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Introduction
Suppose that X1, X2. . . Xn are independent and identically 

distributed (iid) with probability density function (pdf)
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a three-component normal mixture model in which μ1,γ1, γ2, 1- γ1-γ2,- 
μ2≥0 and σ2>0.

If σ2 is known while the other parameters are unknown, then (1) is 
called a bilaterally contaminated normal (BCN) model. Charnigo et al. 
[1] observed that, in this case, one may test the omnibus null hypothesis
that γ1µ1 = 0 and γ2µ2=0 by comparing the second sample moment to a
known multiple of a chi-square quantile. This omnibus null hypothesis 
states that the BCN model reduces to a normal distribution.

Moreover, if the omnibus null hypothesis is false, then one may 
test the unilateral null hypothesis that γ1µ1=0 or γ2µ2=0 by defining a 
Wald-type test statistic based on a quadratic function of σ2 and the 
first three moments. This unilateral null hypothesis states that there 
is contamination by either a positive-mean normal distribution or a 
negative-mean normal distribution but not both simultaneously.

If σ2 is also unknown, then (1) is called a bilaterally contaminated 
normal with nuisance parameter (BCN+NP) model. This case was 
noted but not studied by Charnigo et al. [1] or to our knowledge any 
other authors, and poses greater challenges to testing the omnibus null 
hypothesis and unilateral null hypothesis. The omnibus null hypothesis 
for either the BCN model or the BCN+NP model suffers from a non-
identifiability of parameters that is characteristic of mixture modeling. 
For instance, there are infinitely many possibilities for γ1 when µ1 is 
0, and vice versa. In fact, even the unilateral null hypothesis has an 
ambiguous parametric representation. Thus, the assumptions justifying 
the standard chi-square theory for likelihood ratio testing are not met 

for either the BCN or BCN+NP model [2-5].

Due to difficulties with likelihood ratio testing in mixture modeling, 
Chen et al. [6] developed a modified likelihood ratio test to address 
whether a two-component mixture could be reduced to a homogeneous 
distribution. Applicable under fairly general circumstances, their test 
was supported by an asymptotic theory and simulation results showing 
that chi-square quantiles could be used as critical values. Dai and 
Charnigo [7,8] subsequently adapted the modified likelihood ratio test 
to accommodate two-component mixtures in which some or all of the
parameters for one mixture component were known a priori. They 
referred to such a mixture model as a contaminated density model or, 
for short, contaminated model. Modified likelihood ratio testing for 
mixture models with more than two components does not appear to 
have a similarly tractable asymptotic theory, which has inspired the 
development of the EM-test [9-11]. While we have some optimism that 
the EM-test may be useful for inference in the BCN+NP model, the 
present paper will develop tests based primarily on moments.

The practical motivation for the BCN+NP model is largely the 
same as for the BCN model, as described by Charnigo et al. [1]. To 
briefly recap, suppose that Xi is a test statistic for comparing cases 
to controls on the expression level of gene i in a microarray [12,13], 
such that Xi ~ N(0, σ2) if patients and controls have the same mean 
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Abstract
In this work we consider a three-component normal mixture model in which one component is known to have mean 

zero and the other two contaminating components have a nonnegative and a nonpositive mean respectively, while all 
three components share a common unknown variance parameter. One potential application of this model may be in 
prioritizing statistical scores obtained in biological experiments, including genetics data. Such a mixture model may be 
useful in describing the distribution of numerous Z test statistics corresponding to different genes or SNPs, such that 
a “significant” Z test statistic for a particular gene suggests its connection to a medical condition. More specifically, the 
inferences drawn from such a mixture model may be useful in a filtration algorithm to remove large subsets of genes 
or SNPs from consideration, thereby reducing the need for stringent and power-depleting multiplicity adjustments for 
controlling type I error rates on the remaining genes. We show how to test whether there is contamination in at least 
one direction (i.e., the mixture model truly requires at least two components) and, if so, how to test whether there is 
contamination in both directions (i.e., the mixture model truly requires all three components). We assess our testing 
procedures in simulation studies and illustrate them through application to LOD scores in a genome-wide linkage 
analysis from an autism study.
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expression level, Xi ~ N(µ1,σ
2) if patients have greater expression, and 

Xi ~ N(µ2,σ
2) if patients have lesser expression. Testing the omnibus 

null hypothesis asks whether some genes are differentially expressed in 
patients versus controls, and testing the unilateral null hypothesis asks 
whether there exist simultaneously some genes that are over expressed 
and other genes that are under expressed.

