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Introduction
Mediation effect refers to the effect conveyed by an intervening 

variable to an observed relationship between an exposure and a 
response variable of interest. The concept of mediation originated in 
psychological research. In 1929, Robert S. Woodworth introduced 
the expression Stimulus-Organism-Response to describe the pathway 
between stimulus and response. This concept has then been expanded to 
many fields such as social science, prevention study, behavior research, 
and epidemiology. Investigators are interested in discovering not only 
the relationship between the exposure variable and response variable 
but also the mechanism of risk factors mediating the relationship. For 
example, it has been well established that low socioeconomic status 
is associated with poor health status. To reduce this health disparity, 
investigators would need to quantify the mediation effects from 
different risk factors so that efficient interventions can be carried out 
[1].

There are generally two settings for mediation analysis. One is 
based on linear models. According to Baron and Kenny [2], three 
conditions are required to establish a mediation: (a) the exposure 
variable (X) is significantly associated with the response variable (Y); 
(b) the presumed mediator (M) is significantly related to X; and (c) M
significantly relates to Y controlling for X. When the relationships are
represented by linear regression models, the indirect effect is typically
measured by two methods: the difference in the coefficients of the
exposure variable when it is regressed on Y with or without controlling
for the mediator (abbreviated as `CD' thereafter. [3-5]; or the product
of the coefficient of X when regressed on M, and the coefficient of M in
explaining Y controlling for X (`CP' for abbreviation [6]). MacKinnon
et al. [7] showed that when the relationship among mediators, exposure 
and response variables are fitted with linear regression models, the
mediation effects measured by CD or CP are equivalent. However,
neither CD nor CP is easily adaptable to separate multiple mediation
effects when Y or M is not continuous or when the relationships cannot 
be fitted with linear regressions [8].

Counterfactual framework is the other popular setting to implement 
mediation analysis [9-12]. Let Yi(X) denote the post-treatment 
potential outcome if subject i is exposed to X. To compare the change in 
outcome when the exposure changes from x to x* (e.g., 0 or 1 for binary 
X), only one of the responses, Yi(x) or Yi(x*), is observed. The causal 
effect of treatment on the response variable for subject i is defined as 
Yi(x)‒Yi(x*). It is impossible to estimate the individual causal effect 
since the estimation depends on a non-observable response. Holland 
[13] proposed, instead of estimating causal effect on a specific subject,
to estimate the average causal effect over a pool of subjects ‒E(Yi(x)‒
Yi(x*)). If the subjects are randomly assigned to control or treatment
groups, the average causal effect equals the expected conditional causal
effect, E(YiX=x)‒E(YiX=x*).

Denote Mi(X) as the potential value of M when subject i is exposed 
to treatment X. Let Yi(x,m) be the potential outcome of subject i for 
a given x and m. It has been established that the total effect of X on 
Y when X changes from x to x* is Yi(x,Mi(x))‒Yi(x*,Mi(x*)). The 
conventional mediation analysis decomposes the total effect into direct 
effect and indirect effect. Namely, direct effect is the effect of X directly 
on Y, while indirect effect is the effect of X on Y through M. Robins 
and Greenland [9] introduced the concepts of controlled direct effect, 
defined as Yi(x,m)‒Yi(x*,m) and of natural direct effect, defined as ςi(x) 
=Yi(x,Mi(x*))‒Yi(x*,Mi(x*)). The difference between controlled and 
natural direct effects is that the controlled direct effect is measured 
when M is fixed at m, whereas for the natural direct effect, M is random 
as if the actual exposure were x*. The difference between total effect 
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Abstract
Mediation refers to the effect transmitted by mediators that intervenes in the relationship between an exposure and 

a response variable. Mediation analysis has been broadly studied in many fields. However, it remains a challenge for 
researchers to differentiate individual effect from multiple mediators. This paper proposes general definitions of mediation 
effects that are consistent for all different types (categorical or continuous) of response, exposure, or mediation variables. 
With these definitions, multiple mediators can be considered simultaneously, and the indirect effects carried by individual 
mediators can be separated from the total effect. Moreover, the derived mediation analysis can be performed with 
general predictive models. For linear predictive models with continuous mediators, we show that the proposed method 
is equivalent to the conventional coefficients product method. We also establish the relationship between the proposed 
definitions of direct or indirect effect and the natural direct or indirect effect for binary exposure variables. The proposed 
method is demonstrated by both simulations and a real example examining racial disparities in three-year survival rates 
for female breast cancer patients in Louisiana.
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and natural direct effect is defined as the natural indirect effect, δi(x) ≡ 
Yi(x,Mi(x))‒Yi(x*,Mi(x*)). In comparison, the difference between a total 
effect and a controlled direct effect cannot in general be interpreted 
as an indirect effect [13,14]. A common restriction for definitions of 
controlled and natural direct effects is that the exposure levels x and 
x* have to be preset. When the relationship among variables cannot 
be assumed linear, it is hard to choose representative exposure levels 
especially if the exposure variable is multi-categorical or continuous.

In this paper, we propose general definitions of mediation effects. 
The derived mediation analysis is promising in that the indirect effects 
contributed by different mediators are separable, which enables the 
comparison of relative mediation effects carried by different third 
variables. Furthermore, the mediation analysis is generalized so that 
we can deal with binary, multicategorical or continuous exposure, 
mediator and response variables. The method allows general predictive 
models, in addition to general linear models, to be used to fit variable 
relationships. We show that the proposed method is equivalent to the 
conventional CD and CP methods in single continuous mediator cases. 
We also establish the relationship between the proposed definitions 
of direct or indirect effect, and the natural direct or indirect effects in 
single binary mediator cases.

