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Abstract
There is a huge demand for developing new technologies for alternative energy sources due to the elevated 

costs of petroleum and its by-products, depletion of nonrenewable fuel sources, and to eliminate the disadvantages of 
geopolitical location and environmental pollution caused by high levels of carbon dioxide release. Science is striving 
to meet this demand and as molecular biology techniques have progressed, genetic engineering tools have been 
presented as promising future solutions in the form of optimizing the fermentation process to increase the ethanol yield 
from different carbon sources such as starch. As Saccharomyces cerevisiae is not naturally able to ferment starch, it can 
be genetically manipulated and modulated to improve the fuel production from starchy materials and the amount of cost 
that is required to produce ethanol would be decreased with these manipulations. General modifications in S. cerevisiae 
include specific gene expressions to gain new properties or improve existing pathways. This review aims to elicit the 
current status of ethanol production thorough alternative techniques from starch using current genetic engineering 
applications and to give further directions for high-throughput fermentations using genetically modified S. cerevisiae 
strains.
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Introduction
Global energy consumption is rapidly increasing and it causes an 

elevation of energy cost and contributes to global warming because of 
the excessive use of petroleum based energy sources; hence the demand 
for renewable biomass-derived fuels has increased in recent years. 
Production of such alternative sources, which could also help establish 
a sustainable and renewable energy supply, has been popularized. 
Several countries have already used first generation biofuels, including 
ethanol, as a primary energy sources such that worldwide biofuel 
production reached 106 billion liters in 2011 and it is estimated to be 
155 billion liters by 2020 [1]. Feedstocks rich in sugars are generally 
used for ethanol production via fermentation processes. Main sugar 
sources for ethanol production are presented in Figure 1. Although all 
of fuel ethanol is obtained from corn glucose in US [2] and sucrose in 
Brazil [3], starchy materials have been accepted as the major renewable 
biomass resources for ethanol production due to their low cost and 
abundance [4]. In this line, corn wheat and tubers from starchy crops 
are used for ethanol production in North America, Europe, and tropical 
countries [5].

Manipulation and utilization of starchy resources starts with 
enzymatic hydrolysis followed by fermentation of sugar molecules 
and subsequently the elimination of ethanol from culture media. 
Simultaneous Saccharification and Fermentation (SSF), is an alternative 
method used for bioethanol production from feedstock and it decreases 
fermentation costs by reducing equipment requirements since both 
processes occur in one reactor [6]. Another bonus in the SSF system 
is that the ethanol production rate is higher than the conventional 
method [7]. SSF has been applied for ethanol production from starch 
fermentation and remarkable ethanol yields (0.41 liter ethanol per kg 
of corn) have been obtained [8]. There have been attempts to increase 
the fermentation efficiency with immobilization of microorganisms 
in SSF systems [9-11]. Although SSF has advanced in the field, several 
points should be optimized to reduce the total cost, provide highly 
efficient utilization of starch, and maximize ethanol yield. These steps 
include: maintaining the optimal pH for the growth of fermentative 

microorganism, sterility, continuous substrate supplementation, and 
the establishment of cooling systems for high temperature fermentation 
systems [5]. Furthermore, several ethanol producing microorganisms 
used in industry, such as Saccharomyces cerevisiae, have strains that are 
not naturally able to utilize starch and they require high amounts of 
amylolytic enzymes, which is associated with high cost and impractical 
ethanol production [12]. Therefore, while ethanol production from 
starchy materials is racing ahead, the conventional processes used today 
are not favorable at the economic level; hence, improved methods are 
desired with microbial strains that enable efficiency and lead to high 
yield ethanol production in a cost-effective way [4]. 

