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Problem framework
Nowadays, it is worldwide accepted that the survival of humans as 

a species is intimately linked to the well-being of ecosystems and the 
resources they can provide. However, it is also well assume that the 
well-being of ecosystems depends, in turn, on minimizing the damaging 
impacts of anthropogenic activities. Irrespective of the kinds of habitats 
we choose to protect or restore, we need to understand how ecosystems, 
and the organisms that inhabit them, respond to chemicals exposure, 
among other detrimental factors. Recent technological advances in 
molecular biology and analytical science have allowed the development 
of rapid, robust, and sensitive diagnostic tests (biomarkers) to monitor 
both exposure and the effects of pollutants. For the first time, we are 
able to make health assessments of individual organisms in much the 
same way that we evaluate human health. 

It is estimated that approximately 1.8 billion people worldwide 
engage in agriculture and most use pesticides to protect the food 
and commercial products that they produce. Others use pesticides 
occupationally for public health programs, and in commercial 
applications, while many others use pesticides for lawn and garden 
applications and in and around the home [1,2]. Pesticides are 

defined as “chemical substance or mixture of substances used to 
prevent, destroy, repel or mitigate any pest ranging from insects (i.e., 
insecticides), rodents (i.e., rodenticides), and weeds (i.e., herbicides) to 
microorganisms (i.e., algicides, fungicides, and bactericides)" [1,3,4]. 
Definition of pesticide varied with times and countries. Nevertheless, 
the essence of pesticide has remained and remains basically constant, 
i.e., it is a (mixed) substance that is poisonous and efficient to target
organisms and is safe to non-target organisms and environments.

Years ago, it has been reported that more than 2,000,000 million tn 
of pesticides are used only in the US each year whereas approximately 
over 11,000,000 million tn are used worldwide [1]. However, it is 
very well known that in many developing countries programs to 
control exposures are limited or even non-existent. Therefore, it has 
been estimated that among living species worldwide, only as many 
as 25 million agricultural workers experience unintentional pesticide 
poisonings each year [5]. According to the WHO [6] unintentional 
poisonings kill an estimated 355,000 people globally each year. In 
developing countries, where two thirds of these deaths occur, such 
poisonings are associated strongly with excessive exposure to, and 
inappropriate use of, toxic chemicals. Furthermore, the OECD has 
estimated that by the year 2020, nearly one third of the world's chemical 
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production will take place in non-OECD countries and that global 
output will be 85% higher than it was in 1995. Therefore, the chemical 
shift of production from developed countries to poor countries could 
cause an increase in both the risks of environmental health in the 
second category of countries [7].

Although attempts to reduce pesticide use through organic 
agricultural practices and the use of other technologies to control 
pests continue, exposure to pesticides occupationally, through home 
and garden use, through termite control or indirectly through spray 
drifts and through residues in household dust, and in food and water 
are common [8-14]. The US Department of Agriculture has estimated 
that 50 million people in the US obtain their drinking water from 
groundwater that is potentially contaminated by pesticides and other 
agricultural chemicals [9,15-26]. Children from 3-6 years old received 
most of their dermal and non-dietary oral doses from playing with toys 
and while playing on carpets which contributed the largest portion of 
their exposure [22-27].

In epidemiological and in experimental biology studies, the 
existence of an increasing interest in biomonitoring markers to achieve 
both a measurement and an estimation of biologically active/passive 
exposure to genotoxic pollutants, is nowadays a real fact. Significant 
contributions to the advancement of pesticide toxicology came and 
continue to come from many sources, e.g., academic, governmental/
regulatory, and industrial. Regulatory agencies, private sector, and 
academia worldwide combine expertise to assess pesticide safety and 
risk potential demanding adequate data of high quality to serve as the 
basis for establishing safe exposure levels. The extent of testing was and 
is often determined by the depth of the science, as well as the chemical 
and physical properties of the agent and the extent of exposure. The 
importance of pesticide toxicology has evolved from listing poisons 
to protecting the public from the adverse effects of chemicals, from 
simply identifying effects (qualitative toxicology), to identifying and 
quantifying human risks from exposure (quantitative toxicology), 
and from observing phenomena to experimenting and determining 
mechanisms of action of pesticide agents and rational management for 
intoxication. Humans and living species may, therefore, be exposed to 
a number of different chemicals through dietary and other routes of 
exposure.

