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Background
Adaptive clinical trial designs have been getting very popular in 

recent years. The PhRMA Working Group defines an adaptive design as 
a clinical study design that uses accumulating data to direct modification 
of aspects of the study as it continues, without undermining the 
validity and integrity of the [1]. These designs can assist in potentially 
accelerating clinical development and improving efficiency. 

However, the multiple interim looks and adaptive adjustments 
with the design can lead to inflation of type I error. Over the past 
decade, several statistical approaches have been proposed to control the 
inflation, some of which have been widely applied in practice. Some 
of these approaches include: error spending approach for classical 
group sequential plans [2-4]; Combination of p-values, such as Fisher’s 
combination test [5,6], Inverse Normal Method [7], sum of p-values 
approach [8]; conditional error function [9-11]; fixed weighting 
method [12]; variance spending method [13,14]; and multiple testing 
methodology such as closed test procedures [15-17]. 

In addition to the conventional adaptive designs which use the 
same endpoint at the interim and the final analysis of the study, with 
the surge in advanced technology especially in the “OMICS” space 
(eg. Genomics, proteomics, etc), interest has also been drawn towards 
the biomarker informed adaptive clinical trial designs recently. The 
biomarker informed adaptive designs make interim decisions based 
on inference on a potentially predictive biomarker, which may be a 
short-term endpoint that is indicative of the behavior of the primary 
endpoint. 

Todd and Stallard [18] proposed a statistical approach to control 
type I error rate for group sequential trials where the interim treatment 
selections are based upon only on the biomarker. Stallard [19] later 
proposed a method for group sequential trials that use both the 
available biomarker and primary endpoint information for treatment 
selections. Their method controls the type I error rate in the strong 
sense. Friede et al. [20] considered a biomarker informed drop-
the-losers design using combination tests for adaptive designs and 
closure principle for multiple testing to achieve strong control of the 
family-wise type I error rate. Scala and Glimm [21] studied the case 
with correlated time-to-event biomarker and primary endpoint where 
Bayesian predictive power combining evidence from both endpoints 
is used for interim selection, they investigated the precise conditions 
under which type I error control is attained. Jenkins et al. presented a 
type I error control approach for an enrichment design with survival 
biomarker and primary endpoint which allows both the subgroup and 
the full population as co-primary populations. 

Shun et al. [22] studied a biomarker informed two-stage winner 
design with normal endpoints. In the design, the interim decisions are 
made by ranking of the observed effects of biomarker. They derived 
the unconditional distribution of the final test statistic for the design 
with two active treatment arms and one control arm, and proposed its 

normal approximation for calculation of the critical value to preserve 
type I error rate. However, the proposed normal approximation 
procedure by Shun et al. [22] cannot be extended to designs with 
more active treatment groups. In this manuscript, we extend their 
work and propose a novel type I error control approach for biomarker 
informed two-stage winner design that can accommodate multiple 
active arms. Our approach preserves the type I error rate by adjusting 
critical rejection values of the final test statistic of the design. The 
exact distribution of the final test statistic is derived and R functions 
for calculating the adjusted critical rejection values from the skewed 
distribution are developed. The critical rejection values associated with 
one-sided type I error rate 0.025 for biomarker informed two-stage 
winner design with up to 7 active treatment groups are also tabulated 
for easy reference.

Since biomarker informed adaptive design have two endpoints 
i.e. the biomarker endpoint and clinical (or primary study endpoint)
endpoint, it is important to define the robust model to describe the
relationship between the two endpoints. Shun et al. [22] used the
conventional approach to model the two normal endpoints in the
biomarker informed two-stage winner design they considered, that is,
a bivariate normal distribution with a correlation coefficient is used for
modeling the two endpoints. However, the conventional approach is
shown to be inappropriate when little historical knowledge is known
about how the means of the two endpoints are related [23]. Wang et al.
[23] proposed a two-level correlation model to describe the relationship 
between the two endpoints. Besides the correlation coefficient between
the two endpoints, the uncertainty of the estimated mean level
correlation between the two endpoints is also considered in their
model. The two-level correlation model incorporates a new variable
that describes the mean level correlation between the two endpoints.
The new variable, together with its distribution, reflects the uncertainty 
about the mean-level relationship between the two endpoints due to a
small sample size of historical data. It is shown in Wang et al. [23] that
the two-level correlation model is a better choice for modeling the two
endpoints than the conventional model. And in fact, the conventional
model is a special case of the two-level correlation model. In this
manuscript, we consider both (conventional and two-level correlation)
models in our discussion for finding critical rejection values for final
test statistic to preserve type I error rate.
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Finding Critical Rejection Values for Final Test Statistic 
in Biomarker Informed Two-Stage Winner Design
Biomarker informed two-stage winner design