The paper is organized as follows: in Section 2, we present a 
motivating example that explores racial disparities of female breast 
cancer three-year survival rates in Louisiana. Section 3 proposes 
general definitions of mediation effects. We demonstrate the mediation 
analysis with linear regression and logistic regression, which deals with 
different types of mediators in Section 4 and 5. In Section 6, we propose 
algorithms for mediation analysis with non/semi-parametric predictive 
models and binary exposures. Statistical inference on indirect effect by 
the Delta and bootstrap methods is discussed in Section 7. In Section 
8, the proposed method is adapted to the motivating example. Also a 
simulation study is used to demonstrate its identifiability and sensitivity. 
Finally, conclusions and future research are discussed in Section 9.

Motivating Example
Breast cancer is the most common cancer and the second leading 

cause of cancer death among American women of all races. Owing to 
advanced screening technologies for early stage breast cancer detection, 
as well as improved treatment modalities, the overall death rate of breast 
cancer in US has decreased in recent years. However, when compared 
with white women, African-American women have a higher death rate 
from breast cancer despite the fact their incidence rate is lower. Previous 
studies have found that more advanced and aggressive tumors and less 
than optimal treatment may explain the lower survival rates among 
black women [15-17]. There are many other contributing factors, 
such as patient demographic information and health care provider 
information. However, the relative effect contributed by each factor to 
racial disparities in breast cancer survival cannot be differentiated due 
to the lack of comprehensive data and the limitations of current analysis 
methods (discussed in Section 1).

The Institute of Medicine (IOM) reported in 1999 that cancer 
patients did not consistently receive the care known to be effective for 
their conditions [18]. In response to the IOM reports, the National 
Program of Cancer Registries (NPCR) of the Centers of Disease Control 
and Prevention (CDC) established a series of Pattern of Care (PoC) 
studies. The PoC-Breast and Prostate (BP) study collected information 
from breast and prostate cancer patients. The routinely collected 
registry data were supplemented by re-abstracting hospital records and 
obtaining information about adjuvant treatment and comorbidity from 

physicians and outpatient facilities. We use the data set collected by the 
Louisiana Tumor Registry on about 1453 non-Hispanic white and black 
women diagnosed with malignant breast cancer in 2004 in Louisiana. 
All patients were followed up for five years or until death, whichever is 
shorter. We found that the odds of dying of breast cancer within three 
years for black women was significantly higher than that for white 
patients (OR=2.03; CI:(1.468,2.809)). To identify and differentiate 
attributable risk factors for the racial disparities, we developed a novel 
mediation analysis method. 

A third variable can intervene in the relationship between an 
explanatory variable and a response variable through many forms. 
In this paper, we focus on the two forms: mediation or confounding. 
Although they are conceptually distinctive, MacKinnon et al. [19] 
claimed that these effects are statistically similar in the sense that all 
of them measure the change of association between the explanatory 
and response variables when considering a third variable. Therefore the 
statistical methods developed for mediation framework can be used for 
confounding effect analysis, although the scientific interpretations of 
the analysis might be different. In this paper, we call the effect carried by 
a third variable indirect effect. We demonstrate the proposed mediation 
analysis method to differentiate the indirect effects from a wide range 
of potential mediators/confounders that account for racial disparities 
in breast cancer survival. Multiple potential third variables including 
patient residence census tract level and individual level variables are 
considered. Details of the analysis are in Section 8.1.

General Mediation Analysis
We would like to measure the direct effect of a variable X on the 

response variable Y and the indirect effect of X on Y through the third 
variable M. What we call a mediator in this paper should be equivalent 
to a confounder in confounding analysis. When there is more than one 
mediator, we should be able to differentiate the indirect effect from 
each mediator. For these objectives, we first propose general definitions 
of mediation effects in the counterfactual framework. Figure 1 is the 
graphical model showing the relationship among X, Y, and M (Mi can 
be a vector), illustrating the motivating example. The figure could be 
explained as that the distributions of risk factors (M) are different for 
different race groups (X), and for different levels of risk factors, the 
survival rates (Y) vary.

Notations

Let T
1, , p(M ... M )M =  where Mj be the jth mediator/confounder. Z 

is the vector of other independent explanatory variables that directly 
relate to Y, but does not interact with X. We are interested in exploring 
the mechanism of the changes in the response, Y, when X is altered. Let 
Y(x,m) be the potential outcome if the exposure X is at x, and M at m. 
Denote the domain of X as domX. Let u* (>0) be the infimum positive 
unit such that there is a biggest subset of domX, denoted as domX*, 
in which any x also satisfies x+u* ∈ domX, and that domX=domX* U  
{x+u*x∈domX*}. If u* exists, it is unique. Note that if X is continuous, 

M1 (Age at diagnosis)

M2 (SES)

MP (ER/PR)
X (race)

Y (3 year
survival) Z

Figure 1: Interaction plot for independent variable X, mediators Mj, response Y, 
and other explanatory variables Z.
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u*=0+ and domX=domX*; if X is an ordered binary variable, taking the 
values 0 or 1, then u*=1 and domX*={0}. For random variables A,B and 
C,A ╨ BC denotes that given C, A is conditionally independent of B.

For any function g(x), denote Exg= ∫x∈domx g
•f(x)dx and Exyg=∫x∈domx 

g•f(xy)dx when x is continuous; and Exg=Σx∈domx g
•f(x)  and Exyg=Σx∈domx 

g•f(xy) when x is discrete, where f(x) is the density of x and f(xy) is 
the conditional density of x given y.

Total effect

We define the total effect in terms of the average changing rate of Y 
with the treatment/exposure, X.

Definition 3.1 Given Z, the total effect (TE) of X on Y at X=x* is 
defined as the change in E(Y(X,Z)) when X changes by a u* unit:  

( )
*

*|

*
* ( | ( ) ( | ( ) .z u u

E Y X u Ex xTE x lim Y X
u→

= + − =
=

Z, Z,

The average total effect is defined as *| |
*( ) , =  z zx

ATE E TE x  where 

the density of x* is 
*

*
* *

dom

( )( ) .
( )∈

=
∫

x
x

f xf x
f x dx  

For the identification of total effects, we need two assumptions, 
which were also stated in VanderWeele and Vansteelandt [14]:

A1 No-unmeasured-confounder for the exposure-outcome 
relationship This assumption can be expressed as Y (x,m) ╨ XZ for all 
levels of x and m.

