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Avian Primordial Germ Cells
Primordial germ cell biology and manipulation

Primordial germ cells (PGCs), the precursors of germ cells, form 
during early embryonic development. To date, studies on the PGCs 
of many species have investigated specification, proliferation, and 
differentiation, and have created various applications using model 
animal systems. Avian species are optimal vertebrates in which to 
examine germ cell development during embryogenesis, because of their 
oviparity. Earlier studies on PGCs focused principally on the locations 
and numbers of such cells. To identify PGCs in early stage embryos, 
PGC-specific markers including the periodic acid-Schiff (PAS) reagent 
[1,2] and anti-stage specific embryonic antigen-1 (SSEA-1) antibody 
[3], were used. During early embryonic development, chicken PGCs 
exhibit a unique migratory activity (toward the genital ridges) [4]. 
PGCs in the central zone of the area pellucida move toward and gather 
in the anterior region of the embryo, the germinal crescent of Hamburg 
and Hamilton stage 4 (HH 4). Subsequently, PGCs invade blood 
vessels, and migrate therein, settling in the genital ridges, where they 
finally differentiate into functional gametes [5]. The unique migration 
pathway of chicken PGCs (through the circulation) is unlike that of 
mammalian PGCs (which migrate through the dorsal mesentery [6]), 
and makes it possible to isolate, manipulate, and re-transplant such 
cells. 

PGC isolation procedures including magnetic-activated cell sorting 
(MACS) and fluorescence-activated cell sorting (FACS) have been used 
to perform large-scale analyses of mRNA, protein, and microRNA 
expression in chicken PGCs [7-9]. One unique feature of PGCs is their 
potential to serve as stem cells. Although PGCs are unipotent, in the 
sense that the cells give rise to mature germ cells during life, PGCs 
apparently also express pluripotent markers and can in fact exhibit 
pluripotency, to form embryonic germ cells (EGCs) under specific 
culture conditions. In the mouse, PGCs can de-differentiate into EGCs 
when cultured with a specific cocktail of growth factors including 
bFGF, Steel factor, and leukemia inhibitory factor (LIF) [10]. EGCs 
can form embryoid bodies in vitro and teratocarcinomas in vivo [11]. 
EGCs are also transmissible via the germline to the next generation. In 
the chicken, EGCs have been derived from PGCs grown in vitro [12]. 
As in the mouse, chicken EGCs can contribute to germline chimeras 

exhibiting characteristics similar to those of murine embryonic stem 
cells [13]. 

To date, long-term in vitro culture systems for avian PGCs have 
been established only for the chicken, rendering it possible to generate 
germline chimeras exhibiting efficient germline transmission. Upon 
addition of basic fibroblast growth factor (bFGF) to culture media, 
chicken PGCs can proliferate in vitro and induce germline chimeras 
when transplanted into recipients [14]. In addition, transgenic 
chickens have been produced using in vitro-cultured and genetically 
modified PGCs [15-17]. Germ cell manipulation techniques have 
been extended to aid in the restoration of endangered avian species. 
Interspecies germline chimeras have been successfully produced 
by injection of PGCs of various avian species into recipient chicken 
embryos or vice versa [18-22]. Interestingly, PGCs from different avian 
species can successfully migrate into genital ridges and proliferate in 
differentiated gonads when reintroduced to the recipients [18,21]. 
Thus, the endangered birds could be conserved and restored through 
the interspecies germline chimera production system. Nevertheless, 
there are still several practical obstacles to be solved for applying to 
various avian species; in vitro PGC culture technique optimization for 
different avian species, differences in egg size and sexual maturation 
periods between a donor and a recipient, and low efficiency of the 
repopulation of donor PGCs in recipient gonads [22].

Avian germ cell specification 

As germ cells play crucial roles in delivering genetic material to 
the offspring, development of such cells is strictly regulated from 
the initial stages of growth. In terms of germ cell specification, two 
different mechanisms have been adopted by various species; these 
are the pre-formation and induction modes [23]. In species using 
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the pre-formation mode, such as Caenorhabditis elegans, Drosophila 
melanogaster, and Xenopus laevis, a maternally inherited complex, the 
germplasm, plays a critical role in PGC specification. The existence 
of such a model has been confirmed by removal, or transplantation 
analysis, of germplasm [24,25]. However, induction in the mouse (one 
of the best-studied species) involves PGC segregation from somatic 
cells triggered by a series of inductive signals from neighboring tissues 
[26]. 

