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Introduction
Sweetpotato, Ipomoea batatas (L.) Lam., which is a member of the 

family Convolvulaceae, is an important perennial crop. It ranks seventh 
in annual production among the food crops in the world. Its edible 
storage roots are not only a good source of energy due to carbohydrate 
content, but also used for starch and alcohol production [1-3]. It is 
mainly grown in the semi-arid tropical regions of Africa and Asia, 
for its edible tuberous roots, which are high in starch and vitamins, 
predominantly by small scale farming households operating at the 
margins of subsistence [4,5]. It is easily cultivated, has high production 
per unit area under both high and low input systems and requires fewer 
nutrients from the soil compared to most other starchy root and tuber 
crops [6]. 

Despite its many benefits, performance of sweetpotato yield (storage 
roots) is restricted to particular areas of the world due to agronomic 
practices and a number of unfavourable biotic and abiotic stresses 
such as viruses, fungi and nematodes and drought [6-8]. Almost all 
economically important traits including yield and yield components 
exhibit polygenic or quantitative inheritance [9]. The expression of 
quantitative traits is largely governed by environment in which they are 
exposed and thus, results into scale or rank shift of their performance [9-
12]. Environment is defined as location × year combination. Year to year 
environmental variation is more unpredictable than location per se [10]. 
The complex genome of sweetpotato complicates environmental effects 
on selection of superior performing stable sweetpotato genotype across 
locations. Therefore, conventional breeding of sweetpotato is limited 
by the plant’s complicated hexaploidy along with low seed production 
as a consequence of compatibility, sterility and special physiological 
requirements for flowering [12-14]. To overcome these limitations, 

efficient in vitro tissue culture and genetic engineering techniques 
are important biotechnological tools that can be used to complement 
breeding programmes for sweetpotato production. The success of 
plant regeneration, especially through somatic embryogenesis, relies 
primarily on synchronized production, maturation and conversion of 
embryos into plants [15]. Somatic embryogenesis therefore represents 
a promising tool of plant regeneration because embryogenic callus can 
be maintained for a long time and provides high multiplication rates 
[16,17].

Sweetpotato has long been considered recalcitrant in tissue culture 
particularly African sweetpotato cultivars [18,19]. Nevertheless, variety 
of protocols for sweetpotato regeneration and transformation of 
diverse sweetpotato cultivars have been been reported using different 
explants such as stems, petioles, leaves, storage roots, protoplasts and 
meristems. However, the low rate of embryo initiation, maturation, 
germination, and development into plantlets often remain a major 
challenge [20-29]. An efficient and practicable regeneration method 
of sweetpotato is still needed to meet the requirements of an effective 
genetic improvement of this crop. A high degree of genotype-
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Abstract
Sweetpotato is an important food crop in the world as well as in Kenya. Various fungal and viral diseases 

are major constraints in its production and are currently threatening the sweetpotato production in sub-Saharan 
Africa. Genetic engineering offers significant potential for the crop’s genetic improvement. However, this is limited 
by the low efficiency and strong genotype dependency in tissue culture. This study aimed to establish an efficient 
somatic embryogenesis and plant regeneration system using shoot apical meristem explants of sweetpotato. 
Three sweetpotato cultivars that are widely grown in Kenya; KSP36, Kemb36 and Mweu mutheke along with 
an exotic model cultivar Jewel were evaluated. The maximum somatic embryogenic induction, at 96.72%, was 
obtained from explants cultured on Linsmaier and Skoog salts and vitamins medium supplemented with 0.5 mg/l 
dichlorophenoxyacetic acid and 0.2 mg/l zeatin riboside. The highest number of shoot induction (33) was observed 
after transfer of embryonic callus to embryo maturation medium supplemented with 2 mg/l abscisic acid. Significant 
differences were observed between cultivars for somatic embryogenesis and plant regeneration. Jewel showed 
the best response, while Mweu mutheke was the least responsive under the culture conditions tested in this study. 
Regenerated plants were successfully rooted and grown to maturity after hardening in soil in the greenhouse. Such 
a robust, successful and efficient system possesses the potential to become an important tool for crop improvement 
and functional studies of genes in sweetpotato.
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dependent variation in embryogenic capacity has been witnessed, and 
remains a major impediment for developing transgenic sweetpotatoes 
[30-32]. To overcome these obstacles, a novel or modified somatic 
embryogenesis regeneration procedures must be established for each 
desirable cultivar, because of the significant variability in response to 
auxins and cytokinins combinations [33]. For these reasons, it is often 
important to develop a regeneration protocol that can either be used 
for specific or general sweetpotato cultivars. The present work reports 
a robust and reliable procedure for the establishment of an efficient 
and reproducible regeneration system via somatic embryogenesis for 
Kenyan sweetpotato cultivars using meristematic explants. 