In general, a biomarker informed adaptive design is a design that 
combines a phase II and a phase III study. It starts with several active 
treatment arms and a control arm with planned interim analyses on 
biomarker. At interim, the inferior arms will be terminated based 
on effects of biomarker (either by hypothesis testing or ranking of 
observations), and only the most promising treatment (“winner”) 
will be carried to the end of the study with the control arm. The final 
comparison between the winner arm and the control arm will be 
performed on data from both stages and on study primary endpoint. 
This design has the potential to shorten the duration of the trial for 
drug development and can be cost effective.

Shun et al. [22] studied a “biomarker informed two-stage winner 
design”. This design only has one interim look when each treatment 
group has n1 patients (n1 is the interim sample size), and uses ranking of 
biomarker observations for the interim selection. Additional n2 patients 
will be recruited for the winner arm and the control arm, and the final 
comparison will be performed on the primary endpoint of the 2N (N= 
n1+ n2) patients.

Let K be number of treatment groups (K−1active treatment 
groups, and 1 control group), and N be the maximum sample size for 

each treatment group. Assume the interim analysis is planned at the 

information time 1nI
N

= , where n1<N. Two sets of measurements are 

obtained:{ }( )
1| 1,...,j

iX i n= , the measurements of the biomarker at interim 
stage for ith person in jth treatment group; and { }( ) | 1,...,j

iY i N= , the 
measurements of the study primary endpoint at final stage for ith person 
in jth treatment group. j=0,1,…,K−1. j=0 represents the control group 

while j=0,1,…,K−1 the active treatment groups. Let 
1

( ) ( )

1

1j j
n iX X

n
= ∑  

be the mean of the biomarker measurements for treatment group 

j at interim, and ( ) ( )1j j
N iY Y

N
= ∑  be the mean of the primary endpoint 

measurements for treatment group j at final. 

In the biomarker informed two-stage winner design, the 
interim decision rule is that if the interim biomarker observations 

1 1 1

( ) (1) ( 1)max( ,..., )j K
n n nx x x −= , select treatment j as the most effective 

treatment, and carry only treatment group j and the control group to 
the end of the study. When the interim biomarker outcomes are almost 
the same, the option that more than one treatment groups be carried 
to the end of the study is not considered in this design, because either 
treatment group can be selected in this case. The final assessment will 
be based on the study primary endpoint Y comparing the selected 
treatment group and the control group.

The two models for fitting the two endpoints

In this section, we briefly review two commonly used techniques 
for modeling the two endpoints (i.e., the biomarker and the study 
primary endpoint) in a biomarker informed two-stage winner design. 
We assume both endpoints are normally distributed in our context. For 
endpoints that are not normally distributed, a transformation could be 
considered. 

The first is the conventional approach, which uses a bivariate normal 
distribution with a correlation coefficient to fit the two endpoints. 

In this approach, the individual-level correlation coefficient ρ is the 
only variable to describe the relationship between the biomarker and 
the primary endpoint. The second is the two-level correlation model 
proposed by Wang, et al. [23], where a conditional bivariate normal 
distribution is used to model the two endpoints. This model considers 
both the individual-level and mean-level correlation between the 
biomarker and the primary endpoint.

More specifically, let X
ju  be the mean of biomarker for treatment 

group j, 2
Xσ  be the variance. For a fixed j, assume { }( )

1| 1,...,j
iX i n=  i.i.d., 

and ( ) 2( , )j X
i j XX N u σ

. Denote the standardized mean of biomarker for 

each treatment group by * *,
X
jX X

j j
X

u
u u

σ
= .

