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Abstract
Background: A method for generating bronchial tree would be helpful when constructing models of the tree for 

benchtop experiments as well as for numerical modeling of flow or sound propagation in the airways. Early studies 
documented the geometric details of the human airways that were used to develop methods for generating human airway 
tree. However, methods for generating animal airway tree are scarcer. Earlier studies suggested that the morphology of 
animal airways can be significantly different from that of humans. Hence, using algorithms for the human airways may 
not be accurate in generating models of animal airway geometry.
Objective: The objective of this study is to develop an algorithm for generating pig airway tree based on the geometric 
details extracted from the physical measurements.

Methods: In the current study, measured values of branch diameters, lengths and bifurcation angles and rotation of 
bifurcating planes were used to develop an algorithm that is capable of generating a realistic pig airway tree. 

Results: The generation relations between parent and daughter branches were found to follow certain trends. The 
diameters and the length of different branches were dependent on airway generations while the bifurcation angles were 
primarily dependent on bifurcation plane rotations. These relations were sufficient to develop rules for generating a 
model of the pig large airways.

Conclusion: The results suggested that the airway tree generated from the algorithm can provide an approximate 
geometric model of pig airways for computational and benchtop studies. 
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Introduction
Objectives

Realistic geometric models of the airways are essential for 
computational and experimental studies of fluid dynamics and acoustic 
propagation in the airways. Earlier studies of sound propagation in the 
airways and lungs suggested their utility for diagnosis of pulmonary 
conditions [1-6]. Sound propagation in the pulmonary system have 
been studied using animal [7-9] and benchtop [10,11] experiments. 
Numerical [12-15] models were developed and validated using animal 
experiments [16-18]. The objective of the current study is to develop 
an algorithm for generating pig airway trees with realistic geometry 
using measured values of branch diameters, lengths, bifurcation angles, 
rotation of bifurcating planes.

Available information on airway geometry 
Several studies [19-21] have documented human airway geometry, 

while some studies discussed the airway geometry in dog, rat, sheep 
and hamster [22-24].  Details of pig airway geometry are scarce or 
incomplete [25,26]. Since the morphology of animal airways can be 
significantly different from humans, approximating pig airway geometry 
by its human counterpart can lead to errors in both computational and 
numerical studies.

Airway classification methods

Airways can be characterized by generations [27] and/or ordering 
schemes [20,21,28]. For instance, Weibel [27] categorized the airways by 
labeling each airway by a generation number (starting with generation 
zero at the trachea) that is increased by one at each branching.  In this 
method, all bifurcations were assumed symmetric, where each parent 
airway bifurcates into two identical twins with a higher generation.

On the other hand, Horsfield [20,21] proposed an ordering scheme, 
where the peripheral conducting airways are assigned order 1 and the 
order increases by one at each bifurcation up from the peripheral 
airways towards the trachea. Strahler [28] adopted a similar ordering 
method where the parent branch is one order higher than its two 
children branches of the same order. On the other hand, if the two 
children branches are not symmetric or have different orders, the parent 
branch order is equal to the child branch with the higher order.  Since 
these ordering methods start the numbering system at the peripheral 
airways, they would require a tree that contains at least some of these 
branches.

In the current study, generation numbering [27,29-31] will be used 
since the available airway trees deal with relatively larger airways that 
did not contain the terminal bronchioles.

There are several studies that described branching networks such as 
airway and vascular trees. Murray [32] used principle of minimum work 
to describe the branching network of the vascular tree. Murray assumed 
that the total power loss inside a blood vessel is summation of loss due 
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to viscous drag and the power required to metabolically maintain the 
volume of blood and vessel tissue. This yielded a relation between the 
parent and daughter radii as well as, the relationship between branching 
angles and parent daughter radii known as Murray’s law. 

While the original Murray’s law was derived for blood vessels, 
several studies [33,34] used that law to describe airway trees. Here, a 
generalized form of Murray’s law where the exponent in the law varied 
[21,33-35] was used. 

Kitaoka [34] proposed a branching network based on the premise 
that the fluid flow is proportional to the region it is supplying. The 
branching network was assumed to be dichotomous in nature, where 
airway diameters and branching angles are determined from relations 
provided by previous studies [32,35]. The length of a branch was set 
to be three times its diameter.  The parent and daughters stayed in the 
same plane, which is called the branching plane. Branching planes 
for the consecutive generations were assumed to be perpendicular. 
Some supplementary rules were developed in this study to account for 
corrections in branching plane, branching angles, length to diameter 
ratio and rotation angle of successive branching to achieve a realistic 
branching patterns. 

Tawhai [36] proposed a volume halving algorithm to develop the 
airway branching network.  Stating with an initial airway branch and 
a lung region, a plane containing that branch and the center of mass 
of the lung region will split that region into two “halves”. The daughter 
branches of the initial branch will then start from the parent end and 
grow in the direction of the center of mass of the halves. The daughter 
length is determined based on a fractional distance from the center of 
mass called “branching fraction”. If the generated branch length is less 
than or equal to a predefined length limit, the branch is termed as a 
terminal branch. The branch diameters are assigned using Horsfield 
[20,21] orders. The branch angles were adjusted based on predefined 
angle limits. 