Materials and Methods
Plant material

Three farmer preferred Kenyan sweetpotato cultivars namely; 
KSP36, Kemb36, Mweu mutheke were used in this study. These cultivars 
were obtained from Kenya Agricultural and Livestock Research 
Organization gene bank at Muguga based on their wide adaptation 
in Kenya, high dry matter content and moderate to high resistance 
to sweetpotato virus diseases. Jewel (provided by the International 
Potato Centre, Nairobi), an America cultivar, which regenerates 
through embryogenesis and organogenesis [30,34] was included as 
the control. The selected cultivars were grown in a greenhouse at Plant 
Transformation Laboratory (PTL) at Kenyatta University, Nairobi. 
These stock plants were used to supply vines for initiation of in vitro 
cultures.

In vitro culture initiation

Stems containing the shoot apex and 2 to 3 lateral buds were collected 
from plants grown in greenhouse. All branches and leaves were cut off 
and the vines were thoroughly washed in running tap water to remove 
dirt. The vines were surface sterilized with solution containing 50% v/v 
commercial JIK (Reckitt Benckiser, Nairobi, Kenya) and 0.01% v/v of 
Tween 20 (Sigma-Aldrich, St. Louis, USA) for 20 min. After surface 
sterilization, the vines were transferred to sterile water and rinsed 
three times. Apical meristems were carefully excised from the vines 
and placed onto sweetpotato propagation medium (SPM) in 70 mm 
diameter glass culture bottles. The culture medium was made by mixing 
Linsmaier and Skoog (1965) salts and vitamins (LS) supplemented with 
30 g/l sucrose and the pH of the medium was adjusted to 5.8 before 8 
g/l agar was added followed by autoclaving at 121ºC for 15 min under 
15 kPa. In vitro sweetpotato plants were grown at a temperature of 27 
± 1ºC, 16/8 h (light/dark) photoperiod provided by white fluorescent 
lamps and 70% relative humidity. The in vitro plants were subcultured 
by cultivating node sections on a monthly basis and the sterile plants 
were used as the source of the explants for somatic embryogenesis.

Callus induction

Stem sections from three to four week old in vitro stock plants were 
transversely cut into 6-10 mm sections. These sections were then cut in 
half along the axis and used as explants for callus induction. For callus 
induction, the explants were transferred onto callus induction medium 
(CIM), keeping the cut surface in contact with the medium containing 
LS salts and vitamins supplemented with 30 g/l sucrose, 8 g/l agar, 0.5 
mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) for 5-6 days in growth 
room at a temperature of 27 ± 1ºC, 16/8 h (light/dark) photoperiod 
provided by white fluorescent lamps and 70% relative humidity. After 
5-6 days on CIM, the explants were transferred to medium that contains 
LS salts and vitamins supplemented with 30 g/l sucrose, 0.2 mg/l zeatin 
riboside (ZR) and 8 g/l agar (CPM) to promote the formation of callus. 

The explants were subcultured to a fresh media after every two weeks 
until they became yellowish.

Somatic embryo development and plant regeneration

After 4 weeks, calli that formed were transferred onto embryo 
induction medium (EIM) containing LS salts and vitamins, 30 g/l 
sucrose, 0.5 mg/l 2,4-D, 0.1 mg/l gibberellic acid (GA3) and 8 g/l agar. 
The calli were subcultured onto fresh EIM medium after every two 
weeks until differentiation into embryo-like structures were observed. 
These embryos were then transferred to embryo maturation medium 
(EMM) containing LS salts and vitamins, 30 g/l sucrose, 2 mg/l abscisic 
acid (ABA) and 8 g/l agar. The regenerated shoots were transferred to 
SP propagation medium and maintained at a temperature of 27 ± 1ºC, 
16/8 h (light/dark) photoperiod provided by white fluorescent lamps 
and 70% relative humidity. Regeneration frequencies were recorded 
after four weeks in culture.

Data analysis

Data on effects of cultivar on germination on LS medium, effects of 
2,4-D and ZR on callus induction, effects of 2,4-D and GA3 on somatic 
embryogenesis and germination and regeneration frequencies were 
analysed using ANOVA with Minitab statistical computer software 
v.17 (Minitab Inc., Pennsylvania, U.S.A). Means were separated using 
Tukey’s Honest Significant Difference test at a confidence level of 95% 
(p ≤ 0.05).