Germ cell specification in birds has been less studied than in other 
animals, principally because of a lack of reliable PGC markers. After 
the first identification of chicken PGCs by Swift [27], a study using 
chick-quail chimeras showed that avian germ cells originated from the 
epiblastic area [28]. Further studies supported the notion that PGCs 
appeared in the EGK X region, and confirmed the mode of induction 
in the chicken [3,29]. Next, the germplasm structure of the oocyte was 
identified, and germplasm-containing cells were observed during early 
cleavage stages, using an anti-chicken vasa homolog (CVH) antibody 
[30]. Vasa are one of the most important proteins in the germplasm 
and are conserved among many species [31,32]. Thus, future studies 
should focus on the molecular mechanisms underlying germ cell 
specification in the chicken. 

Expression and Regulation of Marker Genes in Avian 
Germ Cells
Expression of marker genes during various developmental 
stages

A number of marker genes are expressed specifically in avian germ 
cells during various developmental stages in order to maintain the 
properties/characteristic features of germ cells. Such marker genes can 
be classified in various ways, and include pluripotency-related genes, 
germline-related genes, migration-related genes, methylation-related 
genes, and meiosis-related genes. Avian PGCs can self-renew and 
differentiate into embryonic germ cells. Therefore, PGCs can express 
particular pluripotency-related genes, including “POU domain class 
5 transcription factor 1” (POUV), “nanog homeobox” (NANOG), 
and “SRY (sex determining region Y)-box 2” (SOX2) [33,34]. These 
genes are expressed by PGCs until the cells settle in the gonads 
[33,34], suggesting that they are required for maintenance of the 
pluripotency and self-capacity of PGCs until such cells differentiate 
into germ cells. Expression of germline-related genes can be detected 
in germ cells of all developmental stages. To date, several germline-
related genes have been reported in avian species; these include 
the “chicken vasa homolog” (CVH), “deleted in azoospermia-like” 
(DAZL), and “chicken dead end homolog” (CDH) [30,35-37] genes. 
Immunohistochemical analysis using an anti-CVH antibody detected 
CVH-positive cells from the time of fertilization to formation of the 
adult testis/ovary [30], suggesting that CVH is crucial for the normal 
development and maintenance of germline cells. In addition, several 
immunological markers, including stage-specific embryonic antigens 
(SSEA-1, SSEA-3, and SSEA-4); epithelial membrane antigen (EMA-
1); integrin alpha 6; and integrin beta 1, are selectively expressed by 
PGCs [38]. Notably, the cell-surface glycoprotein marker SSEA-1 is 
commonly used to trace and retrieve avian PGCs at different stages of 
embryonic development [38,39]. Avian PGCs are transported by the 
vascular system into developing gonads. Cell entry into, migration 
within, and exit from the vascular system are governed by a receptor 
complex composed of chemokine (C-X-C motif) receptor 4 and the 
CXCR4 ligand; this complex is termed the “chemokine stromal cell-
derived factor 1 (SDF1)” complex. Chicken CXCR4 is expressed in 

PGCs, and SDF1 was shown to be present in places in which PGCs 
were located after leaving blood vessels [34,40].