A2 No-unmeasured-confounder for the mediator-outcome 
relationship This assumption can be expressed as Y (x,m) ╨ MXZ for 
all levels of x and m.

With the assumptions, it is easy to see that 

( )
*

*|

*
* ( | ( ) ( | ( . )

→=
= + − =

z u u
E Y X x xTE x l u E Y X

u
im Z, Z, Note 

that if X is binary, domx*={0}, so the (average) total effect is 
E(Y|Z,X=1)‒E(Y|Z,X=0), which is equivalent to the commonly used 
definition of total effect in literature for binary outcomes.

Compared with conventional definitions of the average total effect 
that look at the differences in expected Y when X changes from x to 
x*, we define total effect based on the rate of change. The motivation is 
that the effect will not change with either the unit or the changing unit 
(x*‒x) of X, thus generalizing the definitions of mediation effects, which 
will be consistent for exposure variables measured at any scale (binary, 
multi-categorical, or continuous). The benefits of the modification will 
be further discussed in Section 4 after the average direct and indirect 
effects are similarly defined.

Direct and indirect effects

We define the direct effect by fixing M at its marginal distribution, 
f(M|Z), while X shifts. The direct effect of X at x* is defined as 

( )
* *

*
| *

( ( , ) ( ,m E ) .| )
→

+ − 
=  

 
z m u u

x xDE x lim E Y u m Y
u

Z
 When A1 and 

A2 are satisfied, ( )
*

*|

*
* ( | ,M , ) ( | ,M , )  E ,→

= + = − 
= 

=



=


z m u u

x xDE x lim E Y X u m E Y X m
u

Z Z  

where m takes the values in the support set {mprob(mX=x*)>0 
&  prob(mX=x*+u*)>0}. The average direct effect is defined as Ex* 
[DEZ(x*)]. In the same vein, we extend the definition to multiple 
mediators.

Definition 3.2 For given Z, the direct effect (DE) of X on Y not 

from Mj is defined as

2 4 4H SO  2H SO+↔ +  and the average direct effect of X on Y not from 
Mj is ADE\Mj|Z=Ex*DE\Mj|Z(x*), where M‒j denotes the vector M without 
Mj.

For the identifiability of the DE, an additional assumption is needed:

A3 Mj is not causally prior to M‒j. 

Note that if there are overlapping pathways through multiple 
mediators, A3 is violated. We recommend using the sensitivity 
analysis proposed by Imai and Yamanoto [20] to assess the robustness 
of empirical results. If causal relationship among mediators exists, it 
is necessary to combine those mediators. For example, if the real 
relationship is X →Mt1 → Mt2 → Y, we should combine the effects from 

Mt1 and Mt2, and consider the pathway 1

2

 
→ → 

 
t

t

M
X Y

M
 instead, where 

the mediator is a vector. The within 1

2

 
 
 

t

t

M
M

 effects can be explored 

separately. With A3, we formally calculate the average direct effect from 
exposure to outcome not through Mj as

 
* *

*

M M| |
* *

*

[ ( | ,M ( = )] [ ( | ,M ( = )]
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− −=
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+ =
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It is easy to show that when X is binary, ADE\Mj|Z=DE\Mj|Z(0)=

{ }M | 1 M | 0[ ( | ,M 1)] [ ( | ,M ( = 0)]
− −= − = −= = − =

j jmj X j j j X j j jE E E Y M m X E E Y M m XZ, Z,

Mathematically, the definitions of TE and DE differ in that for 
given Z, the former takes the conditional expectation over Mj for given 
x*while the latter takes the marginal expectation. The direct effect 
measures the changing rate in the potential outcome with X, where Mj 
is fixed at its marginal level, while all the other mediators can change 
with X. As in Figure 1, DE not from Mj is calculated as TE but the 
line between X and Mj is broken. Therefore, we call the changing rate 
the direct effect of X on Y not from Mj, which is the summation of the 
direct effect of X on Y and the indirect effects through mediators other 
than Mj. With definitions 3.1 and 3.2, the definition of indirect effect is 
straightforward.

Definition 3.3 Given Z, the indirect effect of X on Y through Mj 
is defined as * * *

| | \ |( ) ( ) ( ).= −
j jM MIE x TE x DE xZ Z Z  Similarly, the average 

indirect effect through Mj is  | | \ | .= −
j jM MAIE ATE DEZ Z Z

Finally, the average direct effect of X not from M is 
| | |1

 . 
=

−= ∑ jZ Z
p

m zj
AIEADE ADE  If we can assume that M includes all 

potential mediators, ADE|Z is the average direct effect of X on Y. Note 
that sometimes the direct effect | | |1

( ) ( ) ( )
=

= −∑ j

p
mjZ zZ x x EDE IE xT  is 

more relevant than ADE when the direct effects from exposure are not 
constant at different exposure levels.

Based on the definitions, mediation analyses can be generalized 
to different types of exposure, outcome or mediator variables, whose 
relationships can be modeled by different predictive models. Moreover, 
indirect effect from individual mediator can be differentiated from 
multiple mediators.

Multiple Mediation Analysis in Linear Regressions
In this section, we show that for continuous mediators and outcomes 

that are modeled with linear regressions, the proposed average indirect 
effects are identical to those measured by the CD and CP methods. We 
also show that the assumption of none exposure-mediator interaction 
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for controlled direct effect is not required for the measurements of 
mediation effects defined in this paper. For simplicity, we ignore the 
independent variable(s) Z for the following discussion. Without loss 
of generality, assume that there are two mediators and that the true 
relationships among variables are:

M1i=a01+a1Xi+ε1i;               			                                   (1)

M2i=a02+a2Xi+ε2i;               				                    (2)

Yi=b0+b1M1i+b2M2i+cXi+ε3i;       			                     (3)     

where (ε1i,ε2i) have identical and independent (iid) bivariate normal 

distributions, 
2
1 1 2

2 2
1 2

1

22

0
~ , ,

0
σ ρσ σ

ρσ σ σ
ε
ε

     
           

i

i

N  and are independent 

with ε3i, which are iid 2
3(0. )σN , for i=1,…,n. Following Definitions 3.1 

and 3.3, we have Lemma 4.1 (proof in supplementary materials) for the 
measurements of direct and indirect effects.    