A vast amount of microbial species to obtain ethanol from starch 
in the fermentation process have been presented in the literature. 
Regardless of the species, parental microorganisms remain insufficient 
in conventional ethanol production due to the lack of availability of 
sugar rich input and low ethanol yields. Over 150 amylolytic yeast 
strains have been reported to be impractical in industrial use because of 
limited characteristics [13]. Although Clostridium spp. and Zymomonas 
mobilis are popular bacteria for ethanol production [14,15], S. cerevisiae, 
well-known and widely used yeast in alcoholic beverages and bakery 
industries, is traditionally preferred because it sustains steady-state 
production, can consume various monomeric sugar molecules, has a 
high fermentation capacity, ethanol productivity and ethanol tolerance, 
along with having “generally regarded as safe” (GRAS) status [16]. As 
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S. cerevisiae is not naturally able to ferment starch, the development 
of genetically modified S. cerevisiae strains displaying starch utilizing 
enzymes (α-amylase and glucoamylase), leading to saccharification and 
fermentation of starch at the same time has been an area of interest. In 
this review the genetic engineering of S. cerevisiae to allow it to utilize 
starchy sources resulting in a decreased total cost of fermentation and 
the realization of high ethanol levels will be discussed in detail. 

Starch Fermentation 
Starch is a cheap, renewable, and fermentable carbon source [17] 

found in all green plants in various amounts. There is approximately 
a starch content of 70% in corn, triticale and cassava [18]. Starch 
molecules are generally associated with lipids, proteins and fatty acids, 
and the type of association determines the pre-treatment process to be 
applied before fermentation [19]. Starch consists of glucose monomers 
joined by glycosidic bonds (α-1,4 glucan-linked D-glucopyranose 
chains) [18]. It is mainly composed of the linear glucose polymer 
amylose (20-30%) and highly branched amylopectin (70-80%) (Figure 
2) [20]. Amylose has mostly α-1,4-linked D-glucopyranose and sparse 
α-1,6-linked D-glucopyranose chains (about 0.3% to 0.5%), and forms 
a flexible molecule leading to interaction with fatty acids, alcohols, and 
iodine [21]. Amylopectin is a highly branched helix like structured 
molecule consisting of α-1,4-D-glucopyranose chains [22]. Amylose 
and amylopectin, found in the starch structure at different rates, form 
an interconnected structure which directly determines the chemical 
characteristic of biomass and fermentation yield [23]. 

Fermentation of starch commonly involves two stages; i) starch 
hydrolysis by amylolytic enzymes (liquefaction) and saccharification, 
ii) fermentation of glucose into ethanol [24]. For an efficient starch 
fermentation, both α-1,4 and α-1,6-debranching hydrolases, with 
amylases and glucoamylases, and α-glucosidases displaying both 

α-1,4 and α-1,6-debranching activities are required [25]. As starch 
itself is not readily utilizable by S. cerevisiae, it has to be hydrolyzed 
by acid treatment and saccharificated by enzyme (amylase and/or 
glucoamylase) treatment before the main fermentation process [7]. This 
is a relatively expensive application as 30-40% of the total cost for the 
fermentation process is spent for the liquefaction and saccharification 
necessary for this popular microbe to be used [26]. Moreover, adding 
caustic soda, lime and sulphuric acid to maintain optimum pH 
levels for the enzymes, also increases the total cost [27]. Cold starch 
hydrolysis is an alternative method to decrease the total energy input. 
However, total enzyme requirement is much higher in cold hydrolysis 
than starch hydrolysis at high temperatures [28,29]. Although elevated 
temperatures in the initial step is advantageous to prevent bacterial 
contamination, high cooling cost result and become a major problem 
for fermentation because the temperature for industrially available 
yeasts should be stabilized to 30-37°C. Co-culture systems (amylolytic 
microorganisms and yeast) have emerged in the SSF process to avoid 
pure enzyme requirements [30-32]. However, the process is still 
expensive and the ethanol yield is not satisfactory because of the high 
starch content consumed for the growth of amylolytic microorganisms. 
Consolidated Bioprocessing (CBP), hydrolysis and fermentation of 
sugar molecules in a single step using microorganisms with fermentation 
capability, is the most effective method for ethanol production from 
starch fermentation. In this concept, if a microorganism does not 
naturally express amylolytic enzymes, genetic engineering tools offer 
a solution for starch fermentation by non-amylolytic microorganisms, 
e.g. S. cerevisiae as explained in this review [18]. The optimization 
of temperature requirements for saccharification and fermentation 
processes and the development of genetically modified S. cerevisiae 
strains that do not need the addition of exogenous enzymes to achieve 
the full potential for starch fermentation in a single step, are highly 
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Figure 1: Main sugar sources for ethanol fermentation.
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warranted to enhance ethanol production [16,33]. Therefore, genetic 
manipulations in S. cerevisiae for a direct conversion of starch to 
ethanol is a promising process and it would save the feedstock spent 
for the growth of amylolytic microorganisms and reduce the total cost 
along with providing high ethanol yield. 