Another method of generating a branching network is to use 
constrained constructive optimization (CCO) of a given tree volume 
[33,37,38]. Here, a perfusion lung volume is selected inside which the 
branching network will grow. The tree is required to fill the perfusion 
volume as evenly as possible without intersecting segments. The tree is 
optimized to have a minimum volume, with branches that follow the 
generalized Murray’s law.  In this method, the terminal branches are 
assumed to have the same terminal pressure and the total number of 
segments is about twice the number of terminal branches, which would 
be set by the user. A branching network created using CCO depends on 
the number of terminal segments. CCO algorithm can be used to grow 
terminal branches on top of a preexisting base tree which was extracted 
using image segmentation from CT or MRI [33]. 

Available Information on Pig Airway Tree

To generate a pig airway tree model, the geometric features of pig 
airway tree are needed. The current study used the measurements of 
physical model of pig airway tree from previous studies [29-31] to 
develop rules that can be used to generate a realistic model of the pig 
airways. Table 1 summarizes the measured dimensions and angles of 
pig airway tree discussed in the previous studies [29-31].

For example, the logarithm of the diameter was found to be linearly 
proportional to airway generations and the branch length was linear 
up to generation 4 with the exception of generation 2. For generations 
higher than 4, the branch length varied between 5 to 12 mm without a 
clear trend. Most bifurcations were asymmetric where a parent branch 

bifurcates into two daughters of dissimilar diameters. The study showed 
that this bifurcation can happen in two different planes. The first plane is 
the one containing the trachea and mainstem bronchi. Major daughters 
tended to stay in that plan.  When minor daughters approximately 
stay in this plane, the bifurcation is called an in-plane bifurcation. The 
second plane is perpendicular to the first and contains out-of-plane 
minor daughters. Previous study [29-31] found that the diameters and 
bifurcation angles for out-of-plane bifurcation were different than in-
plane bifurcation cases. 

In addition, branching angles were found to depend on rotation of 
bifurcation plane and appeared independent of generations. 

Parent Daughter Branch Relationship based on Genera-
tion of Airways

The difference in generation between two daughters is defined as 
“delta” similar to studies of human airways [21,36]. Since pig airway is 
predominantly monopodial, the relationship between delta and parent 
airway generation is expected to be different than human airways. In 
the current study, delta was different for in-plane and out-of-plane 
bifurcations as seen in Figure 1a and 1b. In Figure 1a, the relation 
between delta and parent airway generation may be represented with 
an approximate linear trend up to generation 10 and varied between 2 
and 6 at higher generations without a clear trend. Please note that the 
delta for the tracheal bronchus is relatively high (i.e. delta≈11). While 
this value is not shown in the figure, it is included in the proposed 
algorithm. Figure 1b shows that delta for out-of-plane bifurcation 
followed an approximate linear trend. 
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Figure 1a: Delta (in-plane) vs Parent Airway Generation.
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Figure 1b: Delta (out-of-plane) vs Parent Airway Generation.
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The generation difference between a parent branch and a major 
daughter is defined as delta1 in the current study. Figure 2 shows delta1 
against parent airway generation. Most of the delta1 values varied 
between 0 and 2 up to generation 10 and between 0 and 6 at higher 
generations.

Pig Airway Generation Algorithm
To generate an airway tree, the starting point is the location of the 

proximal trachea and its direction vector. With this information, a 
cylindrical airway with tracheal diameter and length is generated and 
will serve as a parent. 

Generally speaking, the algorithm uses the generation of each parent 
branch to determine the daughter generations from generation relations 
(delta1 and delta). Next, the bifurcation plane angle, bifurcation angles, 
and daughter diameters and lengths will be calculated.

More specifically, a unit vector (n1) along the direction of parent 
branch is defined.  Another unit vector (n2) is then defined as the 
direction vector of the plane where the parent and daughter branch axes 
exist.  In addition, a unit vector (n3) that is perpendicular to both n1 and 
n2 is found by the cross product (n1 × n2).  n3 will be in plane n2.   

Direction vectors for the major and minor daughters are then 
determined using the following equations

1 1 3 * tan(angle1)v n n= +                                                          (1)

2 1 3 * tan(angle2)v n n= +                                                             (2) 

Where v1 and v2 are the direction vectors for major daughter vector 
for minor daughter and angle 1 and angle 2 are the bifurcation angles 
for major and minor daughters, respectively.

Figure 3 illustrates an example of a bifurcation where unit vectors 
for n1, n2 and n3 are used to determine the direction vectors for major 
and minor daughter branches v1 and v2, respectively.

The major and minor daughters of are then generated as cylinders 
with their diameters and lengths along their respective direction 
vectors. 

The end points of each branch are stored to be used as the starting 
points for the next branching. These recursive procedures repeated a 
number of times to generate a tree with a certain number of generations. 
The airway generation algorithm is also described in flow chart in 
Figure 4.

