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Abstract
The discovery of pluripotent Embryonic Stem Cells (ESCs) in mammals has been vastly transforming stem cell 

research and regenerative medicine. To understand the molecular mechanism of pluripotency, massive sequencing 
technologies have been adopted with intense scientific interest due to their advantages, including high resolution, low 
noise, as well as their extensive coverage across the entire genome. Here we review the principles of genome wide 
massive sequencing technologies widely performed in ESCs studies, including ChIP-Seq, RNA-Seq and methylC-
Seq. Recent improvements and applications of these technologies will also be discussed. In addition, a summary of 
various methodologies used to integrate the massive genome wide sequencing data will be presented. Integrating 
the massive data that delineate different aspects of ESCs can prompt numerous innovations for understanding the 
transcription networks in maintaining pluripotency as well as gene regulations and epigenetic modifications in ESCs, 
which are important for research and clinical applications. Furthermore, we highlight the features that are worthy to 
pay attention from biologists due to current challenges in massive sequencing data analysis in bioinformatics and 
biostatistics.
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Introduction
Since mouse Embryonic Stem Cells (ESCs) were successfully 

established and cultured in vitro in the early 1980s [1, 2], research on 
pluripotent stem cells has become one of the most exciting areas in 
life sciences. ESCs are derived from the inner cell mass of mammalian 
blastocysts. They have the ability to indefinitely self-renew while 
maintaining pluripotency, which means that they can differentiate 
into all three germ layers (ectoderm, endoderm, and mesoderm). 
Somatic cells differentiated from ESCs in vitro are shown to possess the 
morphology and function similar to their counterparts isolated from 
adult tissues (reviewed in [3-5]). Thus, ESCs have been prospected as 
a novel source for cell replacement therapies in clinical applications, 
including organ transplantation and the treatment of debilitating 
diseases such as diabetes, Parkinson's, and Huntington's disease [6]. 

Furthermore, mammalian somatic cells were successfully 
reprogrammed to ESC-like pluripotent cells, referred to as induced 
Pluripotent Stem Cells (iPSCs), by Yamanaka and his colleagues in 2006 
and 2007 [7,8]. Four pluripotency transcription factors Oct4, Sox2, 
Klf4, and c-Myc were first used to obtain iPSCs, and subsequent studies 
have found other factors could also facilitate this reprogramming 
process. Successful derivations of iPSCs allow us to get access to the 
pluripotent stem cell without leading to ethnic concern. Patient-specific 
iPSCs provide a valuable platform for autologous cell therapy and the 
modelling of human diseases. 

The unique properties and unprecedented potential of these 
pluripotent ESCs have attracted much attention towards its underlying 
molecular network. Transcription factors and epigenetic modulation 
complexes specific to pluripotent stem cells have been extensively 
studied to investigate the molecular regulations of pluripotency in ESCs 
and iPSCs as illustrated in Figure 1A [9,10]. 

Emerging massive sequencing technologies, also referred to 
as next generation sequencing (NGS), have played crucial roles in 
unraveling genome-wide epigenetic landscapes, DNA binding profiles 

of transcription factors, as well as transcriptome discoveries. Genome-
wide NGS datasets provide abundant information with ultra-high 
resolution (single base pair level) for depicting molecular mechanisms 
of transcription factor regulations, gene expressions, and epigenetic 
regulation. So far, three categories of genome-wide deep sequencing 
technologies have been applied in ESCs research: Chromatin 
immunoprecipitation followed by deep sequencing (ChIP-Seq), whole-
genome RNA sequencing (RNA-Seq) and whole-genome bisulfite 
sequencing (MethylC-Seq) (Figure 1B). ChIP-seq has become one of 
the most popular techniques in demonstrating histone modifications 
and transcription factor (TF)-DNA binding profiles in ESCs studies. 
ChIP-Seq offers the opportunity for researchers to study gene 
regulation and epigenetic regulation conveniently due to its advantages 
including its high resolution, low noise performance and wide coverage 
[11,12]. RNA-Seq can be applied to quantify gene expression levels 
in transcriptome-wide levels and determine exon/intron boundaries 
[13]. DNA methylation, a major epigenetic regulatory mechanism 
for gene expression and cell differentiation, plays a critical role in 
functioning and regulating pluripotency networks in ESCs [14,15]. 
Emerging MethylC-Seq data in ESCs studies provide a new insight into 
the dynamic nature of DNA methylation and demethylation during 
cell reprogramming and differentiation, which is fundamental to the 
knowledge of epigenomics in ESCs. As genome-wide deep sequencing 
data in ESCs research rapidly expands, it is important and worthy to 
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Figure 1: Overview of genome-wide massive sequencing in pluripotency studies. 
(A) Histone modifications and transcription regulations in ESCs. Histone modifications cause chromosome conformational arrangement. Transcription factors bind to 
promotor and enhancer regions. Histone modifications and transcription factors regulate gene expression co-orperatively. (B) Library constructions for genome wide 
massive sequencing. Genomic DNA are fragmented in ChIP-Seq, and bisulfite-treated in MethylC-Seq. Short DNA fragments which bind to target protein are pulled 
down by ChIP. In RNA-Seq, mRNA transcriptome are converted to cDNA library. Millions of short DNA readings in ChIP-Seq, RNA-Seq or MethylC-Seq library are 
sequenced in NGS platform, and are further analyzed using bioinformatics tools. (C) Workflow of bioinformatics processing; DMR: differentially methylated regions. 
(D) Integrative analysis of genome wide sequencing data. ChIP-Seq, RNA-Seq and MethylC-Seq data can be integrated at a single locus, and further analyzed 
systematically genome-wide by unsupervised hierarchical clustering, PCA, and gene ontology.
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have a clear insight of genome-wide deep sequencing techniques and 
their data processing methods for the researchers in the field. In this 
review, besides addressing the current "state of the art" in ChIP-Seq, 
RNA-Seq and MethylC-Seq research in ESCs studies, we also discuss 
the recent progress of technical optimizations and summarize a 
framework of computational methods and software packages for the 
processing of giant sequencing data. More importantly, due to the 
limitations of bioinformatics and biostatistics, we will highlight issues 
that need attention from biologists in this quickly expanding field.