Let Y
ju  be the mean of study primary endpoint for treatment 

group j, 2
Yσ  be the variance. For a fixed j, assume { }( ) | 1,...,j

iY i N=  i.i.d. 
and ( ) 2( , )j Y

i j YY N u σ . Denote the standardized mean of study primary 

endpoint for treatment group j by *
Y
jY

j
Y

u
u

σ
= . 

Assume also that { }( )
1| 1,...,j

iX i n=  and { }( )
1| 1,...,j

iY i n= are correlated 
with a correlation ρ for the same j and i, that is ( ) ( )( , )j j

i iCorr X Yρ = . 

Since both endpoints are assumed to be normally distributed, the 
conventional approach uses a multivariate normal distribution with 
a correlation coefficient ρ for modeling the relationship between the 
biomarker and primary endpoint:

( ) 2

( ) 2, , 0,1,..., 1.
Xj
ji X X Y
Yj
ji X Y Y

uX
N j K

uY
σ ρσ σ

ρσ σ σ

     
= −            



This approach was used for modeling the two endpoints in the 
study of Shun et al. [22], etc. It has the limitation that the means for 
both endpoints have to be specified while running power simulation, 
which can be challenging especially in lieu of lack of solid historical 
knowledge about the relationship between the biomarker and the 
primary endpoint which is not uncommon. The two-level correlation 
model proposed by Wang et al. [23] define a new variable, Rj, into the 
model, which was referred to the estimated mean level correlation 
between the biomarker and the primary endpoint. This new variable 
along with its distribution reflects the uncertainty of the mean-level 
relationship between the two endpoints especially due to a small sample 
size of historical data. 

Assume Rj is normally distributed and centered at rj; 
*

*

Y
j

j X
j

u
r

u
= , 

which is the true mean-level correlation between the two endpoints. 
The two-level correlation model can be written as follows:

( )

*

*( )

1
,

1
|

j
i

X
X j

Xj
j ji

j
Y

X
u

N
R uY R

σ ρ
ρ

σ

 
                     
 



 

( )2, , 0,1,..., 1.j j rjR N r j Kσ = −

And the unconditional distribution of the model could be expressed 
as follows:

( )

* 2 2*

*( ) * 2 2

1 ( ) 1
, , 0,1,..., 1.

( ) 1 1

j
i

XX
j rjX j

Yj Xji j rj

Y

X
uu

N j K
uY u

ρ σσ

ρ σ
σ

 
    +      = −       +       
 



Notice that when 2 0rjσ = , the two-level correlation model could 
be specialized to
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( ) ( )( )1 1 1

1 ( ) (1) ( 1)
1

( ) , max ,...,− −
=

= < = < =∑ K j K
W j n n nj

F w P W w P G w X X X

( )1 2

1 1 1 1

1 ( ) ( )( ) ( )
1

, 0,..., 0K
K m mj j

j n n n nj
P G w X X X X −

−

=
= < − > − >∑

( )1
0 0 1 1 , 2 , 21

, ,....,K
j j j j j K j Kj

P P a P a P a−

− −=
= < > >∑  	                (2)

where ( )0 022
Y Y

j j j
Y

NP G u u
σ

= − −

1

1 1 1

( )( )

1

mj XX
n n mj

j

X X uu
P

t t t t
 

= − − −  
 

2

1 1 2

( )( )

, 2

K

K

mj XX
n n mj

j K

X X uu
P

t t t t

−

−
−

 
= − − −  
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( )0 022

Y Y
j j

Y

Na w u u
σ

= − −

1
1

XX
mj

j

uu
a

t t
 

= − −  
 

2
, 2

K

XX
mj

j K

uu
a

t t
−

−

 
= − −  

 

2

1

Xt
n
σ

=

{ }1 2 1 2... , , ,..., 1,2,..., 1K Kj m m j m m K− −≠ ≠ ≠ ∈ − .

( )'

0 1 , 2, ,...,j j j KP P P −  is from a multivariate normal distribution.

In general,

0

1

2

, 2

0 1
0 2 1 1

,0 1 2
1

0 1 1 2

j

j

j

j K

P
P
P N

P

γ γ γ
γ
γ

γ−

      
      
      
      
      
      
            





  


    



for any value of K (K ≥ 3).