Lemma 4.1 The average total effect of X on Y is a1b1+a2b2+c; the 
average indirect effect through M1 is a1b1; and that through M2 is a2b2. 

Of all the effect from X to Y, 1 1

1 1 2 2+ +
a ba

a b a b c
 fraction is indirectly from 

M1; 2 2

1 1 2 2+ +
a b

a b a b c
 fraction is from M2; and 

1 1 2 2+ +
c

a b a b c
 fraction 

is directly from X.

These measurements of average indirect effects are identical to 
those from the CD and CP methods in linear regressions. Note that 
correlations among mediators are allowed here. Moreover, compared 
with the controlled direct effects, we do not require the none exposure 
mediator interaction assumption. To illustrate this, assume that there is 
an interaction effect of M1 and X on Y, so that equation (3) should be 
Yi=b0+b1M1i+b2M2i+cXi+dXiM1i +ε3i. Based on the models, we have the 
following lemma for the mediation effects. 

 Lemma 4.2 The total effect of X on Y at X=x is a1b1+a2b2+c+a01d+2a1dx, 
among which the indirect effect through M1 is a1b1+a1dx; and that through 
M2 is a2b2. The direct effect from X is c+a01d+a1dx.

When X has no effect on M1(a1=0) and consequently there is 
no indirect effect from M1, the indirect effect from M1 defined by 
Definition 3.3 will be 0 by Lemma 4.2. However, the total effect minus 
the controlled direct effect may be non-zero because of the exposure 
mediator interactions [14]. Similar to our results, the natural direct effect 
from X and the natural indirect effect of M1 when X changes from x to 
x* defined by VanderWeele and Vansteelandt [14] are (c+a01d+a1da*)
(x‒x*) and (a1b1+a1da)(x‒x*), both of which depend on the changing 
unit of X, x‒x*. However, the natural direct effect depends further on 
the end value of X, x*, while the natural indirect effect depends further 
on the start value x.

Multiple Mediation Analysis in Logistic Regression
In this section, we illustrate the mediation analysis when the 

mediator variable is not continuous and when the response variable is 
binary and a logistic regression is adapted to model the relationship 
with X and M. In this case, the response is the log-odds of the outcome 

variable, e.g., 
Pr(patient  dies within 3 years)log

(patient  is alive at the end of the 3rd year)
=i

iY
Pr i

 in 

the motivating example. The independent variable X can be continuous 
or categorical. It is the patient race (white or black) in the motivating 
example. In the following, we assume the exposure variable X to be 
binary.

When M is binary

We first consider mediator M1 to be binary and assume the 
underlying true models:

 

( )( )1 01 1

2
0 1 1

 1   ;

=

= = +

= + + +∑



i i

p

ji ji ii
j

Y

logit Pr M a a X

b b M b M cX

In this situation, the CP method cannot be used directly since a1 
denotes the change of logit(M1i=1) with Xi, while b1 is the change of Yi 
with M1i. The CD method is also not readily adaptable, since first we 
have to assume two true models for Y, one fitted with X and mediators 
and the other with X only; second, the coefficients of X in two models 
fitted with different subsets of explanatory variables have different 
scales, and consequently are not comparable; third, the indirect effects 
from different mediators are not separable. With the definitions in 
Section 3, we derive the neat results in Lemma 5.1 to calculate the 
indirect effect of M1.

Lemma 5.1 Using the above notations, the indirect effect from X to 
Y through M1 is  

1 , , , ,{f(X 0,M k,M ), for i 1,..., and M K}
2

µ −
 = = = = =  





jkl j j i l j i l
naverage

Note that the indirect effect from M1 can be separated into two parts: 

b1, representing the effect of M1 on Y, and 
01 011

01 011 11

+

+

 
−  ++ 

a

a

a a

a a
e e

ee
, denoting 

the difference in the prevalence of M1=1 when X changes from 0 to 1.

The counterfactual framework is popular in dealing with the 
special case when X is binary (0 or 1 denoting control or treatment), for 
example, the natural indirect effect, δi(x), and the natural direct effect, 
ςi(x), discussed in Section 1. Based on the definition, Imai et al. [20,21] 
defined the average causal indirect effect (ACIE) as ( ) ( ( ))δ δ= ix E x  
and the direct effect as ( ) ( ( ))ζ ζ= ix E x . Their methods have to 
make the assumption that there is no interaction between X and the 
indirect effect, i.e., (0) (1)or (0) (1).δ δ ζ ζ= =  Otherwise, there could be 
two measurements of indirect effect or direct effect, which brings in 
challenges to generalizing the mediation analysis to multi-categorical 
or continuous exposures. Our method relaxes this assumption. One can 
easily show that the average direct effect we defined for binary X in 
single mediator scenario is ( 0) (0) ( 1) (1).ζ ζ= ⋅ + = ⋅P X P X   

When M is multi-categorical

When the mediator is multi-categorical with K+1 distinct 
categories, i.e., M takes one of the values 0,1, , , K  multinomial logit 
regression model can be adapted to fit the relationship between M and 
X. The true models are assumed to be:

1
01 1

1

1
0

1

0 1 1
1 2

( 1) ;
( 0)

( ) ;
( 0)

( ) ;
= =

=
= +

=

=
= +

=

= + = + +∑ ∑





i
i

i

i
K K i

i

pK

i k i j ji i
k j

Pr Mlog a a X
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where I(M=m) is 1 if M=m, and 0 otherwise.
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Lemma 5.2 With the above assumptions and notations, the indirect 
effect from X to Y through M1 is 

0 0

0 0
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Multiple Mediation Analysis for Non/Semi-Parametric 
Predictive Models with Binary Exposure

When (generalized) linear regression is insufficient in describing 
variable relationships, mediation analysis can be very difficult. The 
following algorithms that derived directly from the definitions of 
mediation effects provide a non/semi-parametric method to calculate 
mediation effects when the exposure variable is binary and the sample 
size at each exposure level is large. More general mediation analysis 
with any types of exposures and nonlinear relationships is discussed in 
a separate paper [22].