Results
In vitro culture initiation

In vitro culture stocks of Jewel, Kemb36, KSP36 and Mweu mutheke 
cultivars were established using apical shoot meristem culture. It was 
possible to establish in vitro plants of all selected cultivars using the 
LS medium, albeit with different efficiencies. Kemb36 exhibited the 
highest plant formation frequency of 92.09% followed by Mweu 
mutheke and KSP36 with plant formation frequencies of 86.67% and 
83.09%, respectively. Jewel had the least plant formation frequency of 
68.27% (Table 1). There was significant difference between Jewel and 
Kemb36 in terms of plant regeneration efficiency on LS medium (Table 
1, p<0.05). However, for cultivars Kemb36, KSP36 and Mweu mutheke, 
there was no significant difference, in terms of plant regeneration 
efficiency in LS medium (Table 1, p>0.05). All plants formed from 
apical meristems exhibited normal phenotype.

Callus induction

All the sweetpotato cultivars in the media supplemented with 2,4-D 
and ZR. For callus induction I and II, Jewel, Kemb36, KSP36 and Mweu 
mutheke on CIM and CPM media produced 48.00, 49.00, 50.33 and 
58.33 average calli, respectively. There was no significant difference in 

Cultivar No. of meristems No. of plants 
regeneratedx 

Regeneration 
efficiencyy 

Jewel 58 13.33 ± 4.16a 68.27 ± 6.08a

Kemb36 57 17.33 ± 0.58a 92.09 ± 9.32b

KSP36 51 14.00 ± 4.36a 83.09 ± 8.34ab

Mweu mutheke 47 13.67 ± 4.04a 86.67 ± 3.33ab

All meristems were cultured in SPM. xMean ± standard deviation. Means are from 
three replicates. yRegeneration efficiencies were calculated as the percentage 
number of apical meristems that regenerated into plants from the total number 
of starting apical meristems. Values followed by different letters in the same 
column are significantly different (p<0.05) according to Tukey’s Honest Significant 
Difference test

Table 1: Sweetpotato cultivar variation on in vitro culture initiation.
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callus induction response in the medium supplemented with 2,4-D and 
ZR among the sweetpotato cultivars (Table 2). Callus induction began 
as swollen regions at the cut ends of the explants. The non-embryogenic 
and pro-embryonic masses with tightly packed isodiametric cells 
developed from the stem explants or calli are presented in Figures 1A 
and 1B, respectively.

Somatic embryo development and plant regeneration

Four months after the transfer of calli onto the EIM, somatic 
embryogenic structures developed. All sweetpotato cultivars produced 
somatic embryos on embryogenic calli formed. Jewel and KSP36 were 
the best responding cultivars with regards to somatic embryogenesis on 
EIM (p<0.05, Table 3) with embryogenic calli formation frequencies 
of 96.72% and 89.56, respectively while Kemb36 and Mweu mutheke 
produced the lowest somatic embryos with embryogenic calli formation 
frequencies of 76.63 % and 60.86%, respectively (Table 3). Jewel and 
KSP36 showed no significant difference in somatic embryogenic callus 
formation frequency (p>0.05, Table 3). However, there was significant 
difference in somatic embryogenic callus formation frequency between 

Kemb36 and Mweu mutheke (p<0.05, Table 3). Callus from Jewel 
explants grew better and turned yellow faster compared to calli from 
KSP36 explants. The growth and somatic embryogenic response of calli 
from Kemb36 and Mweu mutheke was the least. Somatic embryogenesis 
began at swollen regions at the cut ends giving rise to three different 
types of calli: non-embryogenic calli (Figure 1A), embryogenic calli 
(Figure 1B) and some with embryogenic and non-embryogenic sections 
on the same callus.

The greenish compact, and slow growing calli that developed 
organized structures and eventually exhibited tissue differentiation 
were regarded as embryogenic (Figure 1C), in contrast to the non-
embryogenic calli that were white or cream, friable and fast growing. 
After 4-5 weeks on EIM medium, some calli of the sweetpotato 
cultivars turned green and formed globular, heart, torpedo and 
cotyledonary stages of embryos which appeared successively. Although 
somatic embryogenesis callus formation frequencies were significantly 
high across all the cultivars, the regeneration frequencies were modest 
ranging from 22.94% for Mweu mutheke to 71.22% for Jewel (Table 3).
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Figure 1: Sweetpotato tissue culture regeneration profile via somatic embryogenesis. A. white friable non-embryogenic callus; B and C. Greening of embryogenic calli 
and shoot development on EIM; D. Regenerating tissue on EMM. Callus; E. Regenerated plant on SPM; F. Mature plant in greenhouse.