Thus, for a biomarker informed two-stage winner design with 
K (K ≥ 3) treatments, the distribution of final test statistic under the 
conventional model is:

( )( )02

1 2
2 2 2 2

1 1 1 1

1
2

0 , 2 , 2 01
( ) ... ,..., ...

Y Y
j

Y

X XX X
m mj j K

X X X X

Nw u uK
W j j K j K jj

u uu u

n n n n

F w f p p dp dpσ

σ σ σ σ
−

− − +∞ +∞−

− −   = −∞    
   

− − − −   
   
   
   

= ∑ ∫ ∫ ∫
 (3) 

where:

{ }1 2 1 2... , , ,..., 1,2,..., 1K Kj m m j m m K− −≠ ≠ ≠ ∈ − ; 

( )0 , 2, ,j j Kf p p −

 is p.d.f. of 

0 1
0 2 1 1

,0 1 2
1

0 1 1 2

N

γ γ γ
γ
γ

γ

    
    
    
    
    
    
        





 

    



, and 

1

2
n
N

γ ρ= .

( ) 2

( ) 2, , 0,1,..., 1.
Xj
ji X X Y
Yj
ji X Y Y

uX
N j K

uY
σ ρσ σ

ρσ σ σ

     
= −            



which is the conventional model.

As discussed in Wang et al. [23], the conventional approach is easy 
to overestimate the power of a biomarker informed two-stage winner 
design when historical knowledge about the two endpoints is not solid, 
while the two-level correlation model provides reasonable results as 
the uncertainty about the mean-level correlation is taken into account 
in the model. Both these models will be considered in the next two 
sections when we derive the distribution of the final test statistic for the 
biomarker informed two-stage winner design. 

Test statistic and critical rejection region using conventional 
approach

To prevent type I error inflation of the biomarker informed two-
stage winner design, we use the concept of adjusting critical rejection 
values of the final test statistic of the design. In this section, we derive 
the exact distribution and give the critical rejection region for the 
final test statistic of the biomarker informed two-stage winner design 
under the conventional model. As shown in the succeeding sections 
the proposed approach works well for biomarker informed two-stage 
winner designs with any number of active arms.

Consider the following hypotheses: 

0 1 1 0: ...Y Y Y
KH u u u−= = =

1 1 0 1 0:  .   Y Y Y Y
KH u u ur uo or −> >…   			                    (1)

It is reasonable to assume that 1 1 0...X X X
Ku u u−= = =  when 

1 1 0...Y Y Y
Ku u u−= = =  and ρ≠0. For simplicity, assume 2σY  is known.

Let Gj be the test statistic comparing the primary endpoint of the jth 
treatment group and the control group: 

( )( ) (0)
22

j
j N N

Y

NG Y Y
σ

= −

where ( ) ( )1j j
N iY Y

N
= ∑  is the mean of the primary endpoint 

measurements for treatment group j at final.

 It could be shown that, 

0

2
,1

2

Y Y
j

j

Y

u u
G N

N
σ

 
 − 
 
 
 



and under ( )0 , 0,1jH G N .

The final test statistic of the biomarker informed two-stage winner 
design can then be expressed as:

jW G= , if ( )1 1 1

( ) (1) ( 1)max ,..., , 1,..., 1.j K
n n nX X X j K−= = −

where, 
1

( ) ( )

1

1j j
n iX X

n
= ∑  is the mean of the biomarker measurements for 

treatment group j at interim. 

That is, conditional on the interim selection, W takes on the value 
of the effect from the “winner” treatment group as the final test statistic. 

For the very general case under H1, the distribution of the final test 
statistic W could be derived as:
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It can be seen that, the interim treatment selection of the design 
skewed the distribution of its final test statistic. Hence, appropriate 
statistical adjustment is necessary in order to preserve the type I error 
rate of the design. As the general distribution of the final test statistic is 
written, the type I error rate of the design can be preserved by adjusting 
the critical rejection value for the final test statistic. 

Under H0, the distribution of the final test statistic (3) can be written 
as follows:

( )1
0 1 , 21

( ) , 0,...., 0K
W j j j Kj

F w P P w P P−

−=
= < > >∑

 ( )0 , 2 , 2 00 0
( 1) ... ,..., ...

w

j j K j K jK f p p dp dp
+∞ +∞

− −−∞
= − ∫ ∫ ∫                                (4)

where ( )0 , 2, ,j j Kf p p −  is p.d.f. of

( 1) 1 ( 1) ( 1)

0 1
0 2 1 1

,0 1 2
1

0 1 1 2K K K

N

γ γ γ
γ
γ

γ
− × − × −

    
    
    
    
    
    
    
    





 

    



and 1

2
n
N

γ ρ= .