Principles of ChIP-Seq, RNA-Seq and MethylC-Seq
Chromatin immune-precipitation followed by deep sequenc-
ing (ChIP-Seq)

Chromatin immune-precipitation (ChIP) is a technology for 
assaying histone modifications or protein–DNA binding in vivo 
[11,16]. In ChIP, antibodies are applied to pull down target proteins 
or nucleosomes, which bind to specific DNA fragments. Due to rapid 
development of NGS, CHIP-Seq has been successfully applied since 
2007 [11,16]. The DNA fragments pulled down by ChIP are sequenced 
directly with tens or hundreds of millions of readings and then mapped 
to genome. The enrichments of DNA fragments on genome pinpoint 
the binding loci of target proteins. Compared to previous ChIP assay 
technology (ChIP-chip), ChIP–Seq has advantages such as ultra-high 
resolution and low noise owing to the single base-pair resolution and 
high accuracy of NGS. The coverage of ChIP–Seq is “real” genome-wide. 
Furthermore, the prospect of ChIP–Seq is promising since the cost of 
NGS is sustainably decreasing and the development of “third or fourth” 
generation sequencing techniques is with keen anticipation. Currently, 
ChIP–Seq is widely used for the genome-wide profiling of histone 
modifications, DNA-binding proteins, and nucleosomes in ESCs 
studies. More importantly, ChIP–Seq data have been massively mined 
to analyze direct binding or co-factor effects between transcription 
factors in pluripotency network in ESCs [16,17].

Sequencing of mRNA for gene expression profiling (RNA–Seq)

Determining the relative abundance of mRNA which reflects 
gene expression level is a significant topic in cell biology. Since the 
DNA microarray was developed through hybridization with labeled 
cDNA probes in 1996 [18], it has been widely used to detect relative 
gene expression levels in the past two decades [19-21]. However, the 
process of nucleic acid hybridization may lead to unavoidable noise 
[22]. Therefore, the NGS technique, referred to as RNA-Seq, was 
quickly adopted for genome-wide transcriptome analysis. Compared 
to microarray technology, RNA-Seq has similar advantages to ChIP-
Seq, including higher resolution, lower noise and “real” genome-
wide coverage. More importantly, RNA-Seq opens the gate to 
study noncoding RNAs, which were hardly covered previously in 
microarray despite their importance in biological research [23-25]. 
The principle of conducting RNA-Seq is simple: RNA samples, such 
as whole transcriptome of cells, are reversely transcribed to construct 
a cDNA library and then sequenced by NGS platforms. The readings 
are mapped to the genome and enriched regions will be picked and 
represented as FPKM (Fragments Per Kilo base of exon per Million 
fragments mapped) values. In this way, relative gene expression levels 
and exon/intron boundaries can be discovered. It is worth noting that 
the quality of RNA sample is very important. The contamination of 
DNA, ribosome or tRNA should be prevented. At the current stage, 
RNA-Seq data are cohesively analyzed with ChIP-Seq data on genome 
map to investigate the molecular mechanisms of transcription factors 
and their functions of gene regulation in ESCs [26]. 

Whole-genome bisulfite sequencing (MethylC-Seq)

DNA methylation and covalent modifications of histone proteins 
are regarded as epigenetic modifications, and are crucial in controlling 
transcriptions. Additions of methyl groups to the adenine or cytosine 
bases of DNA are stable during different states in cell fate process. 
A bivalent state of DNA demethylation formed by active H3K4 
trimethylation (H3K4me3) and repressive H3K27 trimethylation 
(H3K27me3) [27,28] was identified in ESCs. Genome-scale mapping 
of DNA methylations and histone modif﻿ications can be carried out by 
NGS techniques. MethylC-Seq, also known as bisulphite conversion 
followed by sequencing (BS–seq), is a technique using bisulphite 
treatment of DNA [29]. The bisulphite treatment of DNA can lead to 
deamination of cytosine to uracil, which is subsequently converted to 
thymine following PCR amplification, whereas methylated cytosines 
are resistant to deamination and remain as cytosines. Treated DNA 
samples are analyzed by reading thymidine as indicators of de-
methylated cytosine positions and cytosine as indicators of methylated 
cytosine positions. By mapping sequence readings to the genome and 
calculating the ratio between thymidine and cytosine at base pair 
resolution, the methylation levels can be compared. MethylC-Seq has 
been widely applied in ESCs integratively with ChIP-Seq and RNA-Seq 
data on genome mapping [30-32]. Moreover, genome-scale mapping of 
DNA methylations plays a critical role in cancer diagnosis and therapies 
[33-35]. Recently MethylC-Seq technology coupled with ChIP, referred 
to as BisChIP-seq [36,37], has been developed and performed to 
investigate cross-talk between chromatin and DNA methylation.