Algorithm 6.1 Estimate the total effect: the total effect for binary 
X is E(Y|X=1)‒ (Y|X=0). Under certain conditions, it can be directly 
obtained by averaging the response variable Y in subgroups of X=0 and 
1 separately and taking the difference.

Algorithm 6.2 Estimate the direct effect not through Mj, which is 
defined as  

| 1 | 0{ [ ( | , , 1)] [ ( | , , 0)}:
− −= − = −= = − = =

j j jm M X j j j M X j j jE E E Y M m M X E E Y M m M XZ, Z,
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and , 1{ } == n
j j i iD M  according to X=0 or 1, denote the separated data 

sets as D0,‒j ,D1,‒j, D0,j, D1,j.

2 Fit predictive model of Y on X and M on the whole observation 
set, denote the pre- dictive model as E(Y)=f(X,Mj,M‒j).

3 For l=1,…,N, where N is the number of iteration:

(a) Sample 2
 
  

n
 Mjs with replacement from D0,j and D1,j separately, 

randomly mix the two sets of samples to form a sample of Mj from its 
marginal distribution, which is denoted as 1{ } .=



n
jil iM  
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2
 
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are joint samples of M‒j from their conditional distributions on X=0 or 
1 respectively.

(c) If Mj is categorical, taking K+1 potential groups, let   
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(d) If Mj is continuous, let  
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The model f fitted in step 2 can be parametric or nonparametric. 
In Section 8.1, we illustrate the method with both logistic model and 
multivariate additive regression trees (MART).

Inferences on the Estimated Mediation Effects
Delta and bootstrap are two popular methods to measure the 

uncertainties of mediation estimators [23,24]. When the variable 
relationships are modeled with (generalized) linear models. Delta 
method can be used to estimate the variances of the mediation effect 
estimators. In the supplementary materials, we provide the Delta 
method estimated variances of the mediation effects estimated in 
Lemmas 4.1, 5.1 and 5.2. The variances of mediation effect estimators 
can also be obtained by bootstrap method, especially for nonlinear 
predictive models. First randomly draw n observations from the 
original data set with replacements, and then conduct mediation 
analysis on the bootstrap sample and obtain the direct, indirect and 
total effect estimates. The resampling and analysis are repeated B 
times. The variances of the mediation effects are calculated based on 
the B sets of mediation effect estimators from the bootstrap samples. 

The 1 2 1 2

1 2 1 2

( =1, =1)Pr( =0, =0)
( =0, =1)Pr( =1, =0)

=
Pr M M M MOR
Pr M M M M

  and 1 th
2
α − 

 
 percentiles of 

the bootstrap estimates construct the 95% confidence interval of the 
mediation effects.

Real Example and Simulation Study
The motivating example

In this example the explanatory variable is the race of patient (0 
for white and 1 for black). The binary response variable is patient's 
vital status at the end of the third year of diagnosis (death from breast 
cancer or not). The potential mediators (confounders) are listed in 
Table 1. Among these variables, age is continuous; poverty, education, 
employment, radiation, chemotherapy and hormonal therapy variables 
are binary; and all other variables are polytomous.

We used the criteria proposed by Baron and Kenny [2] to check 
the qualification of potential mediators. Those variables significantly 
associated with race, and with vital status controlling for race were 
candidate mediators. A variable not related with race but significantly 
related with vital status adjusted for race was included as a covariate. 
The variables not significantly related to vital status controlling for race 
were excluded for further analysis. As a result, radiation was included as 
a covariate, and chemotherapy and all census tract level variables were 
left out for further analysis. The remaining variables were analyzed as 
potential mediators in multiple mediation analysis. We used both the 
logistic model and MART [25] to explore the mediation effects. Note 
that the IEs were measured in terms of log odds of death in logistic 
model, but in terms of probability of death in MART. To compare 

results, we define the relative indirect effect: .=
IERE
TE

 Table 2 



Citation: Yu Q, Fan Y, Wu X (2014) General Multiple Mediation Analysis With an Application to Explore Racial Disparities in Breast Cancer Survival. 
J Biomet Biostat 5: 189. doi:10.4172/2155-6180.1000189

J Biomet Biostat
ISSN: 2155-6180 JBMBS, an open access journal

Page 6 of 9

Volume 5 • Issue 2 • 1000189

three-year survival. Black women were less likely to undergo hormonal 
therapy or lumpectomy surgery. As results, the relative indirect effects 
for hormonal receptor, surgery, and hormonal therapy were 10%, 20%, 
and 10%, respectively.

Black breast cancer patients were more likely to be diagnosed at 
younger age at which the patients had longer survival time. This fact 
indicated age at diagnosis was a suppression factor for racial disparities 
in mortality.

Insurance had a significant indirect effect (8%) on racial disparities 
in the risk of death from breast cancer. Compared with patients with 
private insurance, those having no insurance or having Medicaid, 
Medicare or other public insurance had higher three-year mortality, 
which might relate to the more restricted accessibility to necessary 
breast cancer treatment. A higher proportion of blacks than whites in 
this study had Medicaid, Medicare, public or no insurance.