DNA methylation is crucial in terms of embryonic development, 
facilitating genomic imprinting, X-chromosome inactivation, 
chromatin modification, and gene expression [41,42]. Also, DNA 
methylation is closely associated with modification of DNA-bound 
histones, catalyzed by histone acetyltransferases (HATs) and histone 
deacetylases (HDACs) [43,44]. DNA methylation involves the actions 
of three major enzymes; these are (cytosine-5-)-methyltransferase 1 
(DNMT1), DNMT 3-alpha (DNMT3A), and DNMT 3-beta (DNMT3B). 
DNMT1 is involved in maintenance of DNA methylation patterns, 
whereas DNMT3A and DNMT3B are required for establishment 
of new methylation patterns [42,45]. DNMT1 and DNMT3A are 
expressed ubiquitously in early stage chicken embryos. In contrast, 
DNMT3B expression in PGCs is strongest prior to differentiation of 
such cells into germ cells. After PGC differentiation, DNMT3B was 
detected in female germ cells until adulthood was attained [46]. Apart 
from the genes and proteins mentioned above, recent work by Jang 
et al. identified many novel genes involved in the establishment and 
maintenance of DNA methylation in avian PGCs [47]. Germ cells 
undergo mitosis and meiosis to complete gametogenesis. Avian PGCs at 
early embryonic stages undergo rapid mitotic proliferation to increase 
population numbers. After PGCs enter the bilateral gonads, the cells 
begin to differentiate into oogonia in females at embryonic day (E) 8.0, 
and prospermatogonia in males at E13.0 [35,48]. Oogonia engage in 
further mitosis to increase cell numbers, finally becoming arrested at 
meiotic prophase I as early as E15.5, until cells are selected for formation 
of primitive follicles [49,50]. In contrast, prospermatogonia become 
arrested at mitosis until hatching, and proliferation then resumes, along 
with proliferation of Sertoli cells [49-51]. Spermatogonia enter meiotic 
prophase only after completion of Sertoli cell proliferation, at ~8 weeks 
after hatching [50,51]. Identification of avian germ cells undergoing 
meiotic processes remains difficult; however, this can sometimes be 
achieved by correlating the temporal expression patterns of a pre-
meiotic marker gene (“stimulated by retinoic acid gene 8”; STRA8) and 
synaptonemal complex genes (SYCPs) [49,50]. STRA8 was expressed 
at high levels from E12.5 through to the meiotic stage, whereas high-
level SYCP3 expression was noted from the onset of meiosis (E15.5) 
through to the meiotic stage [49,50]. 

miRNA-mediated regulation of marker genes in avian germ 
cells 

miRNAs (microRNAs) are families of single-stranded small non-
coding RNAs present in most cells. miRNAs range from 19-25 nt in 
length and are usually derived from gene transcripts that fold back on 
themselves to form distinctive hairpin structures [52,53]. The numbers 
of identified miRNAs are ~1-2% of the numbers of genes of various 
species [54]. miRNAs binds to complementary seed sequences at 5′UTRs 
(untranslated regions), or coding regions, or 3′UTRs, of mRNAs (but 
preferentially to 3′UTRs), to engage in post-transcriptional regulation 
during various cellular activities [54,55]. This post-transcriptional 
regulatory machinery has been investigated extensively in mammalian 
species during all of embryonic development, cell proliferation, 
apoptosis, expression of stress-resistance mechanisms, cancer 
development, and maintenance of pluripotency by ESCs [52,53,56]. 
miRNAs targeting avian genes can be identified using the MicroRNA 
Target Prediction and Functional Study Database (miRDB; http://
mirdb.org/miRDB/). This database employs the MirTarget2 algorithm 
to predict miRNA:mRNA pairs in the human, mouse, rat, dog, and 
chicken [57]. Recently, several studies have explored the expression 



Citation: Park TS, Lee HC, Rengaraj D, Han JY (2014) Germ Cell, Stem Cell, and Genomic Modification in Birds. J Stem Cell Res Ther 4: 201. 
doi:10.4172/2157-7633.1000201

Page 3 of 6

Volume 4 • Issue 5 • 1000201
J Stem Cell Res Ther
ISSN: 2157-7633 JSCRT, an open access journal 

levels of candidate miRNAs in avian germ cells and the testis/ovary, 
however, these miRNAs are potentially involved in regulation of 
marker genes which determine the characteristic features of germ cells. 
For example, Shao et al. identified 29 novel miRNAs and 140 potential 
miRNA loci in the chicken genome [58]. Of the identified miRNAs, 
several, including miR-26a, miR-143, and miR-199, were strongly 
expressed in the adult ovary [58]. Smith et al. found that miRNA-
mediated knockdown of doublesex and mab-3-related transcription 
factor 1 (DMRT1) expression triggered feminization of embryonic 
gonads in genetically male (ZZ) chicken embryos [59].