Recent improvements in genome-wide sequencing 
techniques

Since other recent reviews have covered the details of conventional 
protocols of ChIP-Seq, RNA-Seq and MethylC-Seq [11,13,29], here we 
only discuss the protocols of these techniques briefly and focus on the 
recent progress in technical improvements in terms of four aspects: 
lowering sample input, increasing throughput, improving accuracy, and 
reducing costs [29]. Reduction in costs can be optimized by engineering 
commercial improvements in NGS platforms. However, there are 
other ways that can make genome-wide sequencing technologies 
more cost-effective, such as lowering sample input, increasing process 
efficiency, and improving experimental and computational accuracy. 
Thus, in this review we focus on possible approaches for lowering 
sample input, increasing throughput, and improving accuracy.  

Approaches in sequencing library construction 

It has been shown that heterogeneity of cells populations may 
exist in biological samples from in vitro derivation of ESCs and 
reprogramming of iPSCs [30,38]. Such variations may result in 
different cellular compositions and complicate contaminations of target 
cell samples. Therefore, only a limited amount of homogeneous cells 
is obtained in ESCs studies with fluorescence-activated cell sorting 
(FACS). In RNA-Seq and MethylC-Seq experiments, the sequencing 
library is constructed from whole transcriptomes and the genome of cell 
samples respectively. Therefore, the amount of mRNA or DNA samples 
easily meet the sequencing requirement. In a recent RNA-Seq study, the 
number of cells used for library construction was reduced to 10 cells 
[39]. However, in ChIP-Seq, the quality of a library is mainly dependent 
on the efficiency of immunoprecipitation (IP) antibodies. The steps 
of DNA purification and fragmentation during library construction 
apparently result in sample loss. Thus, to obtain a sufficient starting 
amount of DNA fragments (1–10 ng) following several cycles of PCR, a 
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large number of cells are required in ChIP-Seq experiments. Currently, 
107 of homogeneous cells are commonly applied in most of ChIP-Seq 
experiments in ESCs studies. Therefore, the need to lower sample input 
and increase throughput is urgent for ChIP-Seq. 

To lower the sample input, several attempts have been applied in 
ChIP-Seq. Native ChIP (N-ChIP), which avoided the formaldehyde 
crosslinking in library construction, was developed prior to the 
applications of ChIP-Seq [40,41]. N-ChIP has a higher resolution than 
cross-linked ChIP (X-ChIP), and lacks unspecific interaction due to 
formaldehyde cross-linking. N-ChIP is also more sensitive than X-ChIP, 
making N-ChIP suitable for studies with low cell numbers, such as ESCs. 
Native ChIP-Seq protocol was developed by Zhao et al. [42,43], and 
optimized by Lyle et al. [44]. The input number of cells was successfully 
reduced 200 folds to 100k per IP. However, low cell numbers in Lyle’s 
group study led to increasing levels of unmapped sequence readings 
and PCR-generated duplicated readings. Further improvements are 
needed to overcome this challenge. Furthermore, an ultra-low-input 
micrococcal nuclease-based native ChIP (ULI-NChIP) sequencing 
method was developed by Lorincz et al. [45]. In this study, genome-
wide histone mark H3K27me3 profiles was demonstrated from as few 
as 1K ESCs. Thereby, high quality libraries from rare cell populations 
were proved successfully and illustrated by this method. In addition, 
several other approaches have reduced the number of cell samples to 
10K or even 5K in ChIP-Seq [46-49]. However, pre-amplifications 
of ChIP DNA fragments were required in these experiments before 
sequencing by in vitro transcription or PCR. These comprehensive 
pre-amplifications introduced potential bias significantly. To reduce 
this bias, a small number of 10K cells was successfully used as starting 
material without pre-amplifications in ChIP-Seq [50]. To further reduce 
the sample input without pre-amplifications, Huang et al. applied 
automated microfluidic ChIP technique to obtain the high-quality 
ChIP-Seq data from only 1K ESCs in 2015 [51]. More importantly, by 
developing and applying the semi-automatic microfluidic devices in 
this experiment, the whole ChIP process has been greatly shortened 
to 8 h. As a result, this protocol shows a great potential to have high 
throughput in ChIP-Seq applications commercially. 

Approaches in processing large data sets

The most impressive feature of NGS is the unprecedented amount of 
data. Usually, raw data and images are measured in the scale of terabytes 
per run. Processing such a large amount of raw data from ChIP-Seq, 
RNA-Seq and methyC-Seq presents a great challenge. Computationally, 
data analysis performed using reasonable computer time and resources 
should be of high accuracy. Here we review the data analysis for 
genome-wide NGS data as a bottom-up process as shown in Figure 
1C, which starts with mapping sequence readings to the genome. The 
recent optimizations of data processing techniques will be discussed. 
All discussed software packages in this section are illustrated in Table 1.

Mapping: The first step to handling the genome-wide NGS data is 
mapping the short sequence readings to the genome. The reading lengths 
of ChIP-Seq, RNA-Seq and MethylC-Seq are 30-50bp, 200-300bp and 
200-300bp respectively for high resolution readings. In ESCs studies, the 
typical mammalian genome sizes are in scale of several gigabytes [52]. 
Thus, mapping of millions of short readings to a mammalian genome 
is one of the most intensive steps in the entire process. The mapping 
of ChIP-Seq and MethylC-Seq data is simpler than RNA-seq data that 
contains large gaps corresponding to introns that must be considered. 
Popular aligner software for ChIP-Seq data include Eland of Illumina 
platform, MAQ [53], Bowtie/Bowtie2 [54,55], and BWA [56,57]. For 
MethylC-Seq data mapping, the additional step is to detect the ratio 