Pesticides are ubiquitous on the planet and they are employed 
to control or eliminate a variety of agricultural and household pests 
that can damage crops and livestock and to enhance the productivity. 
Despite the many benefits of the use of pesticides in crops field and 
its significant contribution to the lifestyles we have come to expect, 
pesticides can also be hazardous if not used appropriately and many 
of them may represent potential hazards due to the contamination of 
food, water, and air, which can result in severe health problems not 
only for humans but also for ecosystems [28]. The actual number of 
pesticide-related illnesses is unknown, since many poisonings go 
unreported. It has been estimated that at least three million cases of 
pesticide poisoning occur worldwide each year (www.who.int). The 
majority of these poisonings occur in developing countries where less 
protection against exposure is achieved, knowledge of health risks and 
safe use is limited or even unknown. Studies in developed countries 
have demonstrated the annual incidence intoxication in agricultural 
workers can reach values up to 182 per million and 7.4 per million 
among full time workers [29] and schoolchildren [30], respectively. 
However, the number of poisonings increases dramatically in emerging 
countries where the marketing of pesticides is often uncontrolled or 
illicit and the misbranded or unlabelled formulations are sold at open 

stands (www.who.int). Yet, cases of pesticide intoxication may be the 
result of various causes in different regions of the world. In emerging 
countries, where there is insufficient regulation, lack of surveillance 
systems, less enforcement, lack of training, inadequate or reduced access 
to information systems, poorly maintained or nonexistent personal 
protective equipment’s, and larger agriculturally based populations, the 
incidences are expected, then, to be higher [31]. Despite the magnitude 
of the problem of pesticide poisoning, there have been very few detailed 
studies around the world to identify the risk factors involved with 
their use. The use of pesticides banned in industrialized countries, 
in particular, highly toxic pesticides as classified by WHO, US EPA, 
and IARC, obsolete stockpiles and improper storage techniques may 
provide unique risks in the developing world, where 25% of the global 
pesticide production is consumed [28]. Particularly, the impact of 
increased deregulation of agrochemicals in Latin America threatens to 
increase the incidence of pesticide poisoning, which has already been 
termed a serious public health problem throughout the continent by 
the WHO. Many of the pesticides used in Latin America are US exports 
and the companies can make a number of changes to ensure the “safe” 
use of their products. However, the social, economic and cultural 
conditions under which they are used, pesticides acutely poison 
hundreds of thousands each year, including many children.

There is an aspect related with use and misuse of pesticides that 
should be commenter further. The continuous subtoxic exposures of 
these agrochemicals raises the concern about which is the behavior, 
environmental fate and the potential adverse effects on both target and 
non target organisms once incorporated into the environment. The 
different chemical products used in agriculture could be distributed 
within the environment by means of drift, surface runoff, and drainage 
[32,33] and, thus, can be found far away from the point of application. 
The mobility of pesticides in soil and hence their transfer to other 
environmental compartments, depends on a variety of complex 
dynamic physical, chemical and biological processes, including 
sorption–desorption, volatilization, chemical and/or biological 
degradation, uptake, runoff, and leaching, among other factors [34-
37]. In addition, many pesticides can persist for long periods in the 
ecosystem. Furthermore, once a persistent pesticide has entered the 
food chain, it can undergo ‘‘biomagnification’’, i.e., accumulation 
in the body tissues of organisms, where it may reach concentrations 
many times higher than in the surrounding environment and directly 
compromising the health of organisms, including humans [38-40].