Glucoamylase expressing S. cerevisiae
Construction of a yeast strain that can utilize raw starch has 

been studied since the 1980s [34,35]. In the beginning of genetically 
engineered S. cerevisiae, fashioned for starch fermentation, 13% (v/v) 
ethanol yield was obtained from direct hydrolysis of starch via using 
glucoamylase expressing yeast [36]. The first step of the process began 
by constructing recombinant strains that express amylolytic enzymes 
(α-amylase or glucoamylase) for the liquefaction and saccharification 
of the starchy biomass. Glucoamylase (1,4-α-D-glucan glucohydrolase; 
EC 3.2.1.3) is recognized as the most important enzyme which is 
responsible for the progressive hydrolysis of starch from non-reducing 
ends to release β-D-glucose units and saccharification of the polymers 
[37]. The glucoamylase cDNA gene (glu) from Aspergillus awamori 
has been successfully incorporated into S. cerevisiae genome for the 
utilization of starch and recombinant strains have been found to be 
stable for 50 generations without applying any selective pressure [38]. 
In another study, the glucoamylase enzyme coding sequence was 
transferred to S. cerevisiae genome and hydrolyzation of unprocessed 
and soluble starch was attained at high performance levels (0.23 g.l-1.h-1) 
[39]. The same research group also increased the enzyme activity of 
the A. awamori glucoamylase by codon-optimizing, compared to 
native glucoamylase (791 nkat and 591 nkat per gram dry cell weight, 
respectively) and transformed the recombinant gene to industrial S. 
cerevisiae (27P) strain for a direct starch fermentation [27]. Although 
co-culture of S. cerevisiae with an amylolytic microorganism is a 
conventional option, Nakamura et al. have reported that a recombinant 
S. cerevisiae, SR93, modified to express glucoamylase has produced 
more ethanol (24.9 g.l-1) as compared to a co-culture of A. awamori 
and wild type S. cerevisiae system (22.0 g.l-1), because SR93 has saved 
the internal starch amount consumed for the growth of the amylolytic 
microorganism, A. awamori [7]. However, SR93 could not degrade 

all the starch content efficiently because recombinant glucoamylase 
enzyme originated from Saccharomyces cerevisiae var. diastaticus was 
not able to degrade α-1,6 glycoside bond of amylopectin units. It has 
been recognized that this glucoamylase enzyme, coded by the STA1 
gene, lacked a starch-binding domain which made fermentation and 
ethanol production unsatisfactory [40,41]. Therefore, the starch-binding 
domain of the Aspergillus niger glucoamylase gene has been fused 
with STA1 gene resulting in a remarkable hydrolysis and utilization of 
insoluble starch [42]. Instead of using a starch binding domain, the gene 
for glucoamylase of Rhizopus oryzae, capable of breaking down both 
α-1,4- and α-1,6-glycosidic bond efficiently, has been transferred to S. 
cerevisiae and approximately 80% of starch content was utilized in a 
100h fermentation period [43]. As a long fermentation period (~150h) 
is required for sufficient starch fermentation by glucoamylase secreting 
S. cerevisiae, in anaerobic or minimal aerobic conditions [7,34,35,44], 
a recombinant strain of S. cerevisiae (YF207/pGA11) expressing cell 
surface anchored R. oryzae glucoamylase has been tested for ethanol 
production under aerobic conditions (dissolved oxygen was 2.0 ppm), 
using soluble starch [4]. A high ethanol production rate (0.71 g.h–1.l–1) 
was achieved and the fermentation process has been completed in 
seven repeated fermentations over 300 h without losing modified gene 
stability. As the same enzyme from various sources would provide 
different outcomes due to their divergent kinetic properties and 
activities in different experimental conditions, determining optimal 
enzyme source to be transferred is one of the most critical issues. For 
instance, R. arrhizus glucoamylase gene has been transferred to S. 
cerevisiae and up to 5% ethanol and 2400 U.l-1 enzyme activity (one of 
the highest level reported to date) has been obtained in a flask ferment 
experiment [45]. S. cerevisiae has been modified by Aspergillus oryzae 
glucoamylases, encoded by glaA and glaB, and R. oryzae glucoamylase 
separately on the cell surface and compared with each other for their 
starch fermentation ability [46]. The highest ethanol yield has been 
obtained from glaA glucoamylase expressing yeast (15 g.l-1 in 24 h); 
although R. oryzae glucoamylase exhibited the highest glucoamylase 
activity (9×10-9 U/cell). From a different point of view, as raw and naive 
starch is not favorable from a commercial perspective, Kosugi et al. 
have designed an experiment to produce ethanol from cassava pulp 
rich in starch (up to 60%) [47]. A high production rate of ethanol from 