In a study by Bouhallier et al. [60], transfection of miR-34c 
(which is involved in control of the late steps of spermatogenesis) 
into a modified (CVH-overexpressing) chicken ESC line increased 
the expression levels of germ cell- and pluripotency-specific genes. 
This suggests that miR-34c enhances the germinal phenotype of cells 
already committed to such lineage [60]. Rengaraj et al. reported that 
four miRNAs (miR-15c, miR-29b, miR-383, and miR-222), (targeting 
the de novo methylation-related gene DNMT3B) were differentially 
expressed during germline development in chickens. In particular, 
miR-15c, miR-383, and miR-222 levels increased in male gonads 
during embryonic development. Further, co-transfection of various 
constructs with these miRNAs effectively downregulated DNMT3B, 
as revealed using a dual fluorescent reporter assay [46]. Employing 
microarray and expression analyses, Lee et al. [9] identified about 10 
miRNAs (miR-92, miR-19a, miR-19b, miR-18a, miR-18b, miR-30c, 
miR-101, miR-128, miR-383, and miR-181*) that were highly expressed 
in chicken PGCs. Of these, miR-181a* played a crucial role, inhibiting 
somatic differentiation by silencing the homeobox A1 (HOXA1) gene, 
and preventing PGCs from entering meiosis by silencing the “nuclear 
receptor subfamily 6, group A, member 1” (NR6A1) gene [9]. Another 
study found that two miRNAs, miR-302b and miR-17-5p, significantly 
regulated the expression level of glucose phosphate isomerase (GPI), a 
critical enzyme of glycolysis/gluconeogenesis in germ cells. In addition, 
miR-302b- or miR-17-5p-mediated knockdown of GPI reduced in 
vitro chicken PGC proliferation [61].

piRNA-mediated regulation of marker genes in avian germ 
cells

piRNAs (P-element-induced wimpy testis [PIWI]-interacting 
RNAs) are small non-coding RNAs derived either from repetitive 
sequences (transposable elements) or non-repetitive sequences 
(protein-encoding genes). Unlike miRNAs and small interfering 
RNAs (siRNAs), piRNAs are synthesized via a dicer-independent 
pathway, and piRNAs are a little longer than miRNAs and siRNAs [62]. 
Transposable elements are also termed non-coding genes, or jumping 
genes, because they repeatedly change positions within a genome, 
damaging coding DNA, and ultimately compromising normal cell 
functioning. Thus, the principal function of transposable element-
derived piRNAs is to silence transposable elements [62,63]. piRNAs 
are required for development and maintenance of germ cells, and 
play crucial roles as post-transcriptional regulators in the germ cells of 
different vertebrates [64]. In germ cells, piRNAs interact significantly 
with several germ cell-marker genes including the PIWI homolog and 
VASA homolog [65]. To our knowledge, little is known on how to 
identify piRNA classes or the post-transcriptional regulatory functions 
of piRNAs on avian germ cells-expressed marker genes. However, Kim 
et al. [66] recently described the expression patterns and functions 
of the CIWI and CILI, the known piRNA-interacting gene homologs 
of the chicken. In the cited work, both CIWI and CILI were strongly 
expressed in germ cells. Moreover, knockdown of CIWI and CILI 

using exogenous siRNAs caused a transposable element-mediated 
DNA double-strand breakage in such cells [66].

Reprogrammable Genomic Editing in Birds
Transgenic technology is a valuable approach toward investigation 

