs [28-30]. However, the 
amount of real experience that exists with optimal control problems 
(OCPs) is still small. The DDE (12) can be converted into an optimal 
control problem by adding an m-dimensional control term u(t)

1 2( ) ( ( ), ( ), ( ),..., ( ), ( ), )dy t f y t y t y t y t u t t= − − −¢ t t t         (14)

and a suitable objective functional (measure): J0(u)

Maximize

0 0 1 2
0

(u) ( (T)) ( ( ), ( ), ( ),..., ( ), ( ), ) ,
ft

dJ y y t y t y t y t u t t dt= Φ + − − −∫ t t t    (15)

and subject to control constraint a ≤ u(t) ≤ b, and state constant 
y(t) ≤ c, where a and b are the lower and upper bounds. The integrand, 
L(:) is called the Lagrangian of objective functional which is continuous 
in [0,tf]. Additional equality or inequality constraint(s) can be imposed 
in terms of Ji(u). 

Figure 2: Numerical simulations of populations of the tumour cells and effector cells of system (3), before and after the chemotherapy treatment with controls v(t) and 
w(t). It shows that the tumour cells population can be eradicated in day 10.



Citation: Rihan FA, Rihan NF (2016) Dynamics of Cancer-Immune System with External Treatment and Optimal Control. J Cancer Sci Ther 8: 257-
261. doi: 10.4172/1948-5956.1000423

J Cancer Sci Ther, an open access journal 
ISSN: 1948-5956 Volume 8(9) 257-261 (2016) - 261 

Pontryagin’s Maximum Principle [22] gives necessary conditions 
that the control and the state need to satisfy, and introduces an adjoint 
function to affix to the differential equation to the objective functional. 
The necessary conditions needed to solve the optimal control problem 
are derived from the so called ’Hamiltonian’ H which is given by the 
equation

( ) (:) ( ) (:).Tt t fλ= +  (16)

Here, λT (t) is a vector of costate variables of the state variables y(t), 
which is the solution of the equation

[0, ]( ) ( ) ( )
( ) ( )ftt t t

y t y t
λ χ −

∂ ∂
= − − +

∂ ∂ −
 ¢

t t
t

 (Adjoin equation)    (17)

Where

[0, ]

1    if  t [0,t ],

0    otherwise.f

f
tχ −

∈ −= 


t

t

Given the nonlinear Hamiltonian (16) in the controls v and w, 
the process of solving the optimal control problem is to solve the state 
system (14) together with the adjoint equation (17) and the following 
conditions:

( ) ( ) 0t t
v w

∂ ∂
= =

∂ ∂
   (Optimality conditions)

( ) 0.T
ftλ =  (Transversality conditions)          (18)
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