Amylopectin                 Amylose                Oxygen          Hydrogen
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Figure 2: Components and structure of starch.
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5% cassava pulp (91% of theoretical value) has been achieved using S. 
cerevisiae displaying R. oryzae glucoamylase enzyme. 

α-amylase expressing S. cerevisiae
Apart from transforming glucoamylase into S. cerevisiae for starch 

hydrolysis and saccharification, α-amylase modification is another 
important option in recombinant technology for starch fermentation. 
The α-amylases (EC 3.2.1.1) breakdown starch molecules from the 
internal α-1,4-bonds of amylose and amylopectin and release dextrins 
(10-20 glucose units in length), free glucose and maltose units [37]. 
Wheat α-amylase has been cloned into S. cerevisiae and found secreted 
into medium successfully as early as 1987 [48]. Since then, amylase 
enzymes from different sources such as bacterial [49], yeast [50,51], 
mold [52], barley [53] and rice [54] have been cloned into S. cerevisiae. 
From the beginning of these studies, optimization of cell growth and 
enzyme activity has been determined as the key factors for an efficient 
ethanol production. The selection of the source for the enzyme is 
a critical issue as the nature and activity of the enzyme should be 
compatible with the fermentation conditions. It has been shown that 
decrease in pH, from 5.5 to 4.5 due to yeast growth, in fermentation 
resulted in a dramatic reduction in Bacillus subtilis α-amylase activity, 
whereas there was no effect, even a slight increase, on barley α-amylase 
activity [55]. S. cerevisiae strains expressing recombinant α-amylase 
genes (LKA1 and LKA2) obtained from Lipomyces kononenkoae have 
been proven to convert starch directly into ethanol [56]. However, 
the rate of ethanol production has been found to be low (17.2 g.l-1 in 
200 h fermentation period) since the capacity of starch hydrolysis by 
recombinant α-amylase was inadequate. Similarly, Ramachandran 
et al. have reported LKA1 expressing flocculent and non- flocculent 
S. cerevisiae strains for ethanol production from raw starch [57]. 
Genetically modified flocculent strains produced higher ethanol 
levels compared to non-flocculent counterparts (4.61 kg.l-1 and 5.1 
g.l-1, respectively) in a 90 h fermentation period. However, the general 
accepted concept is that S. cerevisiae should express a high amount of 
α-amylase under aerobic conditions for effective starch fermentation 
[56,58]. As a different strategy, apart from genetically engineered S. 
cerevisiae that expresses recombinant α-amylase, ethanol production 
rate sometimes increased by addition of exogenous glucoamylase 
enzyme [53,59]. Although this is a preferable option for a high starch 
fermentation rate, it is not economically favorable from an industrial 
perspective due to the high price of pure enzymes. In this line, scientists 
have focused on both α-amylase and glucoamylase expressing S. 
cerevisiae to increase ethanol yield and decrease total cost.