In the majority of Latin American countries, poisoning registries 
are so inadequate that most acute poisoning cases never get recorded. 
Meanwhile, health effects of chronic or long-term pesticide exposures 
such as cancer or birth defects are not available, omissions that serve 
to hide the epidemic proportion of pesticide-related illness in the 
region. In Argentina, e.g., available official data revealed that 79% of 
the intoxications due to pesticides are related with the use of herbicides 
followed by insecticides and fungicides (www.msal.gov.ar), values that 
correlate with the evolution of the phytosanitary market demonstrating 
that herbicides accounted for the largest portion of total use (69%), 
followed by insecticides (13%), and fungicides (11%) (www.casafe.org). 
Consequently, Argentina a larger producer of cereals, including soy, 
is actually the world eight-largest agrochemical market. The country 
has seen an explosion in genetically modified soybean production with 
soy exports topping $16.5 billion in 2008 (www.casafe.org). The fertile 
South American nation is now the world's third largest producer of soy, 
trailing behind the United States and Brazil.

Furthermore, there is an aspect that should be further considered. 
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It is well known that in agriculture, pesticides are usually applied in 
their formulated forms, where the active ingredient is combined with 
organic solvents and emulsifying and wetting agents, which affect 
the pesticide penetration and performance [41]. The additives may 
synergize or antagonize the toxicity of the active ingredient. However, 
additive compounds frequently make up part of a commercial pesticide 
formulation, they are not usually included in any discussion of the effects 
on living organisms, and their adverse effects may exceed those of the 
active ingredient. Although pesticides are developed through very strict 
regulation processes to function with reasonable certainty and minimal 
impact on human health and the environment, serious concerns have 
been raised about health risks resulting from occupational exposure and 
from residues in food and drinking water [41]. Several investigations 
have demonstrated that the additive compounds present in pesticide 
commercial formulations have the ability to induce cellular toxicity, 
including genotoxicity and genotoxicity by themselves, separate from 
the active ingredient [42-51]. Accordingly, risk assessment must also 
consider additional toxic effects caused by the excipient(s). Thus, 
both the workers as well as non-target organisms are exposed to the 
simultaneous action of the active ingredient and a variety of other 
chemical/s contained in the formulated product.

Since more than a decade, one of the major goals of our research 
group has been to evaluate comparatively the genotoxic and cytotoxic 
effects exerted by several pure pesticides Pestanal® analytical standards 
(Riedel-de Haën, Germany) and their technical formulations 
commonly used in Argentina on eukaryotic cells employing several 
biotic matrices bothin vitro and in vivo. Among them are included the 
herbicides dicamba and the 57.7% dicamba-based formulation Banvel® 
(Syngenta Agro S.A., Buenos Aires, Argentina) and flurochloridone 
and the 25.0% flurochloridone-based formulations Twin Pack Gold® 
(Magan Argentina, S.A., Buenos Aires, Argentina) and Rainbow® 
(Syngenta Agro S.A., Buenos Aires, Argentina), the fungicide zineb 
and the 70.0% zineb-based formulation Azzurro® (Chemiplant, 
Buenos Aires, Argentina), and the insecticides pirimicarb and the 
50.0% pirimicarb-based formulations Aficida® (Syngenta Agro S.A., 
Buenos Aires, Argentina) and Patton Flow® (Gleba S.A., Buenos Aires, 
Argentina). For the particular case of the insecticide imidacloprid, 
the 35.0% imidacloprid-based formulation Glacoxan imida® (Punch 
Química S.A., Buenos Aires, Argentina) was assayed. The sister 
chromatid exchange (SCE), cell-cycle progression (CCP), structural 
chromosome aberrations (CA), single cell gel electrophoresis assay 
(SCGE), spindle disturbances, micronuclei (MN), mitotic index (MI), 
MTT, and neutral red (NR) bioassays were used as end-points for 
geno and cytotoxicity in several cell systems includingin vitro non-
transformed and transformed mammalian cells, and in vivo Allium 
cepa meristematic root cells as well as circulating blood cells from 
Rhinella arenarum (Anura, Bufonidae) and Hypsiboas pulchellus 
(Anura, Hylidae) tadpoles. The aforementioned agrochemicals were 
chosen because they represent one of the most employed pesticides 
used for pest control not only in Argentina but also worldwide scale. 
A simple search within the Farm Chemical International database 
clearly reveals this concept (www.farmchemicalsinternational.com). 
So far, whereas available information indicates the existence of 34 basic 
producers and eight formulators for dicamba, six basic producers and at 
least two formulators worldwide are related with the manufacture and 
marketing of the herbicide flurochloridone. For the fungicide zineb, it 
has been reported the existence of 21 and at least seven basic producers 
and formulators, respectively. Finally, at global scale, the existence of 