of thymidine/cytosine at methylation sites, which can be achieved by 
specific aligner software such as BSMap [58], Bismark [59], BS-Seeker 
[60] and MethylCoder [61]. Aligners for RNA-seq data include TopHat 
[62], ERANGE [63], QPALMA [64], as well as Subread [65] and STAR 
[66] (for both ChIP-Seq and RNA-Seq data). First generation RNA-seq 
aligners such as TopHat were based on mapping algorithms for ChIP-
Seq readings such as Bowtie, and then the addition of splicing steps of 
transcriptome fragments were handled in loops. However, this method 
needed enormous amounts of memory and computational time to 
run. Later on, optimizations of mapping algorithms of RNA-seq were 
applied in Subread and STAR. Reports on these improved methods 
describe them to be highly accurate and ultra-fast [65,66]. The only 
limitation of Subread and STAR is the excessive usage of memory (over 
30GB), which makes them impossible for a typical desktop computer 
to run. Recently, a new RNA-Seq aligner, HISAT [67], was developed 
by Salzberg et al. who are also the developers of Bowtie and TopHat. 
HISAT requires much less memory than previous RNA-Seq aligners 
while maintaining high accuracy and ultra-fast speed.

It’s worthy to note that it is more challenging to map RNA-Seq 
readings than ChIP-Seq and MethylC-Seq readings. The challenges in 
mapping RNA-seq readings are caused by splice junctions, paralogous 
gene families and pseudogenes. For instance, some readings from 
one paralog may be mapped to other paralogs or pseudogenes due to 
sequencing errors, which vary around 1% so far. On the other hand, 
pseudogenes can be masked when the differences between pseudogenes 
and encoding genes are greater than the sequencing error, which is 
expected to improve with the development of new NGS platforms. It 
is an advantage for RNA-Seq since some of the pseudogenes are hardly 
masked in traditional RNA experiments [68]. 

Peak calling of ChIP-Seq signals: In ChIP-Seq, once alignment is 
completed, the results of mapped readings can be visualized on genome 
browsers such as UCSC (https://genome.ucsc.edu) or Ensembl (http://
www.ensembl.org). The visualizations can provide a semi-quantitative 
observation of informative impressions of enriched regions at a genome 
loci. However, this visualization cannot quantitatively identify the 
binding and transcription events or detect the global protein/DNA 
binding patterns across the entire genome. Therefore, enriched DNA 
fragments (peaks) at target protein binding locus need to be selected 
based on statistics. As [68], the current peak calling software packages 
for ChIP-Seq signals generally covers following basic steps: (i) detect 
signal profiles from experimental group, (ii) collect background profiles 
from control group, (iii) peaks calling criteria, (iv) post-call filtering of 
artificial peaks and (v) significance ranking of called peaks. 

For ChIP-Seq reading signals, additional adjustment will be applied 
to discriminate the artifacts of single-end readings, which are typically 
performed nowadays. Single-end sequencing of DNA fragments reads 
from one of the two strands in the 5’ to 3’ direction, which results in 
two related distributions besides the expected read upstream and 
downstream. These “shifts” will be normalized to the standard signal 
tags input to peak calling criteria. Current peak calling software apply 
various models to handle the shifts. For instance, in FindPeaks [69] and 
peakSeq [70], shift distances can be input by user; in cisGenome [71] 
and SiSSRs [72], the average of paired tags is applied; in QuEST [16], 
shifts are applied locally by cross-correlation. In MACS [73], the most 
widely used software package, a global shift is applied by evaluating 
1000 high quality pairs on genome wide. 

Next, the enriched regions of experimental data will be compared 
to control data. A region will be identified as a “peak” if the fold 
enrichment between them is statistically significant. Generally the 

http://www.iciba.com/loop
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cutoff of fold enrichment is defined by user. In popular peak calling 
software such as cisGenome, QuEST, SiSSRs, peakSeq and MACS, 
control data can be considered as the background signal of peak 
calling. In recent publications of ChIP-Seq experiments, using control 
data such as ChIP-Seq signals of protein G or GFP is a popular and 
confident way of verifying the background. Recently, a novel strategy, 
KOIN (knockout implemented normalization), was developed to 
increase signal specificity and reduce noise by knocking-out the 
target transcription factor as control [74]. Also, fold enrichment of 
control signals over experimental signals can be used to calculate the 
False Discovery Rate (FDR) in MACS and QuEST. If control data is 
not available, Poisson distribution can be applied to calculate the 
background profiles based on experimental signals. Finally, ChIP-Seq 

peaks can be ranked by p-values (the significance of fold enrichment) in 
most software (cisGenome, QuEST, SiSSRs, MACS), or fold enrichment 
values if p-values are not provided. 

Comparisons of peak calling tools have been investigated before 
[73,75,76]. Among these tools, MACS have shown remarkably lower 
FDR, better motif occurrence, and better spatial resolution of FoxA1 
and NRSF ChIP-Seq data compared to Peak Finder [77], Findpeaks and 
QuEST. On the other hand, in ChIP-Seq analysis of histone modification 
marker profile of H3K27me3, although FindPeaks, PeakSeq, USeq [78], 
and MACS identified various peaks in terms of peak size, number, 
and position relative to genes, similar conclusions about the effect of 
H3K27me3 on gene expression were reached. Although the calling of 
each genome-wide peak was very different in a comparative analysis 

Function Name Full Term Contributors Ref.
ChIP-Seq

Mapping

MAQ Mapping and Assembly with Quality Durbin et al., 
The Wellcome Trust Sanger Institute, UK [53]

Bowtie/Bowtie2 --- Langmead et al., University of Maryland, USA [54, 55]

BWA Burrows-Wheeler Aligner Durbin et al., 
The Wellcome Trust Sanger Institute, UK [56, 57]

