
Volume 6 • Issue 2 • 1000177
J Bioengineer & Biomedical Sci
ISSN:2155-9538 JBBS an open access journal 

Opnion Open Access

Rusnati and Lembo, J Bioengineer & Biomedical Sci 2016, 6:2 
DOI: 10.4172/2155-9538.1000177

*Corresponding author: Marco Rusnati, Section of Experimental Oncology and
Immunology, Department of Molecular and Translational Medicine, viale Europa
11, 25123 Brescia, Italy, Tel: +39-0303717315; Fax: +39-0303701157; E-mail:
marco.rusnati@unibs.it

Received: February 12, 2016; Accepted: February 15, 2016; Published: February 
27, 2016

Citation: Rusnati M, Lembo D (2016)  Heparan Sulfate Proteoglycans: A 
Multifaceted Target for Novel Approaches in Antiviral Drug Discovery. J Bioengineer 
& Biomedical Sci 6: 177. doi:10.4172/2155- 9538.1000177

Copyright: © 2016 Rusnati M, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Heparan Sulfate Proteoglycans: A Multifaceted Target for Novel 
Approaches in Antiviral Drug Discovery
Marco Rusnati1* and David Lembo2

1Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123, Italy
2Department of Clinical and Biological Sciences, University of Turin, 1026 Turin, Italy

Introduction
Viruses are the etiological cause of important human diseases 

worldwide. In some cases, viral infections tend to occur simultaneously, 
as it happens for human immunodeficiency virus (HIV) that, by 
inducing a severe immunodeficiency, causes an increase in human 
papilloma virus (HPV), herpes simplex virus (HSV) and respiratory 
syncytial virus (RSV) infections [1-3]. Conversely, genital ulcer disease 
caused by HSV-2 infection enhances transmission of HIV-1 infection 
[4]. Despite decades of antiviral drug research and development, 
viruses still remain a top global healthcare problem, calling for new 
antiviral strategies, in particular those able to tackle different viruses 
simultaneously (multitarget therapies). 

Many viruses (including HIV-1, HSV, HPV and RSV) exploit 
heparan sulfate proteoglycans (HSPGs) as attachment receptors [5-7]. 
HSPGs are expressed on the surface of almost all eukaryotic cell types
and consist of a core protein and unbranched anionic chains composed 
of repeating disaccharides units (sulfated uronic acid and hexosamine 
residues) [8]. They mediate virus attachment to the host cell surface by 
binding to proteins of the virus that act as determinants of infectivity 
and that usually contain stretches of basic amino acids (basic domains) 
that mediate the binding of the virus to the negatively charged sulfated 
groups of heparan sulfate (HS) chains [7]. Based on their capacity to 
act as attachment receptors for different viruses, HSPGs have been 
considered an attractive target for the development of multitarget 
antiviral drugs to prevent infections by those viruses that cannot be 
eliminated through classical antiviral treatment or protective vaccines.

Microbicides are topical products that protect the genital mucosa by 
the infection from sexually transmitted viruses. Their major mechanism 
of action is by blocking the interaction of viral proteins to cell surface 
components thus preventing virus attachment/entry. Considering 
HSPGs, two types of microbicides can be envisaged: HSPG-antagonists 
and HSPG-binding compounds. Here below we will provide a brief 
description and some examples of these two classes of microbicides.

HSPG-antagonists (such as suramin- or heparin-like compounds) 
are polyanionic compounds that directly bind the positively charged 
basic domains of the determinants of virus infectivity (Figure 1). 
The parental compound suramin is a polysulfonated naphthylurea 
that contains eight benzene rings, four of which are fused in pairs 
(naphthalene groups), four amide groups in addition to the one of urea 
and six sulfonated groups. Starting from suramin, several derivatives 
have been chemically synthesized to be used for the treatment of several 
infectious diseases [5,6,9,10].

Heparin is a glycosaminoglycan structurally related to HS, being 
mainly composed of 2-O-sulfated IdoA → N,6-O-disulfated GlcN 
disaccharide units. Heparin binds to those same enzymes, growth 
factors, cytokines and viral proteins that use HSPGs as receptors 
[5,6,9,10], acting as a potent HSPG-antagonist. However, due to its 

strong anticoagulant activity, heparin cannot be used as an antiviral 
drug [11], prompting a series of studies aimed at identifying heparin-
like molecules endowed with a more favorable therapeutic window 
[5,6,9,10]. To this aim, different approaches have been so far applied, 
including chemical modification of heparin (selective desulfation, 
tailoring of the saccharidic chain length, modification of the backbone 
flexibility), enzymatic sulfation of unsulfated glycosaminoglycans, 
rational design of synthetic molecules, generation of heparin 
nanoassemblies and screening of library of natural compounds.

