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Abstract

The expression of human olfactory receptors in non-olfactory tissues has been documented since the early
nineties, however, until recently their functional roles were largely unknown. Many studies have demonstrated that
these G-protein coupled receptors (GPCRs) are actively involved in various cellular processes. Here, we
summarized current evidence describing the most prominent expression and functional data for these ectopic
olfactory receptors. Further studies focused on discovering their ligands, both agonists and antagonists, will be
necessary to fully characterize molecular mechanisms underlying their functional roles in human physiology and
pathophysiology.
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Introduction
Olfactory receptor (OR) genes discovered by Buck and Axel in 199,

constitute the largest gene family in the human genome with 418 intact
and potentially functional genes [1,2]. These genes are classified into 18
families, each family having >40% sequence identity (Figure 1). Based
on the evolutionary data OR sequences are separated into two classes,
class I and class II. Class I receptors resemble the family initially found
in aquatic animals, thus it was suggested that these receptors may be
specialized in detecting the water-soluble odorants [2-4]. Class II
receptors are found only in terrestrial animals. Sequence differences
between these two receptor classes are mainly in the extracellular loop
3 [4]. In humans all class I genes are clustered on chromosome 1, while
class II genes are expressed on all chromosomes except chromosomes
20 and Y [2]. Within class I ORs 52% are pseudogenes, while
pseudogene fraction in class II ORs is much higher, about 77% [2].

Figure 1: The number and distribution of human ORs within
different classes and families [5,6]. Class I consists of family 5, 52
and 56 with about 60 functional genes. Families 53, 54 and 55 do
not have any functional genes. Class II ORs group has 14 families

and 358 functional genes.

The existence of olfactory receptors outside the olfactory sensory
system was first documented in mammalian germ cells, and it was
suggested that these “ectopic” ORs could have a role in chemotaxis
during fertilization [7-9]. After this initial discovery, mammalian ORs
genes were found in various additional non-olfactory tissues [10], like:
prostate [11,12], tongue [13-15], erythroid cells [16], heart [10,17,18],
skeletal muscle [19], skin [20], lung [18], testis [18], placenta [21],
embryo [22], kidney [23-26], liver [18,27], brain [28] and gut [29].

In the olfactory sensory system only one allele of OR gene is
expressed in each olfactory neuron [30], while in the non-olfactory
tissues several ORs were found to be co-expressed in the same cell
type, as demonstrated for the B- and T- lymphocytes and
polymorphonuclear leukocytes [31], human sperm cell [32] and BON
cells, a metastatic cell line derived from the human carcinoid tumor of
the pancreas [33]. In leukocytes, several ORs are co-expressed with the
taste, TAS2R and TAS1R, and trace amine associated receptors,
TAAR1 [31]. Thus, various ORs can be co-expressed within the same
cell type, and also various ORs can be co-expressed with other GPCRs
in the non-olfactory tissues; however, more research is necessary to
prove that this is indeed a general rule.

What is the functional role of these ectopically expressed olfactory
receptors?

Conserved orthologous ectopically expressed olfactory receptor
genes are evolutionary constrained, implying that these genes may
have additional functions [18]. The first evidence demonstrating
evolutionary conservation of ectopic OR between mouse, rat and
humans, was provided for the OR51E2 receptor [34]. Niimura et al.
identified two additional receptors OR51E1 and OR6B13, which
together with OR51E, are the most evolutionary conserved olfactory
receptors in placental mammals [35]. OR51E, OR51E, OR2A1 and
OR2W3 are the most broadly expressed genes among various tissues
examined [36]. The highest ORs transcript levels were found in the
prostate (OR51E2), thyroid (OR2W3) and testis tissue (OR4N4) [36].
The evidence is accumulating that, apart from their well-established
role in the odorant detection, these GPCRs have additional functions
and are actively involved in various fundamental cellular processes.
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Here, we presented a summary of ectopic ORs expression data, and
when available this information is supported by functional data. It is
important to mention, that additional functional data are necessary to
support predicted cellular functions of ectopic ORs. Some of their most
prominent functions are presented in Figure 2. In some cases, there is a
lack of correlation in the expression profiles between human and
mouse OR orthologous pairs [10]; thus, a simple assumption of their
function in particular tissue based on correlation with mouse data is
not always possible nor accurate, and further studies are necessary to
investigate the role of these ectopic ORs.