Co-expression of α-amylase and Glucoamylase
In order to increase the rate of ethanol production from starch 

fermentation by S. cerevisiae, additional genetic manipulations such 
as co-expressing of α-amylase and glucoamylase have emerged as a 
latter strategy. Glucoamylase and α-amylase enzymes synergistically 
enhance the rate of corn and wheat starch hydrolysis with respect 
to their individual performances [51,60-62]. Hence, scientists have 
been working on constructing S. cerevisiae strains that express both 
enzymes. The glucoamylase gene of A. awamori (GA1), Debaryomyces 
occidentalis glucoamylase (GAM1), and α-amylase (AMY) encoding 
plasmids have been transformed into industrial S. cerevisiae strain 
for a direct conversion of starch to ethanol [63]. Yeast containing 
GAM1, GA1 and AMY genes have exhibited the highest glucoamylase 
(required for debranching of starch molecules) activity (1020 U.l-1) 
compared to only GAM1 or GA1 transformed strains (790 U.l-1 and 
560 U.l-1, respectively); indicating synergistic activity. Altıntaş et al. 

have also transformed S. cerevisiae with a bifunctional fusion protein 
that contained both the B. subtilis α-amylase and the A. awamori 
glucoamylase, but they have found the biomass (3.86-6.24 g.l-1) and 
ethanol production (18.4-23.2 g.l-1) insufficient in the experimental 
model of intermittent starch feeding system [64]. In a different study, 
three different recombinant strains of S. cerevisiae have been used for 
the comparison of their ethanol production capabilities [44]. YPG/AB 
strain expresses B. subtilis α-amylase and the A. awamori glucoamylase 
separately, but YPB-G strain expresses both enzymes as a fusion protein. 
One last strain YPG/MM expresses mouse α-amylase and A. awamori 
glucoamylase. YPG/AB strains were found to be superior in ethanol 
production (43.8 g.l-1) than YPB-G (35.2 g.l-1) and YPG/MM (24.3 g.l-1) 
strains. Although the glucoamylase activity in YPG/AB and YPB-G 
strains were similar (1053 U.l-1 and 1100 U.l-1, respectively), α-amylase 
of YPG/AB showed 2.2 fold higher activity than the fusion protein 
group which was the possible explanation for the higher rate of ethanol 
production. In addition, low levels of ethanol produced by YPG/MM 
strain have been attributed to negligible glucoamylase activity. From 
a different point of view, expressing amylase and glucoamylase genes 
together with bacterial pullulanase in S. cerevisiae resulted in complete 
(99%) utilization of the initial starch [65]. However, as it was mentioned 
in the previous section, using laboratory strains and raw starch 
resources are not economically favorable and do not always reflect 
real conditions. In this sense, scientists have tried to optimize starch 
fermentation using unprocessed biomass and industrial yeast strains. 
In a high-yielding brown rice fermentation, yeast strain expressing 
α-amylase and glucoamylase exhibited acceptable ethanol production 
rate (1.1 g.l-1.h-1) [66]. Industrial yeast strains have also been genetically 
modified for starch hydrolysis due to their high ethanol production 
rate and tolerance to harsh conditions. Viktor et al. have tested ethanol 
production capacities of Aspergillus tubingensis T8.4 α-amylase and 
glucoamylase expressing laboratory strain, S. cerevisiae Y294, and the 
semi-industrial strain, S. cerevisiae Mnuα1. Y294 and Mnuα1 strains 
have produced 9.03 and 6.67 g.l-1 ethanol, respectively, from a substrate 
load of 200 g.l-1 raw corn starch after 10 days fermentation period 
without any heat treatment [37]. Industrial strains of S. cerevisiae have 
been transformed with amylase and glucoamylase genes separately and 
co-cultured for an efficient one-step starch utilization [67]. Activities 
for glucoamylase and α-amylase have been determined as 920 U.l-1 and 
7960 U.l-1, respectively.