This algorithm was used to generate the pig airway tree with 25 
generations which is shown in Figure 5. Figure 6 shows the airway tree 
extracted from CT images of three pig lung. All three lung airway trees 
show similarity in terms of morphometry of the lung airways. The lungs 
show the monopodial morphology of pig airways. By comparing figure 
5 and 6 it can be seen that the generated airway tree has comparable 
general features. Further studies would require to directly compare the 
detail morphology of the constructed and actual airways.

Discussion
Realistic model of the pig airway tree is desired when performing 

computer simulations of flow or sound transmission in the pig airways.  
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Figure 2: Delta 1 vs Parent Airway Generation.

Figure 3: Parent and daughter branches along with their direction vectors. 

Set the starting point for 
the proximal end of 

trachea along with its 
direction vector.  

Get the diamter and length of the 
trachea from the physical 

measurements (Table 1). Generate 
a cylindrical airway (Trachea). 

Get the generations of 
daughter branches usign delta 
and delta1 relations (Fig 1,2). 

Determine the diameters 
and lengths of daughter 

branches Table 1.  

Get the branching angles and 
bifurcation plane angles from 

physical measurements (Table 1). 

Set the unit vectors n1,n2 and 
n3. Get the dircetion vectors 
ν1 and ν2 using n1,n2,n3 and 

branching angles.  

Generate major and minor 
daughter using the direction 
vectors and the dimesions 

(diamter and length). 

Set the end points of the major 
and minor daughter branches as 

starting points for next 
bifurcations. 

Repeat the procedure to get 
the whole tree 

Figure 4: Pig airway tree generation algorithm.

Diameter Length Angle 1 Angle 2 Bifurcation 
Plane Angle

log D = − 0.0438 
∗ Generation + 

1.3094
. For Generation< 

12

L = − 7.51  
Generation + 

37.556
For Generation 
0 to 4 except 
Generation 2.

15° ± 2 for 
in-plane 

bifurcation

45° ± 5°
for both in-
plane and 

out-of-plane 
bifurcation

Alternates 
between 0°, 
90° and -90° 

with three 
successive 
bifurcations.

log D = − 0.0228 
∗ Generation + 

1.0979
For 12 ≤ 

Generation ≤ 20

L=10 mm at 
Generation 2
L = 8± 3 mm

0° for out-
of-plane 

bifurcation

log D = − 0.0418 
∗ Generation + 

1.488
For Generation 

> 20

For Generation 
> 4

Table 1: Geometric features of pig airways [29-31].
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Figure 5: Pig airways tree generated from the algorithm (a) anterior view 
showing the in-plane branching (b) lateral view showing the out-of-plane 
branching.

Pig 3 Pig 2 Pig 1 

Figure 6: Pig airways that were extracted from CT images using automatic 
and manual segmentation. The airways are viewed from the anterior side 
[29-31].

There is little information on the pig airway geometry in the literature.  
Previous studies [29-31] were used to extract information on the length, 
diameters, branching angles and change of bifurcating planes of the pig 
airways using computed tomographic imaging along with segmentation 
software tools. The current study developed an algorithm based on these 
measurements to create a realistic pig airway tree. The tree generated 
from the algorithm was comparable to the geometry extracted from 
CT [29-31], which showed monopodiality, and is comparable to the 
dog lung airways [22]. The generated tree morphology also showed 
similarity with that reported in previous studies [17,26,33].

The information available from pig airway measurements is up 
to generation 25 only. Hence, the current algorithm was valid up to 
that generation. Several previous studies have provided quantitative 
measurements of the airway morphology but it appears that the current 
study is one of few early attempts to develop an algorithm capable 
of generating three-dimensional airway structures based on actual 
measurements.

Some previous studies [34,36] showed good agreement with human 
airways but didn’t address pig airways, and hence their results cannot 
be directly being compared to the current study. It is worth mentioning 
that tree generated from the CCO depends on the number of terminal 
bronchioles and other input parameters that need to be chosen 

with care. Moreover, the algorithm doesn’t account for monopodial 
geometries that is dominant in the airway morphology discussed in 
this study. Hence CCO may be a good candidate only for small airways. 

Previous algorithms relied on either pure geometric relation [34,36] 
or theoretical analysis and optimization criteria [32,33,37]. Some of 
the geometric relations can be used to generate the large airways [34] 
while others would be mainly appropriate for adding airways to an 
existing tree of large diameters [36,37]. The current study proposes a 
pig airway generation algorithm based on empirical relations extracted 
from morphometry of actual pig airways. This approach is most 
appropriate for the large airways considered in the current study. The 
algorithm directly addresses the monopodial nature of the tree under 
consideration. Generating smaller airways may be achieved using other 
methods such as CCO, volume halving, etc. [36,37].

Conclusion
The primary objective of the current study is to develop an algorithm 

that can create a realistic pig airway tree based on the empirical 
relations developed from the experimental measurements [29-31]. 
The generated tree showed similar in morphology and dimensions to 
the extracted geometries from previous CT. The generated tree may 
provide a good approximation of pig airways in computational and 
experimental studies of physical phenomenon of the airways. Since the 
airway geometry appears to be significantly different among species, 
using this algorithm is likely to introduce smaller geometric errors 
than approximating the pig geometry by that of other species including 
humans.
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