Calling Peaks

FindPeaks --- Fejes et al., BC Cancer Agency, Canada [69]
peakSeq --- Rozowsky et al., Yale University, USA [70]

cisGenome --- Wong et al., Stanford University, USA [71]
SiSSRs Site Identification from Short Sequence Reads Zhao et al., National Institutes of Health, USA [72]
QuEST Quantitative Enrichment of Sequence Tags Sidow et al., Stanford University, USA [16]
MACS Model-based Analysis of ChIP-Seq Liu et al., Harvard University, USA [73]
USeq --- Nix et al., University of Utah, USA [78]

RNA-Seq

Mapping

TopHat --- Salzberg et al., 
The Johns Hopkins University, USA [62]

ERANGE Enhanced Read Analysis of Gene Expression Wold et al., 
California Institute of Technology, USA [63]

QPALMA Optimal Spliced Alignments of Short Sequence 
Reads Rätsch et al., Max Planck Society, Germany [64]

Subread --- Shi et al., The University of Melbourne, Australia [65]

STAR Spliced Transcripts Alignment to a Reference Dobin et al., 
Cold Spring Harbor Laboratory, USA [66]

HISAT Hierarchical Indexing for Spliced Alignment of 
Transcripts

Salzberg et al., 
The Johns Hopkins University, USA [67]

RPKM/FPKM 
calculations

IsoInfer Inference of isoforms Feng et al., Tongji University, China [79]

Scripture --- Guttman et al., 
Massachusetts Institute of Technology, USA [80]

SLIDE Sparse linear modeling of RNA-Seq data for 
isoform discovery and abundance estimation

Huang et al., 
University of California, Berkeley, USA [81]

IsoLasso Isoforms of Least Absolute Shrinkage and 
Selection Operator

Li et al., 
University of California, Riverside, USA [82]

iReckon Isoform reconstruction and abundance 
estimation Brudno et al., University of Toronto, Canada [83]

Traph Transcripts in gRAPHs Tomescu et al., University of Helsinki, Finland [84]

Cufflinks --- Pachter et al., 
University of California, Berkeley, USA [85]

MiTie Mixed Integer Transcript IdEntification Behr et al., Sloan-Kettering Institute, USA [86]

StringTie --- Salzberg et al., 
The Johns Hopkins University, USA [87]

MethylC-Seq

Mapping and 
determine of 

T/C ratio

BSMap Bisulfite sequence MAPping Li et al., Baylor College of Medicine, USA [58]
Bismark --- Krueger et al., The Babraham Institute, UK [59]

BS-Seeker Precise mapping for bisulfite sequencing Pellegrini et al., 
University of California, Los Angeles, USA [60]

MethylCoder --- Pedersen et al.,  
University of California, Berkeley, USA [61]

Table 1: Popular software packages in data processing of genome-wide massively parallel sequencing data.

http://www.ncbi.nlm.nih.gov/pubmed/?term=Salzberg%2520SL%255Bauth%255D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Salzberg%2520SL%255Bauth%255D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Salzberg%2520SL%255Bauth%255D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Salzberg%2520SL%255Bauth%255D
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between 14 peak calling algorithms with extensive ChIP-Seq data of 
NRSF, FoxA1 and STAT6, the top 1000 and 2000 highest-quality peaks 
were very stable with high accuracy. Taken altogether, the efficiency of 
the peak calling tools depends largely on the experimental dataset.

Gene expression calculations of RNA-Seq data: In RNA-Seq 
experiments, Reads Per Kilobase per Million (RPKM) and Fragments 
Per Kilobase of exon per Million fragments mapped (FPKM) values are 
used to represent gene expression levels and quantify the enrichment 
of RNA fragments located on certain gene exons. Software packages 
which can be used to calculate the RPKM and FPKM include IsoInfer 
[79], Scripture [80], Slide [81], IsoLasso [82], iReckon [83], Traph [84] 
and Cufflinks [85] and MiTie [86]. Cufflinks had been widely used 
in past ESCs research. However, it requires massive computational 
memory and time. Recently, a software running on less memory and 
time known as StringTie [87] was developed by Salzberg et al. who 
previously developed Bowtie, TopHat and HISAT. A comparison of 
Cufflinks, Traph, Scripture, IsoLasso and StringTie [87] showed that 
StringTie performs significantly better on transcriptome assemblies in 
both simulated and experimental data. Generally StringTie recognizes 
40% more mRNA assemblies than Cufflinks, despite only needing 10% 
of Cufflink’s total computational time.

In summary, recent optimizations of algorithm in the processing of 
genome-wide NGS data have improved accuracy with reduced memory 
and computing time. 

Bioinformatics Integrative Analysis 
As discussed above, increasing genome-wide sequencing data are 

available in ESCs studies. In addition to the generation of genome-wide 
data in genomics, epigenomics and transcriptomics as discussed above, 
we also witnessed the rapid increase of proteomics data from ESCs 
studies [88]. While insights can be provided from each data source, 
an integrative analysis of multiple data systems can offer a holistic 
view of gene functions. Data integration of ChIP-Seq, RNA-Seq and 
MethylC-Seq data in ESCs can provide valuable information about a) 
annotating functional features of the genome; b) inferring the functions 
of genetic variants; and c) understanding the mechanisms of gene 
regulation [26]. However, the large amount of NGS data from diverse 
technology platforms presents challenges in integrated data analysis. 
Better strategies need to be developed and optimized in data access and 
processing. 