19 basic producers and at least four formulators as well as 117 basic 
producers and at least 49 formulators are related with the manufacture 
and marketing of the insecticides pirimicarb and imidacloprid.

Dicamba. Genotoxicity and Cytotoxicity Profiles

Dicamba (3,6-dichloro-2-methoxybenzoic acid; CASRN: 1918-00-
9) is a selective systemic herbicide, absorbed by the leaves and roots, 
acts as an auxin-like growth regulator causing uncontrolled growth 
[52]. It is used to control annual and perennial broad-leaved weeds 
and bush species, e.g. cereals, maize, sorghum, sugar cane, asparagus, 
perennial seed grasses, turf, pastures, rangeland, and non-crop land 
[52]. Based on its acute toxicity, dicamba has been classified as a class 
II member (moderately hazardous) by WHO (http://www.who.int/
ipcs/publications/pesticides hazard/en/) and slightly to moderately 
toxic (category II-III) by US EPA [52]. Genotoxicity and cytotoxicity 
investigations have been conducted with this auxinic member using 
several end-points on different cellular systems. When mutagenic 
activity was assessed in bacterial systems with the Salmonella 
typhimurium Ames test either positive or negative results have been 
reported [53-55]. Furthermore, similar situation were observed in 
Escherichia coli and Bacillus subtilis when the reverse mutation assay 
was applied [53,56,57]. Whereas the herbicide was unable to induce 
mitotic recombination on Saccharomyces cerevisiae [58], negative and 
positive results were obtained for the induction of unscheduled DNA 
synthesis in human primary fibroblasts regardless of the presence or 
absence of S9 mix [53,59]. Sorensen et al. [60,61] found positive results 
on dicamba-treated CHO-K1 cells cultured in the presence of reduced-
clay smectites but not when the clay system were not included within 
the culture protocol. Perocco et al. [59] demonstrated the ability of the 
herbicide to induce SCEs in CHO-K1 cells and human lymphocytesin 
vitro with and without S9 fraction, respectively. It has been reported 
the ability of the herbicide to give positive results by using the gene 
mutation and recombination assays when Arabidopsis thaliana 
was used as experimental model [62]. However, both negative and 
inconclusive results were reported for the sex-linked recessive lethal 
mutation end-point in dicamba-exposed Drosophila melanogaster 
[57,63]. Perocco and co-workers [59] reported an increased frequency 
of DNA unwinding rate in rat hepatocytes. It has been also reported 
that the herbicide is able to enhance the frequency of CA in the root- 
and hoot-tip cells of barley and in rat bone marrow cells [64]. Finally, 
Mohamed and Ma [65] reported the MN induction in Tradescantia sp. 

In our laboratory, we have studied the genotoxicity and 
cytotoxicityin vitro of the herbicide dicamba and the dicamba-
containing commercial formulation Banvel® in human lymphocytes 
as well as in CHO-K1 cells (Figure 1). We were able to demonstrate 
that dicamba is a DNA-damaging agent since enhancement of the 
frequency of SCEs (Figure 1A), MN (Figure 1C), and single DNA 
strand breaks (Figure 1B) in mammalianin vitro cells [66,67]. Similarly, 
we demonstrated the induction of alterations in the CCP (Figure 1E), 
reduction of the MI status (Figure 1D), and cell viability afterin vitro 
dicamba and Banvel® exposure [66-68].