Cell-Cell Communication and Recognition

Cutaneous chemo-sensation (Figure 2: A-1)
Recently, it was demonstrated that the activation of some ORs

mediates cell-cell communication in the skin. The following ORs,
belonging to class II, have been identified in the skin: OR6V, OR5V,
OR2AT4, OR11A, OR6M1. Odorant sandalwood was able to activate
OR2AT4 receptor present in the skin keratinocytes [20]. This
activation led to the release of ATP from the keratinocytes and
subsequent activation of P2X purinergic receptors on the neighboring
trigeminal neurons [37], thus establishing a communication between
keratinocytes and trigeminal neurons.

Embryogenesis (Figure 2: A-2)
ORs have also been detected in various “extrasensory tissues”

during embryonic development. The OL1 receptor was found to be
expressed in the developing rat heart [38]. Few ORs were also detected
in the fetal tongue, however, no clear involvement in the perception of
taste could be demonstrated [15]. Several ORs were detected in the
pyramidal neurons of developing mouse cortex [39]. Furthermore, few
ORs have been detected in mouse placenta (MOR125-, 126-, 140-,
145-5 and 216-1) [21], and in order to explain their presence, “an area
code hypothesis” was proposed [22]. This hypothesis states that cell-
cell recognition, migration and tissue assembly during embryogenesis
requires a complex addressing system and that ORs may be the
recognition molecules encoding cell identity and allowing appropriate
positioning during embryogenesis. The involvement of ORs in the cell-
cell cooperation during mouse embryogenesis was indeed recently
demonstrated using a genome-wide cheater screen analysis [40]. It is
tempting to believe that some ORs may have a similar role in the
human embryogenesis.

Tissue Injury, Repair and Regeneration

Skeletal muscle/ cardiomyocytes (Figure 2: B-1)
Griffin et al. detected 13 mouse ORs in the highly proliferative

myoblasts and demonstrated that some of these receptors show
increased expression in in vivo muscle regeneration experiments [19].
One of these, MOR23 receptor, previously detected in the olfactory
sensory neurons and testis [7,41,42], was able to influence myofiber
branching and fusion of myoblasts into myofibers [19,43,44].
Activation of this receptor promoted cell adhesion and muscle
regeneration [43]. Several ORs transcripts were detected in the human
skeletal muscle (OR51E, OR51E, OR2A, OR7C, OR1E1 and OR2B6)
[36], however, their function has yet to be investigated.

Skin (Figure 2: B-2)
Human OR2AT4 receptor (also known as the OR11-265) is

expressed in keratinocytes and when activated by its odorant-ligand
sandalwood, it can induce cell migration, proliferation and
regeneration of skin tissue, as demonstrated by in vitro wound scratch
assay [20]. No endogenous ligand for this receptor has been identified.

Nerve injury and regeneration
A significant number of rat ORs were found to be up-regulated in a

sciatic nerve and in a dorsal root ganglia (DRG) following nerve injury
[45]. Hydrogen peroxide stimulation of Schwann cells in culture
mimics oxidative stress and increases expression of 14 ORs, indicating
that these receptors may be directly or indirectly involved in neuronal
injury and peripheral nerve regeneration. In humans, several
neurodegenerative diseases, like Alzheimer disease, Progressive
Supranuclear Palsy, and Creutzfeldt-Jakob disease, have been
associated with dysregulated ORs expression levels [46], however, at
present, it is not clear if these changes are implicated in a disease
progression or are just secondary consequences of diseases. Down-
regulated ORs were documented in the mesencephalic dopaminergic
neurons [47] and in the frontal cortex in the brains of Parkinson
disease (PD) patients [28]. It seems that this down-regulation is not
merely a result of neuronal loss, and it is unrelated to drug therapy. It is
unknown if this down-regulation has a role in the olfactory
dysfunction observed in PD patients. Several olfactory and taste
receptors were found to be down-regulated in the prefrontal cortex of
schizophrenia patients, and it was suggested that they may be either
directly involved in the disease progression or are dysregulated as a
consequence of antipsychotic treatment [48], however, at the moment,
there is no conclusive proof for either statement.

Chemotaxis

Sperm (Figure 2: C)
The microarray analysis indicates that over 80 different ORs were

found in testis [18,49], and some of these receptors are exclusively
expressed in testis and were not found in the olfactory epithelium.
Increased cell motility towards the odorant-ligand-attractant has been
demonstrated for the OR1D, also known as the OR17-4 receptor [50]
and also for OR4D1 and OR7A5 [32]. When activated by specific
agonists, the latter two receptors can increase flagellar beating
frequency and sperm velocity [32]. In addition to these ORs, a CatSper,
a cationic channel that controls intracellular Ca+2 concentration and
swimming behavior of sperm, is also activated by various odorants
[51], adding an additional layer of complexity when studying sperm
motility. It has been demonstrated that the activation of OR1D2
receptor in the mature spermatozoa induces a PKA-dependent
translocation of β-arrestin2 to the nucleus, indirectly mediating gene
expression [52]. These results indicate that some ORs expressed in the
sperm, may be involved in the early gene transcription events
following fertilization.