Cell surface anchored enzyme expressing S. cerevisiae 
strains

Co-expressing of starch utilizing enzymes has also been studied 
by anchoring enzymes on the cell wall of yeast to provide long term 
durability. Expressing on the cell surface and secreting to the medium 
has various advantages and disadvantages. Secreting of the enzymes to 
the fermentation environment increases the rate and amount of ethanol 
by providing high possibility of interaction between starch molecules 
and enzymes [68]. On the other hand, secreting to the environment 
is not favorable because of the loss of stability in the early stage of 
fermentation. An additional consideration for secreted enzymes is 
including extra ingredients such as metal ions or surfactants in the 
fermentation medium to provide enzyme stability for repeated large-
scale productions. For example, calcium ions have been claimed to 
be protective for α-amylase during repeated 10-cycles of raw starch 
fermentation [69]. However, cell surface engineering of yeast for starch 
utilizing enzymes is suitable for long term stability and repeated large-
scale production without the necessity of adding additional reagents. 
In a recent study, S. cerevisiae strain co-expressing glucoamylase 
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and α-amylase on the cell surface has been used in 23 continuous 
cycles of ethanol fermentation without losing enzyme activity [70]. 
Recombinant yeast strains, glucoamylase and α-amylase anchored on 
the cell wall (or secreted to the medium), have been developed for a 
direct starch utilization [71]. Cell surface glucoamylase and α-amylase 
expressing S. cerevisiae strain has produced more ethanol (60 g.l-1 in 
a 100 h fermentation period) and a higher starch degradation rate 
than the only cell surface glucoamylase expressing strain (50 g.l-1 in 
120 h fermentation). In another study, S. cerevisiae co-displaying 
glucoamylase of R. oryzae and α-amylase of Streptococcus bovis 
anchored to cell membrane via C-terminal-half region of α-agglutinin 
and the flocculation functional domain of Flo1p, respectively, has been 
effective (61.8 g.l-1 ethanol in a 72 h fermentation period) in raw corn 
starch hydrolysis [12]. A recent study has brought a different point of 
view to starch conversion into ethanol by S. cerevisiae. A recombinant 
strain of yeast which expressed cell surface engineered aspartic protease 
has been constructed for the consuming of complex nitrogenous 
materials, other than starchy molecules found in crops, that resulted 
in high ethanol yield and shorter fermentation duration (3.8 ± 0.15% 
improvement in the final ethanol concentration compared to parental 
strain in 72 h fermentation period) [72]. 

Stable Starch Fermenting S. cerevisiae Strains
Although genetic manipulation is a relatively easy process by using 

episomal vectors which do not require integrative sites, the stability of 
the episomal plasmid is a serious problem for long-term and repeated 
fermentation such that plasmid leakage is generally observed in long-
term incubation [7,73]. Gene integration into the microbial genome 
has been undertaken in many studies to provide long-term enzyme 
activity [38,74,75]. The δ-sequences of the Ty retrotransposon, or rDNA 
sequence, of S. cerevisiae are generally used elements for chromosomal 
integration of a recombinant gene. Enzyme activities could be increased 
20-fold by means of δ-integration sequence with respect to the 
conventional transformation [76]. In another study, it has been shown 
that 90% of the initial starch content was fermented by recombinant S. 
cerevisiae that co-expressed glucoamylase and α-amylase transformed 
via δ-integration [77]. Although, there has been a 2-fold decrease in 

ethanol production and cell mass in S. cerevisiae strain transformed 
with episomal vector after 7-repeated fermentation process, the yeast 
strain transformed with δ-integration sequence containing plasmid has 
exhibited long term stability of enzyme activity up to 10 cycles [69,78] 
and a high ethanol production rate up to 23 cycles [70]. Ribosomal 
DNA sequence of yeast is another effective option for chromosomal 
integration via homologous recombination. An α-amylase gene has 
been integrated into yeast chromosome and exhibited a 2-fold increase 
in starch consumption compared to the episomal vector cloned strain 
[79]. Targeting ribosomal DNA sequence (150-200 copy in yeast 
genome) via homologous recombination has resulted in stable high 
copy number of recombinant gene [59,80]. Multiple copy integrated 
genes via rDNA homologous recombination displayed a higher 
quantity of starch consumption and ethanol production (19.2 g.l-1) 
[81]. As a novel strategy, rDNA and δ-integration combination could 
be used by targeting two separate DNA sites for efficient cloning of two 
or more genes [63]. Cell fusion technique is also used to make diploid 
and tetraploid S. cerevisiae strains to obtain high level of biomass and 
ethanol production. Diploid and tetraploid strains have proliferated 
and grown faster, fermented starch more efficiently in comparison 
with parental strains. At the end of 72h fermentation process, haploid, 
diploid and tetraploid strains have produced 0.55, 0.72 and 0.93 g.l-1.h-1 
ethanol, respectively [76].