Flurochloridone. Genotoxicity and Cytotoxicity Profiles

F l u r o c h l o r i d o n e ( 3 - c h l o r o - 4 - ( c h l o r o m e t h y l ) - 1 - [ 3 -
(trifluoromethyl)phenyl]-2-pyrrolidinone; CASRN: 89286-81-7) 
is a pre-emergence herbicide used to control a range of weeds in 
umbelliferous, cereal, sunflower, and potato crops, among others 
[69]. Toxicological information for flurochloridone has been poorly 
documented. So far, it has been reported that the herbicide does not 
reveal genotoxic, carcinogenic, or neurotoxic potential in rodents [69]. 
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The herbicide induces low or moderate acute toxicity in rats when 
administered by oral, dermal, or inhalational routes [69]. However, it 
causes adverse effects in male reproductive functions and hormonal 
system alterations [69]. Accessible information on the genotoxic 
properties of flurochloridone is scarce. To the best of our knowledge, 
a single report has been reported so far. When root meristematic cells 
of Allium cepa were exposed to the herbicide, abnormal CCP and 
cellular mitodepressive activity were found [70]. The most frequently 
observed abnormalities were c-metaphases, multipolarity, polyploidy, 
and chromosome lagging. In addition, chromosomal stickiness, 
chromosome breaks, bridges, fragments, sister union, and MN were 
also observed after flurochloridone exposure [70]. 

 Recently, we demonstrated that both flurochloridone and 
its formulations Twin Pack Gold® and Rainbow® are DNA-damaging 
agents (Figure 2), since an enhancement of the frequency of SCEs 
(Figure 2A), alterations in lysosomal (Figure 2G) and mitochondrial 
activities (Figure 2F), a delay in the CCP (Figure 2E) as well as a 
decrease of the MI (Figure 2D) were observed to occur inin vitro 
treated mammalian CHO-K1 cells [48]. Furthermore, by using the 
samein vitro cellular system, we recently demonstrated the ability of 
flurochloridone to induce DNA single-strand breaks (Figure 2B) and 
MN frequency (Figure 2C) [47]. Similarly, both flurochloridone and 
the flurochloridone-based formulation were able to exert the same 
genotoxic and cytotoxic pattern on HepG2 cellsin vitro (Figures 2B,C), 
hepatocellular carcinoma cell line maintaining phase I and II enzymes 
[71]. Finally, when the MN induction (Figure 2C) and DNA strand 
breaks (Figure 2B) estimation by the SCGE assay were employed as in 
vivo end-points, positive results were reported in erythrocytes of Twin 
Pack Gold®- and Rainbow®-exposed R. arenarum tadpoles by Nikoloff 

and collaborators [72].

Zineb. Genotoxicity and Cytotoxicity Profiles
Zineb (ethylene bis(dithiocarbamate) zinc; CASRN: 12122-

67-7) is a widely employed foliar fungicide with prime agricultural 
and industrial applications [73]. Although zineb has been mainly 
registered to be used on a large number of fruits, vegetables, field 
crops, ornamental plants, and for the treatment of seeds, it has also 
been registered to be used as a fungicide in paints and for mold control 
on fabrics, leather, linen, painted surfaces, surfaces to be painted, and 
on paper, plastic, and wood surfaces [73]. It has been classified as a 
compound practically nontoxic (class IV) by US EPA [73] based on its 
potency by the oral and inhalation exposure routes. The available data 
on the deleterious effects of zineb do not allow a definitive evaluation 
of its carcinogenic potential and it has been not classified as to its 
carcinogenicity to humans (category III) by IARC [74]. This fungicide 
alters thyroid hormone levels and/or weights. The reproductive system 
is generally unaffected after zineb exposure [73].