The estimated average direct effect of race on mortality after 
considering all mediators was ‒.014 with 95% confidence interval 
(‒.034; .007), which was statistically insignificant. This suggests that 
racial disparities of breast cancer survival could be satisfactorily 
explained by all mediators in the model.

presents the indirect effect, relative indirect effect estimates, and their 
95% confidence intervals from the bootstrap method. There were some 
differences in the results from logistic regression and from MART: 1. 
the orders of relative effects were slightly different; 2. comorbidity was 
a significant mediator by MART but not by logistic regression; and 3. 
the confidence intervals were narrower using MART. We recommend 
using MART in this case, since it is more sensitive in finding significant 
mediators especially if the assumed relationship in logistic regression 
is inappropriate. From the results, stage explained 29% of racial 
disparities in the three-year survival breast cancer patients. Compared 
with localized breast cancer, patients diagnosed with regional or distant 
cancer were significantly more likely to die from breast cancer. Also, 
the larger tumor size and/or worse grade of breast tumor contributed to 
the higher risk of breast cancer death among black women than white 
women; the relative indirect effects from tumor size and grade were 
21% and 10%, respectively.

Compared with patients with negative ER/PR receptors, patients 
with positive ER/PR receptors developed less aggressive breast cancer 
and had better three-year survival rates. Black women were 54:7% 
less likely to be diagnosed with positive ER/PR receptors than whites. 
Compared with patients with lumpectomy surgery or hormonal therapy 
after surgery, those without surgery or hormonal therapy had worse 

Variables  Variable Description
1. Census tract variables
Poverty ≥ 20% vs < 20% of households with income below the federal poverty level
Education ≥ 25% vs < 25% of adults with less than a high school education
Residence area grouped using Beale codes: 100% rural; urban-rural mix; 100% urban
Employment  ≥ 66% versus < 66% of population aged 16 and over who are unemployed
2. Demographic variables
Insurance no insurance; Medicaid; Medicare and public; private insurance
Marital status single-never married; married; separated; widowed; divorced; unknown
Age  age at diagnosis
3. Tumor characteristics
Stage regional; distant; localized
Grade moderately differentiate; poorly/un-differentiate; well differentiate; unknown
Tumor size < 1 cm; 1:1 ~ 2 cm; 2:1 ~ 3 cm; > 3 cm; unknown
Comorbidity mild; moderate; severe; none; unknown
4. Treatment indicators
Surgery mastectomy, lumpectomy, no surgery
Radiation  not administered; administered
Chemotherapy  not administered, administered
Hormonal therapy not administered; administered
ER/PR receptor either is positive; both are negative; unknown

Table 1: Potential Mediators in the Motivating Example.

Mediator Logistic Regression Nonparametric Method
IE (95% CI) RE (95% CI) IE (95% CI) RE (95% CI)

Stage 0.276 (0.127,0.488) 28.14 (12.2,76.7) 0.023 (0.008,0.038) 28.78 (9.6,48.0)
Insurance 0.275 (0.074,0.430) 28.05 (5.8,70.8) 0.006 (0.004,0.008) 7.84 (5.6,10.1)
ER/PR 0.181 (0.068,0.332) 18.46 (5.5,56.0) 0.015 (0.009,0.020) 18.53 (11.8,25.3)
Grade 0.158 (0.027,0.379) 16.09 (2.4,47.6) 0.008 (0.005,0.011) 10.34 (6.23,14.5)
Surgery 0.145 (0.067,0.333) 14.75 (6.3,50.4) 0.016 (0.008,0.023) 19.87 (10.4,29.3)
Tumor Size 0.135 (0.025,0.417) 13.77 (2.2,56.1) 0.016 (0.011,0.022) 20.88 (14.3,27.5)
Hormonal Therapy 0.114 (0.02,0.253) 11.57 (1.6,40.2) 0.008 (0.004,0.011) 9.75 (5.6,13.9)
Age -0.113 (-0.301,-0.034) -11.5 (-43.2,-3.1) -0.005 (-0.011,0.001) -6.04 (-13.6,1.6)
Marital Status 0.001 (-0.001,0.004) 1.65 (-1.27,4.57) 0.001 (-0.001,0.004) 1.65 (-1.3,4.6)
Comorbidity -0.002 (-0.150,0.109) -0.17 (-20.5,13.6) 0.002 (0.001,0.003) 3.06 (1.9,4.2)

[1] After considering all indirect effects through mediators, direct effect of race on mortality was -0.115 with 95% CI(-0.713,0.526) in logisitic model and was -0.014(0.034,0.007).
[2] 95% confidence interval is 0.025 and 0.975 percentiles of the distribution of statistics obtained by bootstrap with 1000 repetitions. 

Table 2: Indirect Effects (IE) and Relative Effects (RE).
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Simulation study

To evaluate the sensitivity and identifiability of the proposed 
method, we conducted simulations to check the bias, type I error, 
and power in estimating mediation effects. We checked the method 
comprehensively with all types of exposures, mediators and response 
variables, and with many types of relationships. In this section, we 
show a special case where all variables were binary. For more scenarios, 
readers are referred to Fan [22]. We used two potential mediators, 
which were independent or correlated with each other. Data were 
generated from the following true models:

logit(Pr(M1=1))=a1X

logit(Pr(M2=1))=a2X

logit(Pr(Y=1))=cX+b1M1+b2M2

The correlation between M1 and M2 was controlled by the odds ratio   
1 2 1 2

1 2 1 2

( =1, =1)Pr( =0, =0)
( =0, =1)Pr( =1, =0)

=
Pr M M M MOR
Pr M M M M

 [26]. Four different sample sizes of 

the simulation (200, 500, 1000 and 1500) were applied. Parameters a1 
and a2 were chosen from 0, 0.518 or 2.150, which indicated different 
proportions of variances in M that were explained by X. Without loss of 
generality, we made a1 ≤ a2. Thus there were six different combinations 
of (a1, a2). Parameters c and OR took values from the sets (0, 0.518, 
2.150) and (0.2, 1, 5), respectively. The values of bi (i=1,2) depended 
on ai (i=1, 2). When ai=0, ai=0:518 or ai=2:150, bi took values from the 
sets (0, 0.518, 2.150), (0, 0.522, 2.168) or (0, 0.564, 2.341), respectively. 
Larger aj and bj indicated greater indirect effect from Mj. When either 
of them was zero, there was no mediation effect from the corresponding 
variable. A total of 6×34=486 parameter combinations were used for 

each of the four sample sizes, yielding 1944 simulation scenarios. We 
present the simulation results for a1= 0:518; a2=0:518 and sample sizes 
500 and 1000 in this paper. The complete simulation results will be 
provided upon request.