Cultivar No. of Explants Callus induction Ix Callus induction IIx 
Jewel 144 48.00 ± 10.54a 48.00 ± 10.54a

Kemb36 147 49.00 ± 8.19a 49.00 ± 8.19a

KSP36 151 50.33 ± 13.58a 50.33 ± 13.58a

Mweu mutheke 175 58.33 ± 11.93a 58.33 ± 11.93a

xValues indicate the average numbers of calli per explant cultured on CIM and CPM media (Mean  ±  standard deviation). Means are from three replicates. Values followed 
by same letter in the same column are not significantly different (p>0.05) according to Tukey’s Honest Significant Difference test

Table 2: Effects of 2,4-D and ZR on callus induction on sweetpotato cultivars.

Cultivar Initial No. of Explant No. of embryogenic callix Embryogenic calli 
regeneration frequencyy

No. of shoots 
regeneratedz Regeneration frequencyz

Jewel 144 46.33 ± 9.50a 96.72 ± 1.58c 33.33 ± 10.21c 71.22 ± 8.70c

Kemb36 147 37.33 ± 5.13a 76.63 ± 5.96b 15.33 ± 0.58ab 41.44 ± 4.13b

KSP36 151 45.00 ± 12.00a 89.56 ± 2.69c 29.00 ± 8.89bc 64.29 ± 5.71c

Mweu mutheke 175 35.67 ± 8.39a 60.86 ± 3.41a 8.00 ± 1.73a 22.94 ± 4.88a

xThe values (Mean ± standard deviation) indicate the average numbers of calli cultured on EIM media. yEmbryogenic calli formation efficiency was calculated as the 
percentage number of meristems that formed embryogenic calli from the total number of starting meristems. zRegeneration frequency was calculated as the percentage 
number of embryogenic calli that regenerated shoots from the total number of starting embryogenic calli. Values followed by same letter in the same column are not 
significantly different (p>0.05) according to Tukey’s Honest Significant Difference test

Table 3: Somatic embryogenesis and regeneration of different sweetpotato cultivars.
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Embryonic structures developed after 4 months of culture and 
mature somatic embryos that were formed were transferred onto embryo 
maturation medium (EMM) supplemented with 2 mg/l abscisic acid 
medium. After two months on EMM medium, shoot-like structures 
emerged from the callus (Figure 1D). A few of the calli differentiated to 
form embryonic structures and a fewer embryos ultimately produced 
plants. After approximately 8 weeks, shoots that initially had an unusual 
appearance (thickened) reverted to a normal phenotype, and were 
transferred onto SPM for plant propagation (Figure 1E). The in vitro 
regenerated plants were hardened grew normally in the greenhouse 
successfully (Figure 1F).

Discussion 
In this study, in vitro plants from four selected sweetpotato 

cultivars were established by meristem culture and used to obtain 
stem explants for the successful induction of embryogenic tissues and 
subsequent plant regeneration. Variations in shoot-regeneration among 
sweetpotato cultivars observed in this study were reported in previous 
studies for sweetpotato when shoot tips were used as the source of 
explants [16,20,35]. This implies that germination of sweetpotato apical 
meristems is cultivar-dependent. 