Genotoxicity and cytotoxicity studies have been conducted with this 
dithiocarbamate member using several end-points on different cellular 
matrices. Zineb have been generally recognized as non-mutagenic 
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in bacteria, yeast and fungi as well as in mammalian cells [73]. Plate 
incorporation assay with S. typhimurium demonstrated a direct 
non-mutagenic effect of the fungicide whereas mitotic chromosome 
malsegregation, gene conversion and point mutation assays with S. 
cerevisiae and B. subtilis gave positive results [75, 76]. Tripathy et al. 
[77] reported zineb as positive genotoxic agent to somatic and germ 
cells in Drosophila sp. While Chernov and Khitsenko [78] observed 
an increased incidence of lung tumors after its oral administration to 
C57BL mice, negative results have been also reported to occur either 
in other mouse strains [79] or in rats [80]. A variety of sarcomas 
were observed after subcutaneous administration in mice and rats 
[81]. Also, Enninga and coworkers [82] showed that zineb induced 
structural CA in CHO cells both with and without S9. In contrast to 
these studies, it was reported that the fungicide did not induce MN in 
bone marrow cells of Wistar male rats after oral administration [83]. In 
humans, haemolytic alterations have been reported after zineb contact 
[84]. Finally, an increase in the frequency of CA was observed in the 
lymphocytes of persons occupationally exposed to zineb [85]. Several 
assays have been developed to assess the ability of zineb to cause 
cytotoxic effects on different cellular systems. Zineb exerted a high 
dose-related cytotoxicity in BALB/c 3T3 mouse cellsin vitro but only 
in the absence of an exogenous metabolizing system [86]. However, 
Whalen and coworkers [87] reported negative results when human 
natural killer cells were exposed to zineb. However, alterations in the 
mitochondrial transmembrane potential and cardiolipin content were 
reported to occur after zineb administration in rats [88]. 

We evaluated comparatively the genotoxic and cytotoxicin vitro 
effects inducedin vitro by the pure fungicide and its commercial 
formulation Azzurro® on CHO-K1 cells, human non-transformed 
fibroblast and circulating lymphocytes as well as on in vivo A. cepa 
meristematic root cells (Figure 3). Our observations revealed the ability 
of both zineb and the zineb-based formulation to induce CA in human 
lymphocytes (Figure 3D) [89,90]. Similarly, the fungicide increased 
the frequency of SCEs (Figure 3A) and modified the CCP (Figure 3F) 
and the MI status (Figure 3E) on human lymphocytes and CHO-K1 
cells [89,90]. We have also demonstrated that both zineb and Azzurro® 
were not only able to induce MN in human lymphocytesin vitro, but 
also that such induction was restricted to B CD20+ and T suppressor/
cytotoxic CD8+ cell subsets [91]. Furthermore, when assessing DNA 
damage and repair kinetics analyzed using the SCGE assay on zineb- 
and Azzurro®-CHO-K1 exposed cells, we observed that single strand 
breaks introduced into the DNA molecule likely reflect those induced 
by alkylating agents rather than those produced by active oxygen 
species (Figure 3B) [92]. Finally, we have also observed using a 
β-tubulin immunodetection assay that the exposure to Azzurro® 
interferes with normal assembly of microtubule structures during 
the mitosis of A. cepa meristematic root cells [93] and in mammalian 
transformed and non-transformed exposed cell lines [94]. 

Pirimicarb. Genotoxicity and Cytotoxicity Profiles
Pirimicarb(2-dimethylamino-5,6-dimethylpyrimidin-4-

yldimethylcarbamate; CASRN: 23103-98-2) is a derivative of carbamic 
acid insecticide member with both contact and systemic activity. Based 
on its acute toxicity, pirimicarb has been classified as a moderately 
hazardous compound (class II) by WHO [95] and slightly to moderately 
toxic (category II-III) by US EPA [96]. Pirimicarb is registered as a 
fast-acting selective aphicide mostly used in a broad range of crops, 
including cereals, sugar beet, potatoes, fruit, and vegetables, and is 
relatively non-toxic to beneficial predators, parasites, and bees [28,97]. 