Empirical bias

For each simulation scenario, 500 replications were conducted. 
We estimated the IEs of M1 and M2 from these 500 replicates. The 
empirical bias is the difference between the averaged IE and true IE. 
The simulation results are summarized in Table 3. For all the scenarios, 
we found no empirical bias that was significantly different from 0.

Type I error rate and power

For each replication described in the previous section, the variance 
of the estimated IE was estimated from both the Delta method and the 
bootstrap method (B=500). We tested the hypothesis: H0: IE=0 via the 

test statistics ,
( | )
IE

SE I E
 which was assumed to be normally distributed. 

The type I error rate or power was the proportion of times rejecting 
the null hypothesis at 5% significance level. The simulation results were 
summarized in Table 4. If the true indirect effect is 0, the values listed in 
the table represent the type I error rates, otherwise the powers. Figure 2 
presents the power curves obtained by the Delta and bootstrap methods 
(OR=0.2) for mediator 1 at different b1 and sample sizes when b2 and 
c were fixed at 0.522 and 0.518, respectively. The Delta and bootstrap 
methods showed similar patterns. Figure 2 suggests that for all sample 
sizes, the statistical power increased with b1 and then reached a plateau 
when b1 hit a certain point. At fixed b1, larger sample size had greater 
power. For a given sample size, when b2 and c were fixed, the statistical 

Parameters TRUE N=500 N=1000
b1 b2 c AIE OR=0.2 1 5 OR=0.2 1 5
0 0 0 0 .008 (.006) .016 (.012) .008 (.006) .036 (.028) .028 (.022) .022 (.018)
0 0 0.518 0 .012 (.01) .016 (.012) .012 (.008) .026 (.024) .02 (.018) .014 (.01)
0 0 2.15 0 .006 (.008) .02 (.01) .01 (.008) .026 (.022) .026 (.024) .028 (.022)
0 0.522 0 0 .004 (.002) .01 (.01) .014 (.006) .028 (.026) .026 (.022) .02 (.012)
0 0.522 0.518 0 .01 (.006) .008 (.008) .014 (.006) .034 (.03) .028 (.03) .026 (.022)
0 0.522 2.15 0 .012 (.006) .012 (.006) .01 (.0014) .034 (.028) .028 (.028) .03 (.032)
0 2.168 0 0 .01 (.006) .01 (.004) .004 (.004) .024 (.02) .024 (.022) .026 (.018)
0 2.168 0.518 0 .01 (.006) .01 (.002) .004 (.002) .036 (.03) .028 (.022) .034 (.028)
0 2.168 2.15 0 .004 (.004) .012 (.008) .006 (.006) .026 (.02) .02 (.024) .03 (.026)

0.522 0 0 0.0662 .416 (.356) .444 (.388) .374 (.31) .87 (.85) .904 (.876) .888 (.87)
0.522 0 0.518 0.0662 .388 (.334) .432 (.36) .378 (.33) .848 (.828) .89 (.75) .868 (.854)
0.522 0 2.15 0.0662 .274 (.214) .29 (.252) .272 (.22) .718 (.696) .776 (.874) .712 (.678)
0.522 0.522 0 0.0662 .358 (.304) .39 (.34) .366 (.302) .846 (.792) .896 (.846) .876 (.862)
0.522 0.522 0.518 0.0662 .32 (.256) .368 (.332) .336 (.284) .818 (.656) .866 (.72) .85 (.814)
0.522 0.522 2.15 0.0662 .208 (.17) .264 (.218) .242 (.19) .69 (.656) .742 (.72) .686 (.648)
0.522 2.168 0 0.0662 .204 (.164) .26 (.204) .232 (.194) .668 (.618) .766 (.722) .718 (.676)
0.522 2.168 0.518 0.0662 .196 (.168) .252 (.204) .224 (.176) .6 (.556) .704 (.656) .634 (.59)
0.522 2.168 2.15 0.0662 .136 (.106) .174 (.138) .162 (.106) .48 (.458) .558 (.512) .516 (.456)
2.168 0 0 0.2747 .804 (.794) .818 (.812) .796 (.788) .972 (.974) .98 (.974) .978 (.978)
2.168 0 0.518 0.2747 .802 (.794) .816 (.804) .796 (.78) .97 (.974) .98 (.974) .978 (.978)
2.168 0 2.15 0.2747 .8 (.772) .812 (.786) .788 (.748) .97 (.968) .98 (.97) .978 (.976)
2.168 0.522 0 0.2747 .802 (.794) .816 (.806) .796 (.778) .97 (.972) .98 (.974) .978 (.978)
2.168 0.522 0.518 0.2747 .8  (.786) .814 (.8) .796 (.764) .97 (.974) .98 (.972) .978 (.978)
2.168 0.522 2.15 0.2747 .796 (.742) .81 (.738) .782 (.66) .968 (.968) .978 (.97) .978 (.974)
2.168 2.168 0 0.2747 .798 (.772) .812 (.78) .786 (.672) .97 (.97) .98 (.97) .978 (.976)
2.168 2.168 0.518 0.2747 .792 (.756) .806 (.736) .766 (.524) .968 (.968) .978 (.97) .976 (.972)
2.168 2.168 2.15 0.2747 .774 (.642) .786 (.496) .744 (.242) .966 (.966) .974 (.968) .976 (.93)

Table 3: Empirical Bias (Standard Error) of Estimated AIEM1.
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power increased as b1 increased; when b1 and 2=c were fixed, the 
statistical power decreased as c=b2 increased. At the same parameter 
configuration, indirect effect inference showed slightly greater power if 
two mediators were generated independently.