Tips for integrative analysis of genome-wide NGS data

The key to integrate ChIP-Seq, RNA-Seq and MethylC-Seq data is to 
reduce data complexity. By calling peaks, data complexity of ChIP-Seq 
is reduced from tens of millions of sequence readings to only thousands 
of peaks that encompass the histone modification or transcription 
binding sites on a genome. Similarly in RNA-Seq data analysis, FPKM 
calculations and rankings are carried out, significantly expressed genes 
are ranked and mapped on the genome locus. In MethylC-Seq, the data 
complexity is reduced through identifying differentially methylated 
regions (DMRs). After reducing complexity, sequence readings of ChIP-
Seq, RNA-Seq and MethylC-Seq data are reorganized as thousands 
of marked regions on the genome. The genomic annotations of these 
regions can be further analyzed by clustering, principal component 
analysis (PCA), gene ontology as well as other approaches (Figure 1D). 

Unsupervised hierarchical clustering and PCA analysis

Although the data complexity can be reduced in terms of gene 
annotation, it is still hard to represent the biological importance. To 

integrate high-throughput data, especially with multiple sample groups, 
the more scalable way is to apply unsupervised clustering approaches. 
Clustering is an efficient tool for partitioning a large data set into subsets 
based on their similarity. Unsupervised approaches do not use any 
prior knowledge of the samples. Unsupervised hierarchical clustering 
has been widely used in gene-expression profiles such as microarray 
and RNA-seq data. In ESCs studies, the gene expression profiles were 
commonly compared by hierarchical clustering. For example, gene 
expression values are calculated in various cell types or conditions, 
and clustering identifies sets of co-expressed genes. In hierarchical 
clustering, relationships among objects are represented by a tree (also 
referred to as dendogram) with similar objects being grouped into 
“clusters”. The advantage of hierarchical methods over non-hierarchical 
clustering methods is that the relationships found between or within 
clusters can be visualized directly. 

One important step in hierarchical clustering is the way to measure 
the similarity or distance between any two objects or clusters. The 
pairwise distance can be calculated as Euclidean distance which  focuses 
on the absolute expression value, or Pearson correlation coefficient and 
Spearman correlation coefficient which rely on the expression profile 
shape. There are three major methods for calculating the distance/
similarity between any two clusters. Single linkage method defines 
the distance as the smallest distance of all pairwise distances between 
members of the two clusters. Complete linkage method calculates 
the maximum distance of all pairwise distances between members of 
the two clusters. Average linkage computes the average distance of all 
pairwise distances between two clusters. 

PCA [89] is an alternative way to cluster information among 
samples. As a statistical technique for determining key features of a 
high dimensional dataset, PCA can simplify data complexity and help 
to visualize high dimensional data [90]. The goal of PCA is to reduce 
high dimensional data to a few sets (usually two or three) of new 
orthogonal variables called Principal Components (PCs) that capture 
most of the variances in the original data set. Whereas the last few PCs 
are often assumed to capture only the residual ‘noise’ in the data [91]. 
In ESCs studies, PCA can be applied to clarify the different groups of 
transcription factors in various expression and regulation levels [92,93]. 

Gene ontology 

A number of annotated gene sets can be obtained by the integration 
of ChIP-Seq, RNA-Seq and MethylC-Seq data. The biological roles of 
these gene sets, including cellular components, molecular function and 
biological processes, can be mapped by gene ontology analysis. For 
instance, over-expressed gene sets in a certain condition can be selected 
to investigate the pathways involved. GO enrichment analysis highly 
depends on the GO database when carrying out the cross-relationship 
test. Briefly, the principle of GO enrichment analysis is testing sample 
frequency and background frequency. Sample frequency is the ratio 
between the number of genes in a certain GO term and total number 
of genes in the sample. Background frequency is the ratio between the 
number of genes in this GO term in the database and total gene number 
of whole database [94]. The P-value of sample frequency vs. background 
frequency obtained from a statistical test, such as Fisher's exact or chi-
square, represents the significance of this GO term in the sample. 

In ESCs studies, DAVID [95,96] and PANTHER [97] are online 
tools that have been most widely used for GO analysis. As discussed 
above, the principle of GO test is quite straightforward. The accuracy 
of GO analysis highly depends on the annotations of genes in GO 
database. The number of functional annotation tools and the knowledge 
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bases of human, mouse and rat genes in GO terms make DAVID and 
PANTHER efficient tools in ESC studies. 

Protein–nucleotide binding motif discovery: Bayesian 
approach and hidden Markov model 	

Besides clustering analysis of gene expression profiles and GO 
enrichment analysis of cellular components, molecular functions, and 
biological processes as discussed above, the binding motif between 
protein and DNA (or RNA) on genome-scale is also an important topic 
in ESCs studies. Predictions of transcription factor binding sites (TFBSs) 
and motifs are crucial for biologists to understand gene regulation and 
pluripotent network. TFs bind to DNA in a sequence specific manner. 
However, TFBSs are generally short and have sequence variations 
at various positions, which make it a challenging task for predicting 
TFBS on a genome-wide scale. NGS genome-wide data, especially 
ChIP-Seq, provide extensive and high resolution information for TFBS 
data mining and bioinformatics prediction. Bayesian approaches [98], 
especially the hidden Markov models (HMM) [99], are applied in the 
investigations of protein-nucleotide interaction patterns. Bayesian 
approach and HMM are machine learning methods and are powerful 
to recognize the pattern from large data sets. In the modeling of DNA 
sequences, two sets of probabilities are needed in an HMM model. One 
is the hidden states emitting probabilities of nucleotides, and the other 
is the state to state transition probabilities [100].