of specific gene function(s) in vivo [67]. To date, the technique has 
found applications in basic biology, medicine, functional genomics, 
and agriculture [68]. In early work, virus-mediated transfer systems 
were used for stable transgene delivery and development of transgenic 
lines. However, recently, more stable and safer non-viral gene transfer 
procedures using the piggyBac and Tol2 transposons, and transposases, 
have been established; these approaches can be applied to avian species 
[16,17]. In mouse as an animal model system, transgenic technology 
has been utilized for functional genomics study to examine biological 
role(s) of novel gene during embryo development and through in 
vivo analysis [68]. Particularly, this system provided the strong clue 
to discover regulatory network and mechanism. Promoter with 
tissue- or developmental stage-specific regulatory elements can induce 
spatiotemporal overexpression of the interested gene in specific target 
organ. In birds, the recently developed transposon elements advanced 
transgenic technology and provided the efficient production system of 
transgenic lines [68]. For basic research application in avian species, 
since it is difficult to investigate germline development, or germ 
cell differentiation because of a lack of germ cell-specific markers, 
transgenic lines expressing reporter genes encoding green fluorescent 
protein (GFP) or DsRed, controlled by germ cell-specific promoters 
including those of the vasa, dazl, and ciwi genes, will serve as invaluable 
tools in the study of avian germ cells. In addition, transgenic poultry are 
expected to contribute to industrial-scale production of valuable high-
quality industrial biomaterials. As commercial poultry lines lay more 
than 340 eggs per year, such eggs can be utilized as animal bioreactors 
for bioactive protein production. 

In contrast to overexpression, knock-down and complete deletion 
of specific gene were also available through RNAi knock-down and 
gene targeting, respectively. Recently, state-of-the-art gene-knockout 
techniques using programmable genome editing technology have been 
developed to aid in genomic modification. These techniques employ 
ZFN (Zinc-Finger Nuclease), TALEN (Transcription Activator-
Like Effector Nuclease), and CRISPR-Cas9 (Clustered Regularly 
Interspaced Short Palindromic Repeats-Cas9). In future, these 
advanced technologies will be applied in the poultry industry and to 
further poultry science (Figure 1). ZFN constructs contain zinc-finger 
DNA-binding domains and engineered FokI endonucleases [69,70]. 
The DNA-binding domains in ZFNs generally contain three-to-six 
individual zinc-finger repeats, each of which specifically recognizes 
three nucleotides. The other component of a ZFN is the catalytic 
domain of a DNA endonuclease derived from the FokI restriction 
enzyme [69,70]. TALEN is a fusion protein of a TAL effector region 
recognizing a DNA-binding domain, and a DNA cleavage domain 
of a nuclease [71,72]. TALENs function as heterodimers containing 
DNA-binding domains that are highly sequence-specific. Basically, a 
TALEN contains a highly conserved central structure with repeat units 
of 33–35 amino acids; two variable amino acids at positions 12 and 
13 play critical roles in recognition of specific DNA sequences. Two 
residues, termed Repeat-Variable Di-residues (RVDs), are strongly 
associated with recognition of specific nucleotides [71,72]. Each RVD 
can recognize a single nucleotide in a DNA sequence, and a DNA-
binding domain that contains an RVD can recognize a stretch of 15–30 
nucleotides and is thus capable of binding to a specific locus with very 
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high specificity. Thus, a TALEN can bind to a specific target sequence 
in the genome and subsequently cleave the target, causing a frameshift 
mutation. Similarly, CRISPR recognizes target DNA sequences via an 
RNA-guided binding process, and the Cas9 nuclease next removes 
(and thus disrupts) the target site [73-75]. Using these technologies, 
“genetically modified but non-transgenic” poultry may be generated 
without any risk of transgene contamination because the transferred 
TALEN and CRISPR transgenes effectively disrupt specific target genes 
but, after disruption, are degraded and removed from transfected cells. 
Genetically modified knockout chickens produced using these technical 
platforms would be similar to naturally mutated strains selected over a 
long breeding period. When the myostatin gene (which inhibits muscle 
growth) is disrupted using these systems, such myostatin-knockout 
chickens would be expected to grow muscle (meat) considerably more 
rapidly than before. Such chickens would be analogous to Belgium blue 
cattle, which are double-muscled but not transgenic. No poultry line 
mutant in the myostatin-encoding gene has yet been reported, but use 
of the TALEN and CRISPR technical platforms could generate novel 
strains within a very short period, compared to that of a conventional 
breeding procedure. Other industrial uses such as modification of egg 
white composition and allergy-reducing egg production by these state-
of-the-art gene-knockout techniques would be applicable in the near 
future.

Conclusion 
Germ cell characterization and genomic editing in poultry will serve 

as powerful tools in development of commercial applications and to 
further basic research. Additionally, use of advanced technologies such 

as TALEN and CRISPR-Cas9 will in the near future allow genetically 
modified poultry to be developed rapidly.
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