Discussion and Future Work
In this paper we propose a mediation analysis through general 

definitions of total effect, direct effect and indirect effect. We demonstrate 
the method with various predictive models. The proposed method is 

Parameters TRUE N=500 N=1000
b1 b2 c AIE OR=0.2 1 5 OR=0.2 1 5
0 0 0 0 .008 (.006) .016 (.012) .008 (.006) .036 (.028) .028 (.022) .022 (.018)
0 0 0.518 0 .012 (.01) .016 (.012) .012 (.008) .026 (.024) .02 (.018) .014 (.01)
0 0 2.15 0 .006 (.008) .02 (.01) .01 (.008) .026 (.022) .026 (.024) .028 (.022)
0 0.522 0 0 .004 (.002) .01 (.01) .014 (.006) .028 (.026) .026 (.022) .02 (.012)
0 0.522 0.518 0 .01 (.006) .008 (.008) .014 (.006) .034 (.03) .028 (.03) .026 (.022)
0 0.522 2.15 0 .012 (.006) .012 (.006) .01 (.0014) .034 (.028) .028 (.028) .03 (.032)
0 2.168 0 0 .01 (.006) .01 (.004) .004 (.004) .024 (.02) .024 (.022) .026 (.018)
0 2.168 0.518 0 .01 (.006) .01 (.002) .004 (.002) .036 (.03) .028 (.022) .034 (.028)
0 2.168 2.15 0 .004 (.004) .012 (.008) .006 (.006) .026 (.02) .02 (.024) .03 (.026)

0.522 0 0 0.0662 .416 (.356) .444 (.388) .374 (.31) .87 (.85) .904 (.876) .888 (.87)
0.522 0 0.518 0.0662 .388 (.334) .432 (.36) .378 (.33) .848 (.828) .89 (.75) .868 (.854)
0.522 0 2.15 0.0662 .274 (.214) .29 (.252) .272 (.22) .718 (.696) .776 (.874) .712 (.678)
0.522 0.522 0 0.0662 .358 (.304) .39 (.34) .366 (.302) .846 (.792) .896 (.846) .876 (.862)
0.522 0.522 0.518 0.0662 .32 (.256) .368 (.332) .336 (.284) .818 (.656) .866 (.72) .85 (.814)
0.522 0.522 2.15 0.0662 .208 (.17) .264 (.218) .242 (.19) .69 (.656) .742 (.72) .686 (.648)
0.522 2.168 0 0.0662 .204 (.164) .26 (.204) .232 (.194) .668 (.618) .766 (.722) .718 (.676)
0.522 2.168 0.518 0.0662 .196 (.168) .252 (.204) .224 (.176) .6 (.556) .704 (.656) .634 (.59)
0.522 2.168 2.15 0.0662 .136 (.106) .174 (.138) .162 (.106) .48 (.458) .558 (.512) .516 (.456)
2.168 0 0 0.2747 .804 (.794) .818 (.812) .796 (.788) .972 (.974) .98 (.974) .978 (.978)
2.168 0 0.518 0.2747 .802 (.794) .816 (.804) .796 (.78) .97 (.974) .98 (.974) .978 (.978)
2.168 0 2.15 0.2747 .8 (.772) .812 (.786) .788 (.748) .97 (.968) .98 (.97) .978 (.976)
2.168 0.522 0 0.2747 .802 (.794) .816 (.806) .796 (.778) .97 (.972) .98 (.974) .978 (.978)
2.168 0.522 0.518 0.2747 .8  (.786) .814 (.8) .796 (.764) .97 (.974) .98 (.972) .978 (.978)
2.168 0.522 2.15 0.2747 .796 (.742) .81 (.738) .782 (.66) .968 (.968) .978 (.97) .978 (.974)
2.168 2.168 0 0.2747 .798 (.772) .812 (.78) .786 (.672) .97 (.97) .98 (.97) .978 (.976)
2.168 2.168 0.518 0.2747 .792 (.756) .806 (.736) .766 (.524) .968 (.968) .978 (.97) .976 (.972)
2.168 2.168 2.15 0.2747 .774 (.642) .786 (.496) .744 (.242) .966 (.966) .974 (.968) .976 (.93)

Table 4: Type I Error Rates and Power of Estimated AIEM1 by Delta (Bootstrap) Method.
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Figure 2: Statistical powers of estimating AIEM1 from Delta (left) and bootstrap (right) methods at different sample sizes 
(b2=0:522; c=0:518).
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a general extension of mediation analysis under the counterfactual 
framework. It is also related to the traditional CD and CP methods. 
The method generalizes and improves the existing mediation analysis 
methodologies in many ways. First, responses, exposure variables and 
mediators can be measured at any scale: continuous, bi nary or multi-
categorical. Second, multiple mediators of different types are allowed 
in the pathway analysis simultaneously. Indirect effect transmitted 
by an individual mediator can be differentiated from the total effect, 
which enables the comparison of the importance of the mediators. This 
property is especially useful for developing policies that aim at altering 
the relationship between a specific exposure variable and a response 
variable through controlling the intervention from third variables. 
With the knowledge of the indirect effect carried by each mediator/
confounder, a policymaker is able to focus limited resources on 
changing the most important factors. Third, the mediation study allows 
correlations among mediators. Fourth, the concepts of mediation 
analysis can be applied in general predictive models. Finally, we provide 
two approaches to estimate the variance of indirect effect in parametric 
or nonparametric models. Our methods are demonstrated through a 
real example and a simulation study.

Several aspects of the proposed method will be explored in future 
work. We provide a non-parametric procedure of mediation analysis 
for binary exposures. The procedure will be extended to more general 
predictive models and other types of exposures. Only limited work has 
focused on mediation analysis in survival model contexts. The idea of 
mediation analysis proposed in this paper will also be extended to the 
additive models in survival analysis. With the proposed definitions, 
we can also take advantage of previous knowledge and information in 
the analysis. Therefore, we propose further research on implementing 
multiple mediation analysis in Bayesian settings.

Supplementary Material
1. The proofs of Lemmas 4.1, 5.1, 5.2. 2. Delta method to measure

the variances of mediation effects.
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