As a result, a long list of heparin-derivatives, synthetic polyanionic 
molecules, plant and marine polysaccharides and biotechnological 
heparins have been obtained that exert a potent antiviral activity in vitro 
[5,6,9,10]. However, the only three polyanionic anti-HIV-1 microbicides 
that reached phase III clinical trial (namely the polysulfonated 
PRO2000 and the polysulfated carraguard and cellulose Ushercell) 
turned out to be not efficacious against vaginal HIV-1 transmission 
or even to increase the rate of infection [12-14]. The failure of these 
clinical trials and the mechanisms responsible for the lack of anti-viral 
effect of these first-generation microbicides call for extreme caution 
in the design and production of new polyanionic microbicides [7,15]. 

Figure 1: Schematic representation of the mechanisms of action of HSPG-
related microbicides.
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Accordingly, a new generation of antiviral polyanions is currently being 
tested to identify safe and effective microbicides. Among these, the 
sulfated derivatives of K5 polysaccharide from Escherichia coli emerge 
as particularly promising [7]. This bacterial capsular polysaccharide has 
the same structure as the heparin precursor N-acetyl heparosan. It can 
be chemically sulfated in defined N and/or O positions, resulting in the 
generation of K5 derivatives with different charge distribution, devoid 
of anticoagulant activity and endowed with specific binding capacities. 
In previous works, K5 sulfated derivatives have been demonstrated to 
be devoid of toxic effects and endowed with an interesting multitarget 
activity, being able to inhibit infection by different viruses, including 
HSV, HPV, RSV, citomegalovirus, dengue virus, and HIV [16-21]

HSPG-binding compounds are an heterogeneous group of 
polycationic compounds that bind to negatively charged sulfated 
groups of HS chains, masking HSPGs to virus and preventing their 
attachment to the cell (Figure 1). In the field of antiviral drug discovery, 
polycationic HSPG-binding molecules has received so far little 
consideration compared to polyanionic HSPG-antagonists.

Dendrimers are large, highly branched macromolecules composed 
of a polyfunctional core with multiple copies of functional groups 
that confer multivalent binding capacity to a variety of molecular 
targets [22]. They can exert microbicidal activity by inhibiting the 
interaction of the virus with the target cell [23]. Anti-viral dendrimers 
can be designed to bind directly to the virus, basically acting as the 
polyanionic compounds described above. Alternatively, dendrimers 
can be directed against the virus entry receptors present on the surface 
of target cell. According to this latter approach, we have recently 
developed two different dendrimers that target HSPGs, masking them 
to a variety of HSPG-dependent viruses. SB105-A10 is a dendrimer 
composed of multiple copies of a stretch of basic amino acids that 
exerts a potent inhibition of HSV-1, HSV-2, a broad spectrum of 
genital HPV types, R5 and X4 HIV-1, CMV and RSV [24-28]. The 
agmantine-containing poly(amidoamine)s polymer AGMA1 is another 
interesting microbicide candidate that exerts a multitarget antiviral 
activity. It binds to HSPG thus preventing the infection of several 
HSPG-dependent viruses including HSV, HPV and RSV [29-31]. Of 
note, AGMA1 inhibited HSV-2 infection in human cervicovaginal 
histocultures and significantly reduced the burden of HSV-2 infection 
in vaginally infected mice [29]

Concluding Remarks
Some sexually transmitted infections tend to occur simultaneously, 

as for HIV-1, HSV and HPV and cannot be contained efficiently with 
immunization or systemic antiviral treatments, thus representing 
a worldwide emergency that calls for alternative “multitarget” 
antiviral strategies. In this light, the development of topically 
applied microbicides must be considered mandatory. HSPGs act as 
coreceptors for HIV-1, HSV and HPV, emerging as an ideal target 
for the development of multitarget microbicides. Accordingly, in 
the last twenty years, a variety of polyanionic HSPG-antagonist has 
been developed that, acting as “multitarget traps” for several viruses, 
exerted a potent antiviral capacity in vitro but that, when administered 
to patients, showed no therapeutical benefit. Nevertheless, given its 
global relevance, the development of microbicides cannot be set aside 
after these first failures, rather, it must be pursued further by taking 
advantage of the past experience or by envisaging novel approaches. 
Among the latter, particularly promising seem those microbicides that, 
by masking HSPGs, may exert a wide-range protection acting as a 
“chemical condom”. Many pro and cons must be taken in consideration 

when dealing with HSPG-related microbicides: a too broad binding 
capacity may interfere with physiological cytokines and related 
biological processes with consequent undesired side-effects and/or 
toxicity, while a too high selectivity may eschew the eagerly awaited 
“multitarget activity”. It derives that a fine balance between these two 
opposite extremes must be searched by means of a fine tuning of the 
structure of the microbicides and hence of their binding capacity.
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