As suggested by Dai and Charnigo [14] in a somewhat different 
context, omnibus testing may help a researcher to avoid overly stringent 
adjustments for controlling Type I error rates in multiple testing. For 
example, if an omnibus test suggests no differential expression within 
a subset of genes, then that subset of genes can be “filtered out” and 
not contribute to the adjustments for controlling Type I error rates 
in other gene-specific tests across the genome. Thus, gene-specific 
tests in subsets of genes that have not been filtered out may become 
more powerful, improving the researcher’s ability to detect differential 
expression within such subsets of genes. As an aside, we mention that 
gene expression data are ordinarily normalized prior to performing 
any test comparing cases to controls. Evaluating or developing 
methodology for normalization is, however, beyond the scope of the 
present paper. Our real data example in this paper will pertain to LOD 
scores rather than to gene expression data; thus, normalization is not 
applicable.

Assuming that σ2  is known to equal 1 may seem reasonable in 
some contexts. However, the BCN model may fit some real-world data 
sets rather poorly, in which case one would have lesser confidence in 
inferences based on the BCN model. The BCN+NP model may still 
represent an imperfect approximation to reality, but the nuisance 
parameter σ2 may absorb some lack-of-fit from the BCN model, so that 
one could have greater confidence in inferences based on the BCN+NP 
model.

The rest of this paper is organized as follows. Section 4 presents 
our procedure for testing the omnibus null hypothesis in the BCN+NP 
model, which is based on a union-intersection test that examines both 
odd sample moments and ratios of even sample moments. Section 5 
describes our method for testing the unilateral null hypothesis, which 
employs an auxiliary estimator of σ2 and uses an upper bound for the 
error in that estimator to adjust the critical value for a Wald-type 
statistic. Simulation results appear in Section 6, portraying the actual 
Type I and Type II error rates of both tests under their respective null 
and alternative hypotheses. Section 7 features a case study, in which 
the BCN+NP model is compared to the BCN model on real genome-
wide linkage data. Our conclusions, including a discussion of future 
research, appear in Section 8. The R code to implement our testing 
procedures is available upon request to the corresponding author.

Testing the Omnibus Null Hypothesis
In this section we are concerned with testing the omnibus null 

hypothesis against its corresponding alternative,

H0: γ1µ1=0 and γ2µ2=0 against H1: γ1µ1≠0 or γ2µ2≠0.

The alternative hypothesis indicates that there is contamination in 
at least one direction.

If σ2 were known, a simple test would be obtained by comparing
2

1

n
ii

X
=∑ to σ2 times an upper quantile of a chi-square distribution [1]. 

However, since σ2 is unknown, a test statistic involving 2
1

n
ii

X
=∑ must 

be normalized to address the dependence of its distribution on σ2.

For example, the test statistic ( ) ( )2
2 4

1 1
: / / 3n n

i ii i
R X X

= =
= ∑ ∑

has a distribution that does not depend on σ2. In fact, the asymptotic 
null distribution of 3 / 8( 1)n R − is standard normal by Cramer’s 
Theorem [15]. This seems to suggest that we reject the null hypothesis 
when 1

2
3 / 8 | 1| ,n R z α

−− >  where α is the desired significance level. 
Unfortunately, such a procedure is not consistent against all alternative 
hypotheses. Indeed, R may converge in probability to a number less 
than 1 under some alternative hypotheses (e.g., when σ2=1, µ1=1, 
µ2=−2, γ1=γ2=0.05), to 1 under others (e.g., when σ2=1, µ1=2, µ2=−2, 
γ1=γ2=1/6), or even to a number greater than 1 (e.g., when σ2=1, µ1=1, 
µ2=−1, γ1=γ2=0.3).