Its mode of action is inhibiting acetylcholinterase activity [28,97].

Available information on the genotoxic and cytotoxic properties of 
pirimicarb is limited and inconsistent. Only few data are available in 
the literature [28,97]. Genotoxicity and cytotoxicity studies have been 
conducted with this carbamate using several end-points on different 
cellular systems. Pirimicarb has been generally recognized as non-
genotoxic in bacteria, yeast and fungi as well as in mammalian cells 
[28,97]. It has been reported to be non-mutagenic in bacteria systems 
[98,99]. Negative and positive results were obtained for the induction 
of mutagenicity in mouse lymphoma L5178Y cells regardless of the 
presence or absence of S9 mix [100]. Furthermore, evaluation of the 
induction of DNA single strand breaks revealed positive results in 
human lymphocytes exposedin vitro [101]. It has been reported the 
ability of the insecticide to give positive results by using the eye mosaic 
system white/white+ (w/w+) somatic mutation and recombination 
test (SMART) when D. melanogaster was employed [102]. However, 
others authors reported negative results when mutation bioassays was 
performed in rats [103,104]. At the chromosomal level, pirimicarb did 
not induce CA in bone marrow cells of rats after oral administration 
[105,106]. Contrarily, Pilinskaia [107] observed a significant increase 
of CA in the peripheral blood lymphocytes from occupational workers 
after pirimicarb exposure.

We evaluated comparatively the genotoxic and cytotoxicin vitro 
effects induced by the pure insecticide and its commercial formulation 
Aficida® onin vitro CHO-K1 cells (Figure 4) as well as on in vivo 
biotic matrices including the fish C. decemmaculatus and amphibian 
R. arenarum tadpoles (Figure 5). Our observations revealed positive 
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Figure 3: Comparative genotoxicity and cytotoxicity effects induced by 
zineb (black) and the zineb-based fungicide formulation Azzurro® (dark 
grey) commonly used in Argentina onin vitro (cylinders) mammalian Chinese 
hamster ovary (CHO-K1) cells and human lymphocytes (HL) and in vivo 
(prisms) A. cepa meristematic root cells. Results are expressed as fold-time 
values over control data (white pyramid). Evaluation was performed using 
end-points for genotoxicity [SCEs (A), SCGE (B), MN (C), and CA (D)] and 
cytotoxicity [MI (E) and PRI (F)].
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results for both compounds results when the either the CA (Figure 4B) 
and the SCE (Figure 4A) assays were performed in CHO-K1 cells [51]. 
Furthermore, the induction of alterations in the CCP (Figure 4D) and 
MI status (Figure 4C) on CHO-K1 cells was reported to occur afterin 
vitro exposure to pirimicarb [51]. Finally, when the MN induction 
(Figure 5A), alterations in the erythrocytes:erythroblasts ratios, and 

SCGE end-points (Figure 5B) were employed after in vivo exposure 
to the pirimicarb-based formulations Aficida® and Patton Flow®, 
positive results were reported by Vera Candioti and collaborators in 
C. decemmaculatus [108,109] and R. arenarum tadpoles exposed under 
laboratory conditions [110].

Imidacloprid. Genotoxicity and Cytotoxicity Profiles
Imidacloprid, (2E)-1-[(6-Chloro-3-pyridinyl)methyl]-N-nitro-

2-imidazolidinimine; CASRN: 138261-41-3), is a nicotine-derived 
systemic insecticide belonging to the neonicotinoids pesticide group. 
These insecticides act as an insect neurotoxin and belongs to a class of 
chemicals, chloronicotinyl nitroguanidine chemical family, which affect 
the central nervous system of insects [111,112]. It is effective on contact 
and via stomach action (http://extoxnet.orst.edu/pips/imidaclo.htm). 
Because imidacloprid binds much more strongly to insect nicotinic 
neuron receptors than that of mammal neurons, this insecticide results 
selectively more toxic to insects than mammals [112,113]. Imidacloprid 
has been ranked as a class II chemical (moderately hazardous) by the 
WHO [114] whereas the US EPA [115] has included the insecticide 
into the Group E of compounds with no evidence of carcinogenicity.