Denote the distribution of final test statistic W under H0 by F0. Let 
wα be the upper 100α percent quintile of F0,

( ) ( )1 1
0 01 | 1Ww F H Fα α α− −= − = − . 

The type I error rate of the design can be controlled at level α if the 
1-sided rejection region is { }:W W wαΩ = > .

Notice that, controlling type I error for the hypotheses (1) does 
not control the probability that the winning treatment will be deemed 
effective when it is in fact not effective. Even when the null hypothesis in 
(1) is rejected correctly, an error can still occur (ie. The wrong treatment 
can be selected). Hence, another interesting index for the performance 
of the biomarker informed two-stage winner design is “power with 
best treatment”, which is the probability that the null hypothesis will 
be rejected when the best treatment is selected at interim. Wang et al. 
[23] studied “power with best treatment”. In general, it is lower than 
power. However, the difference depends on the trend of the mean level 
relationship between biomarker and the primary endpoint. In this 
manuscript, we develop a method for controlling type I error of the 
design, “power with best treatment” will not be discussed.

Test statistic and critical rejection region using two-level 
correlation approach 

In this section, we derive the approximate distribution and give 
the critical rejection region for the final test statistic of the biomarker 
informed two-stage winner design under the two level correlation 
model.

The test statistic of biomarker informed two-stage winner design 
comparing the primary endpoint of the jth treatment group and the 
control group under the two-level correlation model could be expressed 
as: 

( )  ( ) 
( )( ) (0)

2 2
2 * 2 * 2

0 0 2

j
j N N

X X
Y j rj r

NG Y Y
u uσ σ σ

= −
 + +  

 .

By law of large numbers, Gj is asymptotically normal,

( ) ( )
( )* *

02 2* 2 * 2
0 0

,1
2

Y Y
j j

X X
j rj r

NG N u u
u uσ σ

 
 

−  + +    

  .

Hence under H0,Gj is asymptotically standard normal.

The final test statistic of the design could be expressed as:

W=Gj , if ( )1 1 1

( ) (1) ( 1)max ,..., 1,..., 1.j K
n n nX X X j K−= = −

and its distribution under the two-level correlation model could then 
be expressed as:

( ) ( )( )1 1 1

1 ( ) (1) ( 1)
1

( ) , max ,...,K j K
W j n n nj

F w P W w P G w X X X− −
=

= < = < =∑

( )1 2

1 1 1 1

1 ( ) ( )( ) ( )
1

, 0,..., 0K
K m mj j

j n n n nj
P G w X X X X −

−

=
= < − > − >∑
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Notice that, if 2 2 2
0 1 , 1,r r r Kσ σ σ −= = =  that is the variability of the 

estimated mean-level correlation for each treatment group is the same, 
the above distribution can be approximated by:
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The type I error rate of the design can be controlled at level 
α if the 1-sided rejection region is { }:W W wαΩ = > , where, 

( ) ( )1 1
0 01 | 1 .Ww F H Fα α α− −= − = −

R- functions to compute the critical value

We developed R functions for calculating the critical rejection 
values wα for biomarker informed two-stage winner design with any 
active treatment arms K (K ≥ 3) (Please refer to the appendix). 

R function-convention_cv_Kk is for calculating the integration of 
F0(w) for biomarker informed two-stage winner design with k−1 active 

treatment groups and a control group under conventional model and 
therefore can be used to find critical rejection values for the final test 

statistic. Notice that convention_cv_Kk is a function of α, K, 1nI
N

=  

and ρ. As it seems unlikely that in practice ρ will be known, the sample 
correlation coefficient ρ̂  is suggested to be used for calculating an 
approximate critical rejection value. The question that how ρ̂  affects 
the distribution of test statistic will be discussed in next section.