Cancer growth, progression and metastasis (Figure 2:
D)

Many studies demonstrated expression of ORs in the cancer tissue.
Here, the most prominent receptors are discussed. The OR51E1 is a
class I OR (Synonyms: GPR136, POGR; DGPCR; PSGR2; D-GPCR;
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POGR; GPR164; OR51E1P; OR52A3P [53-55]. This gene is found to
be over 100 fold increased in gastrointestinal neuroendocrine
carcinomas [55,56]. Both, transcript and protein levels, are found to be
increased in the prostate cancer [57,58], and in the somatostatin
receptor SSTR-negative lung carcinoid tumors [59]. The OR51E1
protein is broadly expressed in healthy human tissues [60] and
www.proteinatlas.org. Currently identified ligands for this receptor are
nonanoic or pelargonic acid, butyl-butyryl lactate [61], and isovaleric
acid [62]. Another member from the same class I and the same 51
olfactory family, OR51E2 (Synonyms: OR11-16, HsOR11.3.16,
ORL3397, PSGR), was also found to be widely expressed in healthy
tissues examined [36], with the highest expression in the prostate gland
[11]. This gene is also highly up-regulated in the prostate cancer
[12,63,64]. Although, Neuhaus et al. demonstrated that activation of
the OR51E2 by β-ionone in prostate cancer cells inhibits cell
proliferation [65], evidence is accumulating that the up-regulation of
this receptor promotes tumor growth [63] and correlates with prostate
cancer progression [66]. This receptor is also likely to be involved in
the early stages of prostate carcinogenesis, since it has been
demonstrated that its up-regulation induces chronic inflammatory
response with a consequent development of premalignant prostate
intraepithelial neoplasia, PIN [11,12,63]. Currently identified ligands
for this receptor are short chain fatty acids, acetate and propionate
[61], androstenone-derivatives [65] and plant isoprenoid β-ionone
[65].

OR2W3 belonging to a class II genes, is another widely expressed
olfactory receptor with the highest transcript expression detected in
the thyroid gland [36]. A T240P mutation in this gene was found to be
associated with pancreatic ductal adenocarcinoma [67]. Furthermore,
R142W mutation in the OR2W3 was identified as a potentially
causative mutation for autosomal dominant retinitis pigmentosa [68].

Nutrient Sensing and Regulation of Blood Pressure

Kidney
Olfr78, Olfr90, MOR31-6, Olfr1373, Olfr1392 and Olfr1393 and

MOR42-1 were detected in the mouse kidney, where they were able to
modulate renal secretion and glomerular filtration rate along with
another GPCR, Gpr41 [23-26]. Short chain fatty acids, acetate and
propionate were identified as ligands for one of these receptors, mouse
Olfr78, and also for its human orthologue OR51E2 [23,61]. Both,
acetate and propionate are produced by fermentation of carbohydrates
by gut microbiota [25]. Thus, food-derived metabolites act as agonists
for olfactory and other GPCRs localized in the kidney and are able to
modulate renin secretion and blood pressure [69].

Gastrointestinal system
ORs presence has been detected in the enterochromaffin cells of the

gut (OR73, hOR17-7/1, OR1G, hOR17-210) and also in
neuroendocrine carcinomas of the gut [29,56]. It has been
demonstrated that various ligands derived from food spices are able to
activate these ORs and induce serotonin release, indicating their
potential role in regulating motility of the gastrointestinal tract [29].

Cell Migration - Angiogenesis
Human Umbilical Vein Cells (HUVEC) is widely used as a model

system to study endothelial cell physiology. Olfactory receptor OR10J5
was detected in the HUVEC cells, as well as in the aorta and in the

coronary artery, and it was demonstrated that its activation by
odorant-ligand lyral in in vitro assay, increases cell migration via AKT-
and ERK- mediated pathways [70]. These results suggest that some
ectopic ORs may be involved in the endothelial cell migration and
proliferation during angiogenesis.