Imidacloprid decreases the reproduction rates in Caenorhabditis 
elegans and Eisenia fetida [116]. After S9 metabolic activationin vitro, 
imidacloprid produces calf thymus DNA adducts [117], increases 
the frequency of spermatic abnormalities in E. fetida [118], and is 
mutagenic in S. typhimurium strains, with or without S9 fraction [119]. 
The insecticide also induces significant increases in the frequency 
of SCE and MN formation in human peripheral blood lymphocytes 
[120,121], mice and rat bone-marrow cells [119,122], peripheral blood 
erythrocytes from Rana N-Hallowell tadpoles [123], and Vicia faba root 
cells [118]. Furthermore, imidacloprid causes DNA strand breaks in the 
coelomocytes of E. fetida [118], erythrocytes from Rana N-Hallowell 
anuran tadpoles [123], human peripheral blood lymphocytes [120], 
and leukocytesin vitro [121]. However, it does not cause DNA strand 
breaks in V. faba root cells [123].
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Figure 4: Comparative genotoxicity and cytotoxicity effects induced by 
pirimicarb (black) and the pirimicarb-based insecticide formulation Aficida® 
(dark grey) commonly used in Argentina onin vitro (cylinders) mammalian 
Chinese hamster ovary (CHO-K1) cells. Results are expressed as fold-time 
values over control data (white pyramid). Evaluation was performed using 
end-points for genotoxicity [SCEs (A) and CA (B)] and cytotoxicity [MI (C), PRI 
(D), MTT (E), and NR (F)].
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Figure 5: Comparative genotoxicity and cytotoxicity effects induced by pirimicarb (black) and the pirimicarb-based insecticide formulations Aficida® (dark grey) and 
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In our laboratory, we have recently studied the in vivo genotoxic 
effects induced by the imidacloprid-based commercial formulation 
Glacoxan imida® on H. pulchellus tadpoles exposed under laboratory 
conditions (Figure 6). Our observations demonstrated that the 
insecticide is able to exert DNA and chromosomal damage evaluated 
by the MN (Figure 6A) and SCGE (Figure 6B) bioassays [124]. 

Final Remarks
Overall, a comparative analysis of results revealed, depending 

upon the end-point employed, that the damage induced by the 
commercial formulations of the pesticides is, in general and regardless 
of the type of the active ingredient, greater than that produced by 
the pure compounds by themselves. Unfortunately, the identity of 
the components present within the excipient formulations was not 
made available by the manufacturer. These final remarks are in accord 
with previous observations not only reported by us but also by other 
research groups indicating the presence of xenobiotics within the 
composition of the commercial formulations with genotoxic and 
cytotoxic effects as previously mentioned [44,46,51,66-68,89,90,125-
130]. Hence, risk assessment must also consider additional geno-
cytotoxic effects caused by the excipient/s. Thus, both the workers as 
well as non-target organisms are exposed to the simultaneous action of 
the active ingredient and a variety of other chemical/s contained in the 
formulated product.

Finally, the results highlight that a whole knowledge of the 
toxic effect/s of the active ingredient of a pesticide is not enough in 
biomonitoring studies as well as that agrochemical/s toxic effect/s 
should be evaluated according to the commercial formulation available 
in market. Furthermore, the deleterious effect/s of the excipient/s 
present within the commercial formulation should be neither discarded 
nor underestimated. The importance of further studies on this type 
of pesticide in order to achieve a complete knowledge on its genetic 
toxicology seems to be, then, more than evident.
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