R function-wang_cv_Kk is for calculating values for biomarker 
informed two-stage winner design with k−1 active treatment groups 
and a control group under the two-level correlation model proposed 
by Wang et al. [23]. If there are unknown parameters incorporated in 
the functions, the parameter estimates can be used for calculating an 
approximate critical rejection value. As an additional check, simulations 
should be done to ensure type I error rate is preserved.

Critical values

Tables 1-5 provide the critical rejection values w0.025 for biomarker 
informed two-stage winner design with up to 7 active treatment group 
under conventional model. As expected, the critical rejection value 
w0.025 increases as ρ increases. It can also be seen that, critical value is a 
function of the information at the interim i.e. with more information 
at interim, the critical rejection value w0.025 at the final analysis will be 
larger. Also the more active treatment groups, the larger the critical 
rejection value w0.025 will be.

These tables also reflect partially how estimation of ρ affects the 

ρ 0 0.2 0.5 0.8 1

n1/N=0.3 1.96 2.023 2.108 2.182 2.225
n1/N=0.5 1.96 2.041 2.146 2.232 2.279
n1/N=0.8 1.96 2.061 2.186 2.281 2.328

Table 1: w0.025 for biomarker informed two-stage winner design (K=4).

ρ 0 0.2 0.5 0.8 1

n1/N=0.3 1.96 2.038 2.142 2.232 2.286
n1/N=0.5 1.96 2.058 2.188 2.294 2.352
n1/N=0.8 1.96 2.083 2.237 2.356 2.415

Table 2: w0.025 for biomarker informed two-stage winner design (K=5).

ρ 0 0.2 0.5 0.8 1

n1/N=0.3 1.96 2.048 2.165 2.27 2.33
n1/N=0.5 1.96 2.072 2.218 2.34 2.408
n1/N=0.8 1.96 2.1 2.275 2.411 2.48

Table 3: w0.025 for biomarker informed two-stage winner design (K=6).

ρ 0 0.2 0.5 0.8 1

n1/N=0.3 1.96 2.055 2.185 2.299 2.366
n1/N=0.5 1.96 2.082 2.242 2.376 2.452
n1/N=0.8 1.96 2.112 2.305 2.455 2.531

Table 4:w0.025 for biomarker informed two-stage winner design (K=7).

ρ 0 0.2 0.5 0.8 1

n1/N=0.3 1.96 2.063 2.202 2.323 2.396
n1/N=0.5 1.96 2.091 2.262 2.407 2.488
n1/N=0.8 1.96 2.123 2.33 2.492 2.575

Table 5: w0.025 for biomarker informed two-stage winner design (K=8).
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distribution of the test statistic. Table 6 lists the errors in Type I error 
using ρ̂  instead of ρ for a biomarker informed two-stage winner design 
with 3 active treatment groups and 1 control group. If ˆ 0.5ρ = is used 
instead of ρ=0.8, the true Type I error of the design is around 0.03 when 
we thought the type I error rate is controlled at 0.025. If ˆ 1ρ = is used, 
the true Type I error of the design is around 0.023. Therefore, errors 
caused by misestimating ρ is in general in an acceptable region. 

Discussion
In this manuscript, we have proposed a novel statistical approach for 

type I error control of the biomarker informed two-stage winner design. 
We leverage the concept of adjusting critical rejection values of the final 
test statistic of the design for preserving the type I error rate. The exact 
distribution of the final test statistic is derived under the conventional 
one-level correlation model, and the asymptotic distribution of the final 
test statistic is provided for Wang et al. [23] two-level correlation model. 
The critical rejection values wα are computed through mathematical 
integrations. We developed R functions for calculating the adjusted 
critical rejection values from the skewed distribution of final test 
statistic. As shown, the critical rejection value w0.025 increases if any of 
the following increases i.e. correlation (ρ), number of active treatment 

groups (k) and information at interim analysis 1n
N

 
 
 

 increases. 

Our proposed method circumvents the limitation of the normal 
approximation method proposed by Shun et al. [22], and works 
for designs with any number of treatment arms. However, it has the 
limitation that it works only for the biomarker informed two-stage 
winner design with normal interim and final endpoints. For the designs 
with non-normal endpoints, transformations might be used to convert 
the data to follow normal distribution. Developing novel approaches 
for type I error control for biomarker informed two-stage winner 
design with non-normal endpoints would be an interesting topic for 
future studies.
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