Recently, a series of bioinformatics algorithms that identify protein-
nucleoid binding motifs using genome-wide NGS data have been 
reported. In 2009, Choi et al. applied a hierarchical hidden Markov 
model to analyze simulation data and ChIP data of NRSF and CTCT. 
They demonstrated an improved TFBS identification with integrative 
resource usages over single data sources or a simple combination of 
two [101]. Furthermore, efforts to improve and optimize TF binding 
motifs by Bayesian approaches had been made [100,102-107]. Bayesian 
mixture models were also used to perform the integrative analysis 
of ChIP-Seq and RNA-Seq data in TF binding motif and expression 
levels analysis [108]. Twelve ECS-specific transcription factors were 
identified using the web-based TFBS predictor RSAT [109]. RSAT, 
which can process several thousand peaks within minutes using less 
memory, makes it easy for new bioinformatics users. Other online 
databases of TFBS motif including TRANSFEC [110] and JASPER 
[111] allow biologists to conveniently access the TFBS information as 
well. Besides TF binding motifs, recently HMM was applied to identify 
RNA sequence motifs of RBM10 binding in 2014 [112]. 

Recent applications of genome-wide deep sequencing 
data in mammalian ESCs studies
Transcription factors discovery 

Accumulating discoveries about the functions of transcription 
factors in ESCs have been reviewed in greater details by Ng and Surani 
[10] and Lee et al. [9]. Most of the studies were done using ChIP-
Seq technology. For instance, Chen et al. performed an integrative 
analysis of ChIP-Seq data in mouse and identified an ‘Oct4-centric’ 
module of core pluripotency factors [17]. Oct4, Sox2 and Nanog as 
well as Smad1, Stat3 and Tcf3 are the downstream effectors of signaling 
pathways controlled by BMP, LIF and Wnt respectively [113]. Oct4, 
Sox2 and Nanog form the primary network that governs the robust 
pluripotent state by binding to their own promoters and forming an 
auto-regulatory circuitry. They play critical roles in controlling the 
self-renewal and differentiation of ESCs (reviewed in [114,115]). The 
associated transcription factors linked to the ‘Oct4-centric’ module 

identified by ChIP-Seq include Esrrb, Nr5a2, Tcfcp2l1 and Klf4 
[17,116]. Besides, a second ‘Myc-centric’ module, also identified by 
ChIP-Seq, includes c-Myc, n-Myc, E2f1, Zfx, Rex1 and Ronin, which 
target the genes involved in protein metabolism [17, 117-119]. ‘Oct4-
centric’ and ‘Myc-centric’ modules have been reported to auto-regulate 
their own expression and therefore be the central pluripotent network 
[9,10]. Additionally, other TFs have been identified by ChIP-seq, which 
is associated with the core pluripotent network including Prdm14 
[120], SetDB1 [121], Chd7 [122], p300 [123], esBAF [124], E2F4 [125], 
Smad2/3/4, Foxh1 [126], YY1 [127], Mediator (Med1 and Med12) and 
Cohesin (Smc1a, Smc3) [128], PCL2 [129], Mbd3 [130], KAP1 and 
ZNF486 [131], GATA1 [132], BRD2/3/4 [133], KAP1 [134], TEAD4 
[135], FOXO3 [136], p53 [137], NUP98 [138], FOXA1/2 [139] and 
Tbx3 [140]. Recently, a systematic analysis of 38 transcription factors 
with extensive ChIP-Seq data across the differentiation of hESCs in 
three germ layers were reported [141]. More importantly, co-occupied 
transcription factors and their binding sites can be revealed with high 
resolution by studying the overlapping peaks of ChIP-Seq data. For 
example, so far at least 14 transcription factors have been found to bind 
at the enhancer region of Oct4 [10] and eleven of them were identified 
by ChIP-Seq (Oct4, Sox2, Nanog , Stat3, Smad, Esrrb, Klf4, Tcf3, E2f1, 
n-Myc and Zfx) [17,113,126,142]. Similarly, at least nine transcription 
factors have been shown to co-occupy the enhancer region of Nanog 
gene [10] and five of them were identified by ChIP-Seq (Nanog, E2f1, 
Esrrb, Stat3 and Tcfcp2l1) [17]. 

Genome-wide NGS datasets can also be used to directly compare the 
genomic binding sites between species. Taking endogenous retroviral 
sequence as an example, human OCT4 and NANOG bind to human-
specific ERV1 (endogenous retroviral sequence 1)-repeat transposable 
elements, whereas mouse Oct4 and Nanog bind to murine-specific 
ERVK (endogenous retrovirus K)-repeat elements [143,144]. These 
comparative studies provide valuable information about sequence 
conservations of TF binding sites between species and demonstrate the 
diversity of the transcriptional circuitries.

Histone modification and DNA methylation of epigenetics 

Histone modifications have been proposed to be essential for the 
maintenance of pluripotency of ESCs. ChIP-Seq is widely used in ESCs 
studies to probe histone modifications. It has been shown that histone 
demethylases can prevent the accumulation of repressive methylation 
at the promoters of genes that maintain pluripotency of ESCs [10] 
and hyperacetylated chromatin in ESCs is proposed to adopt an open 
structure and reduce repressive methylation [145]. Therefore, histone 
methylation modifications, such as of H3 lysine 4 (H3K4), H3 lysine 
9 (H3K9) and H3 lysine 27 (H3K27); and acetylation modifications, 
such as H3 acetyl lysine 9 (H3K9ac) and H3 acetyl lysine 27 (H3K27ac), 
are critical histone modification markers of cell pluripotent states [146]. 
Analysis of ChIP-Seq data demonstrated that the expressions of Jmjd1a 
and Jmjd2c genes, which encode histone H3 lysine 9 demethylases, are 
positively regulated by Oct4 [17]. Jarid2 and Mtf2, components of the 
Polycomb Repressive Complex 2 (PRC2) that mediate H3K27me3, are 
downstream targets of Oct4 [17,147]. Moreover, analyzing the ChIP-
Seq data of these histone markers in ESCs is an important way to depict 
the pluripotent gene network in ESCs, since the binding of histone 
modification are expected to enrich in the gene enhancer regions 
[113,136,139,148-154]. 