Conclusion and Future Perspectives
Energy prices are growing fast, mainly because of depletion of 

petroleum sources. Therefore, alternative energy sources obtained 
from sun, wind and biomass have become attractive recently. 
Ethanol, produced by fermentation from biomass, as a promising 
alternative energy is a transportable and economically favorable 
source. In addition, ethanol production from various feedstocks such 
as starch maintains a considerable potential due to their availability, 
accessibility and relatively low cost in comparison to sucrose and 
glucose based feedstocks. Recombinant DNA technology offers a 
valuable opportunity for consolidated bioprocessing processes of 
the biomass fermentation. To date however, transforming new 
pathways and overexpression of a single or group of enzymes have 

Engineered Enzyme Gene Source Cultivation 
Time (h)

Ethanol Yield
(g.l-1.h-1)

Enzyme 
Activity Starch Source Reference

α-amylase Lipomyces kononenkoae 90 0.05 87 U.l-1 Raw corn starch [57]
Glucoamylase Aspergillus awamori NA* ND# 162 U.l-1 Soluble starch [38]
Glucoamylase Aspergillus awamori 50 0.23 624 U.l-1 Soluble starch [39]

Glucoamylase Saccharomyces diastaticus
(var. diastaticus) 200 0.66 ND Soluble starch [7]

Glucoamylase Rhizopus oryzae 168 0.77 60.2 U/g of wet 
cells

Cassava pulp rich in 
starch (60%) [47]

Glucoamylase Aspergillus awamori 80 0.175 ND Soluble starch [58]
Glucoamylase/

α-amylase Rhizopus oryzae/ Streptococcus bovis 72 0.85 57/114 U/g of 
wet cells Raw corn starch [12]

Glucoamylase/
α-amylase

Saccharomycopsis fibuligera/ 
Lipomyces kononenkoae 120 0.178 1340 /<30 U.l-1 Soluble starch [56]

Glucoamylase/
α-amylase Rhizopus oryzae/ Streptococcus bovis 120 0.74 790/1306 U.l-1 Raw corn starch [70]

Glucoamylase/
α-amylase Rhizopus oryzae/ Streptococcus bovis 24 1.2 4700/1800 U.l-1 High-yielding rice [66]

α-amylase/ glucoamylase/
glucoamylase with debranching activity

Debaryomyces occidentalis/ Aspergillus 
awamori/ Debaryomyces occidentalis 168 0.45 5940/1020 U.l-1 Soluble starch [63]

Glucoamylase/
isoamylase

Aspergillus awamori/ 
Pseudomonas amyloderamosa 140 0.137 ND Soluble starch [81]

*NA: Not available, 
# ND: Not determined

Table 1: Genetic modifications on S. cerevisiae for high efficient ethanol fermentation.
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not taken biomass fermentation via S. cerevisiae to a satisfactory level 
for industrial arena. Although there are hundreds of studies claiming 
higher ethanol production from starchy materials, most of these have 
been tested at laboratory scale only and not at large-scale (Table 1). 
Several laboratory yeast strains have been proven to exhibit remarkable 
starch fermenting capacity and produce high amounts of ethanol, but 
transferring engineering technology to industrial S. cerevisiae strains 
has remained insufficient. They are not convenient for repeated large 
scale applications because of low stability of the modification, high cost 
of the process, low yield of ethanol production and fermentation rate. 
Although using exogenous amylase and glucoamylase seems to increase 
total yield, developing yeast strains sufficient alone for the whole 
fermentation process is desirable. New amylase and glucoamylase from 
different sources should be presented and investigated for their activity 
(alone or in combination) and compatibility with industrial yeast 
stains. Researchers should continue to conduct studies on two main 
areas; efficient hydrolysis and fermentation of biomass, which result in 
high ethanol production rate and combination of improved bioprocess 
applications with genetic engineering tools in the view of productivity 
and large scale processes. 
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