Plant regeneration through somatic embryogenesis largely relies 
on synchronized production, maturation and conversion of embryos 
into plants [15]. The phenomenon of somatic embryogenesis requires 
attainment of embryogenic competence via dedifferentiation, chromatin 
remodelling and gene expression programming in somatic cells 
[36,37]. Somatic embryogenesis procedures are preferred over shoot 
organogenesis because somatic embryogenesis is the most efficient 
method for regenerating genetically transformed sweetpotato plants, 
although this technique is constrained by low regeneration efficiency 
and strong effects of cultivar-dependency. In order to induce somatic 
embryogenesis in sweetpotato, a two-stage approach, by first exposing 
explants to 2,4-D for 5 to 6 days, followed by a prolonged exposure to 
ZR in the second stage was found to be the most effective. The induction 
of callus in sweetpotato is commonly achieved when the medium is 
supplemented with 2,4-D [16,23,38]. However, in this study, addition 
of ZR to medium containing 0.5 mg/l 2,4-D increased the percentage of 
somatic embryogenic induction from shoot apex explants. Gosukonda 
et al. [39] also used the two-stage approach for somatic embryogenesis 
in sweetpotato. A similar technique, where the auxin 0.5 mg/l 2,4-D 
was replaced by 4-fluorophenoxyacetic acid in the first stage followed 
by a prolonged exposure to ZR, was reported for sweetpotato Jewel, 
yielding 100% shoot regeneration of stably transformed transgenic 
plants [30]. In this study, 0.5 mg/l 2,4-D was used in the first stage and 
was found to be effective for promoting callus induction when explants 
were exposed for 5 to 6 days in callus induction medium. Dessai et 
al. [40] and Gosukonda et al. [39] previously observed that a slightly 
longer exposure to auxin in the first stage can cause profuse callusing 
at the end of petioles and failure to regenerate in the subsequent stages. 
It is therefore, plausible that the 5 to 6 days exposure to 2,4-D in the 
initial stage in this study may have been too long. While this may be the 
case, this study established that 5 to 6 days were necessary for swelling 
of the stem to occur, which is a requirement for the transition to the 
second-stage hormone treatment. Some explants developed multiple 
adventitious shoots that emerged from callus at the cut site of petioles, 
in accordance to previous observations by Sefasi et al. [18] and Santa-
Maria et al. [41]. The effect of lower or higher ZR concentrations for 
promoting either rooting or compact callus development has also been 
reported in earlier study by Dessai et al. [40] who observed that induced 
adventitious shoots formation. Therefore, to achieve efficient shoot 

regeneration in sweetpotato, a brief exposure of explants to 2,4-D and 
followed by a cytokinin may be very critical. This phenomenon may be 
due to explants acquiring ‘competency’ for regeneration after a specific 
period of exposure to an auxin at which stage they would be most 
responsive to the cytokinin thus resulting in high shoot regeneration.

Typical developmental phases were observed in somatic embryos 
developing from both callus-mediated and those directly arising from 
explants. Pro-embryonic masses with tightly packed isodiametric cells 
developed from the stem explants or calli from which the globular, 
heart, torpedo and cotyledonary stages appeared successively. Somatic 
embryos appeared distinctively green against the yellowish background 
of the callus or the explant. Results of this study demonstrate that stem 
explants can be readily regenerated to form shoots. Stem explants 
derived from meristem culture are excellent source material over other 
explants such as apical meristems due to easy storage and accessibility 
to large amounts of uniform quality explant material explant for 
sweetpotato regeneration [28]. 

Maturation of somatic embryos involves the development of globular 
embryos into cotyledonary embryos with defined shoot and root axes 
[42]. The use of ABA was vital for the maturation of sweetpotato somatic 
embryos, resulting in the development of morphologically normal 
plants. The mode of action of ABA during embryo development is not 
well understood, however, it is commonly employed to synchronise 
somatic embryogenesis and improve developmental attributes and 
conversion of somatic embryos to shoots [43,44]. Prolonged exposure 
of somatic embryos to ABA possibly stimulates embryo development 
and subsequent germination and conversion of the embryos to shoots 
[45].

Findings from the present study show that regeneration of the 
sweetpotato cultivars was genotype dependent. Therefore, the genetic 
structure appeared to be the most critical factor governing varying degree 
of tissue culture response of cultivars. The major influence on tissue 
culture response appears to be genetic, with tissue culture requirements 
varying between cultivars. Consequently, the regenerative capability of 
various explants is dependent on sweetpotato cultivar. In addition to 
cultivar-dependent response, the presence of meristematic tissues in 
young stems may have contributed to higher regeneration frequencies. 
Meristem tissues contain actively dividing cells that are responsible for 
length extension of the plant body and therefore have a greater capacity 
for regeneration [32]. Screening of varieties for their response in tissue 
culture is important since it allows the identification of genotypes that 
are more amenable for manipulation. In this study, the four sweetpotato 
cultivars tested were able to undergo somatic embryogenesis and plant 
regeneration under the culture conditions tested. However, the degree 
of morphogenic response was found to be cultivar-dependent. Jewel 
was the most responsive in all treatments, while Mweu mutheke was 
consistently the least responsive.

In conclusion, a high-throughput system for somatic embryogenesis 
and plant regeneration has been developed which is effective across 
four sweetpotato cultivars. This was attained by combining auxin 
and cytokinin growth regulators at appropriate combinations and 
concentrations in order to stimulate callus induction, somatic 
embryogenesis and plant regenerations from meristem explants. This 
protocol serves as a basis for transgenic technologies or genome editing 
for this important crop.
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