More importantly, massively epigenetic studies of ESCs or iPSCs 
have been carried out by the combination of ChIP-Seq, RNA-Seq 
and MethylC-Seq data recently [31,155-163]. DNA methylation 
plays the crucial role as the epigenetic switch driving somatic cells 
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to pluripotent [164]. Taking a recent epigenetic study of mouse iPSC 
reprogramming process as an example [30], by combining RNA-Seq 
(gene expression profiles), MethylC-Seq (DNA methylation profiles at 
TF promoter regions), and ChIP-Seq (histone modification profiles) 
data, the epigenomic mechanism of pluripotency in a roadmap of 
the reprogramming process was demonstrated. Genes with CpG-
rich promoters demonstrate consistent low methylation levels and 
strong engagement of histone markers, whereas genes with CpG-poor 
promoters are safeguarded by methylation.

non-coding RNA (ncRNA) studies in ESCs

RNA-Seq data can be used to systematically analyze the 
transcriptomes of ESCs and iPSCs with single-base resolution. Several 
transcriptome RNA-Seq datasets are available in mESC [148], mouse 
iPSC [149], hESC [150,151] and induced naïve-state hESC [152]. One 
crucial molecular mechanism of pluripotency in ESCs is the function of 
non-coding RNAs (ncRNA), which inhibit gene expression by binding 
to mRNAs. Crosstalk bewteen ChIP-Seq and RNA-Seq data provides 
insight into the details of ncRNA-mRNA binding events [10,24]. For 
instance, microRNA (miRNA) such as mir302 and mir290 clusters, 
which are involved in regulations of the G1 phase of ESCs, were reported 
to be regulated by Oct4, Sox2 and Nanog with ChIP-Seq data in 2008 
[113]. Moreover, analysis of ChIP-Seq data revealed that a 30-amino-
acid region of JARID2 mediated interactions with long noncoding 
RNAs (lncRNAs) and the presence of lncRNAs stimulated JARID2-
EZH2 interactions in vitro as well as JARID2-mediated recruitment 
of PRC2 to chromatin in vivo [165]. Recently, analysis of ChIP-Seq 
and RNA-Seq data revealed that pluripotency factors OCT3/4, SOX2, 
and KLF4 transiently activated LTR7, long-terminal repeats of HERV 
type-H (HERV-H), to maintain the gene expression profile required for 
the pluripotent state during the reprogramming [166,167]. In addition, 
ncRNA-mRNA gene pairs were identified through systematic analysis 
of RNA-Seq data in ESCs [80,168,169]. X chromosome inactivation 
(XCI) is another key feature of ESCs in pluripotent states. Previously 
XIST, a long noncoding RNA, was suspected to be crucial in events of 
XCI. Recently, ChIP-Seq and RNA-Seq experiments showed that loss 
of XIST expression is not the primary cause of XCI instability and that 
gene reactivation from the inactive X precedes loss of XIST coating 
in hPSC [170]. Expression and coating by the long non-coding RNA 
XACT are early events in XCI erosion and may therefore play a role in 
mediating this process. 

Current Challenges and Prospective
Up until now, alignment and analysis tools have been designed for 

the short sequence readings of NGS platforms. With the improvement 
of long sequence accuracy, software programs need to be updated 
to deal with the long readings of raw data from ChIP-Seq, RNA-Seq 
and MethylC-seq. Currently, the unmapped readings in raw data are 
commonly removed in analyses. With improvements of algorithms, 
the unmapped readings can be re-analyzed to gain further information 
including single-nucleotide polymorphism annotations and updated 
genome references. In addition, combination of ChIP-Seq data and 
chromatin conformation capture methods [171] can provide valuable 
information about distal regulatory elements and transchromosomal 
gene regulation networks. These questions may lead to critical 
information of hallmarks in ESCs study. Robust software tools for 
data analysis and closer interaction between laboratory scientists and 
bioinformaticians are clearly needed.

Besides ChIP-Seq, RNA-Seq and MethylC-Seq, other types of 
genome-wide NGS data have been carried out in ESCs studies. For 

instance, reduced representation bisulfite sequencing (RRBS-Seq) 
[172], methylated DNA immunoprecipitation (MeDIP-Seq) [173], 
as well as methyl-CpG binding domain (MBD-seq) [174] have been 
developed to detect DNA methylations. A comparison of these three 
technologies as well as MethylC-seq suggested the advantages and 
disadvantages among them [175]. In addition, circular chromosome 
conformation capture coupled with NGS (4C-seq) [176], a technique 
of NGS application in chromosome conformation capture (3C), has 
been carried out to demonstrate the organization of chromosomes and 
the physical interactions that occur within and between chromosomes 
[177-179]. Another example is the recent deep sequencing data, 
which revealed the genome-wide profiling of Clustered Regularly 
Interspaced Short Palindromic Repeats-associated protein-9 nuclease 
(CRISPR-Cas9) off-target effects [180,181]. By mapping NGS readings 
of CRISPR-Cas9 target fragments to the human genome, CRISPR-
Cas9 off-target rate has been analyzed in a very high resolution, which 
significantly improves the computational accuracy.  In the foreseeable 
future, increasing novel applications of deep sequencing data in ESCs 
studies will be desirable. 
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