Energy Homeostasis and Cellular Metabolism
OR4N4 receptor is highly expressed in the thyroid and testis tissue

[36]. However, currently, there is no evidence related to its function in
these tissues. It is interesting to note, that type 2 taste receptors
(TAS2Rs) are also expressed in human thyrocytes. It has been
demonstrated that polymorphisms in the TAS2R genes are associated
with differences in the circulating levels of thyroid hormones [71].
Whether the ORs expressed in the thyroid tissue are also able to
modulate thyroid hormones, and thus affect thyroid function remains
to be determined.

Cytokinesis
OR2A1 and OR2A4 receptors are involved in the cell division,

mainly in its last and highly coordinated step – cytokinesis. OR2A4
knockdown caused cytokinesis failure in the HeLa, human cervical
cancer cell line and in the HCT116, human colon cancer cell line. In
addition to these olfactory receptors, TAS1R2 and TAS1R13 taste and
OPN1SW opsin receptors were also found to play a role in cytokinesis
[72].

ORs with Unknown Functional Roles Detected In
Various Tissues

Atrioventricular node
High expression of human ORs was detected in the atrioventricular

node of the heart [10].

Thrombocytes (platelets)
Few ORs were detected in activated platelets, as part of the non-

secreted fraction (OR51E, OR2T11 and OR4L, Data Supplement 3)
[73]. Platelets have an important role in hemostasis, and are also
recruited to the sites of injury or infection where they modulate
inflammatory processes by secreting cytokines, chemokines and
interacting with leukocytes. Elevated platelet counts are present in
many cancer patients and it has been shown that they are able to
promote cancer cell proliferation [74,75]. The exact function of these
ORs in the platelets is currently unknown.

Leucocytes
53 class I ORs were detected in monocytes, NK cells, B-cells and

PMN cells, with the highest expression of OR51B6, OR52A4 and
OR56B4 [31], suggesting that some ORs may be involved in various
immune reactions.

Tongue
Several OR were also detected in the lingual cDNA libraries

(OR10A4, OR7A5, OR6Q1 and OR6C1) [14], however, their function
is currently unknown.
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Genetic Deletion of ORs
Class I ORs genes are localized on chromosome 11 and surround

the complex of β-globin genes [76]. It has been reported that patients
with β-thalassemia (reduced or absent synthesis of hemoglobin β
chain), have a homozygous deletion of the 118 kb region which
encompasses not only the entire β-globin gene, but also extends to a
deletion of 6 ORs genes, four of which have been predicted to be
functional (OR51A4, OR51Z, OR52A1 and OR52A5) [77]. The effects
of this deletion on olfaction or other physiological functions are
currently unknown.

OR genes are highly polymorphic and this polymorphism results in
functional variability in the olfactory perception [78-84]. Future
studies will show whether the polymorphism within the ectopic ORs
has significant consequences for various pathophysiological processes,
some of which have been outlined here. Many studies demonstrated
highly up-regulated expression of ectopic ORs in various tumors and
more research is necessary to identify their ligands and to fully
characterize their role in cancer pathology. Evidence exists that some
GPCRs, when persistently activated, can turn into oncogenes, and it
has been demonstrated for several GPCRs like: 5HT1c receptor [85],
m, m3 and m5 muscarinic receptors [86] and α1B-ADR [87]. Thus,
agonist-induced cellular proliferation, as a phenomenon is not a
unique feature of ORs. Recently it was demonstrated that chronic
exposure to the agonist - lyral in early postnatal stage, increases
sensitivity of the mouse MOR23 receptor within the olfactory sensory
system [88], however, it remains to be seen whether the similar process
occurs in human ORs expressed in non-olfactory tissues.

Data presented here indicate that olfactory receptors can have
different functions in the human tissues. This functional versatility is
related to a great structural plasticity of these GPCRs. ORs can have
various conformations, and depending on the physicochemical nature
of their ligands these GPCRs can adopt a new conformation, an
“induced-fit”, with which this receptor-ligand complex can activate
various signaling pathways. The activation of particular signaling
pathway will depend on the available ligand and on the specific
cellular/tissue phenotype, and will ultimately result in a specific
cellular process. Identifying ligands for these ectopic ORs using both
computational, in silico and in vitro approaches will enable future
progress in unraveling additional functions of these receptors in non-
olfactory tissues [61,89-97]. Furthermore, a chemical protein
interactome approach (CPI) may be used to discover additional
potential interacting partners of the newly identified ligands [98-100].

GPCRs can also form dimers [101], and in case of
heterodimerization, a novel signaling pathway may be activated and
result in a different cellular process and function, as recently
demonstrated for angiotensin II AT1 receptor and alpha2C adrenergic
receptor [102,103].

Figure 2: The most prominent functional roles of ORs expressed in
non-olfactory tissues.
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