The above example does not prove the non-existence of a simple 
test based on moments, but other obvious candidates for a test statistic 
involving low-order moments suffer similar difficulties. On the other 
hand, as Lemma 4.1 shows, H0 can be equivalently expressed as

2 3 3
0 1 2 4 2 6 2 3 2: / 0 / (3 ) 1 / (15 ) 1 / 15 0,H m m and m m and m m and m m= = = =

where 1: [ ]= k
km X is the kth moment of X1.

Lemma 4.1 If H0 is false, then at least one of the following conditions 

must hold (a) 1 2/ 0,m m ≠ (b) 2
4 2/ (3 ) 1,m m ≠ (c) 3

6 2/ (15 ) 1,m m ≠ (d) 
3

3 2/ 15 0.m m ≠

Proof. First suppose that H0 is false with µ1= −µ2> 0 and γ1= γ2> 0. If
2

4 2/ (3 ) 1m m = , then γ1=1/6 and thus 3
6 2/ (15 ) 1.m m ≠

Next suppose that H0 is false with 1 2.µ µ≠ − If 1 2/ 0,m m = then

2 2 0γ µ ≠ and thus ( )3 2 2 3
3 2 2 2 2 1 2/ 15 / 15 0.m m mγ µ µ µ= − ≠

This motivates the development of a union-intersection test [16]. 

Let 1
1

: n k
k ii

m n X−
=

= ∑  denote the kth sample moment and put

2
1 2, 4 2: / : 3 / 8[ / (3 ) 1],T nm m U n m m= = −   

2 3
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Theorem 4.1 establishes a test based on T, U, V, and W.

Theorem 4.1 Let α1, α2, α3, α4, α ∈ (0, 1) be given such that 
α=α1+α2+α3+α4. Consider a test that rejects H0 if and only if at least one 

of the following conditions holds: (a)
1/21| | ,α−>T z (b) 

2/21| | ,U z α−> (c)

3/21| | ,V z α−>  (d) 
4/21| | .W z α−> Then the probability of incorrectly rejecting 

the null hypothesis under H0 is asymptotically less than or equal to α, 
while the probability of correctly rejecting the null hypothesis under H1 
converges to 1.

Proof. First suppose that H0 is true. In this case, T, U, V, and W 
are all asymptotically standard normal by Cramer’s Theorem. The 
probability of incorrectly rejecting the null hypothesis is bounded 
above by

1/2 2/2 3/2 4/21 1 1 1(| | ) (| | ) (| | ) (| | ),α α α α− − − −> + > + > + >T z U z V z W z     which 
converges to α1 + α2 + α3 + α4=α.

Next suppose that H0 is false. In this case, at least one of 1/2 ,n T−

1/2 ,n U− 1/2 ,n V−  and 1/2n W− converges in probability to a nonzero 
quantity. Thus, at least one of |T|, |U|, |V|, and |W| diverges to infinity 
in probability, so that the corresponding probability in the preceding 
paragraph tends to 1, and this probability is a lower bound for the 
probability of correctly rejecting the null hypothesis.

We note that 2m in the definitions of T and W may be replaced 
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by the familiar sample variance 2 1 2
1

: ( 1) ( )−
=

= − −∑n
ii

S n X X without 

disturbing the conclusions of Theorem 1.

A question of practical interest is how to choose α1, α2, α3, α4. A 
simple choice is to set each of them equal to α/4, but this may not 
optimize the power to correctly reject H0. For example, if there is 
bilateral contamination and the contamination is symmetric, then 
neither T nor W will be useful. Rather, the contamination will be 
detectable via U or V, suggesting that α2 and α3 be chosen close to α/2 
while α1 and α4 be taken negligibly small.

Thus, if a data analyst has reason to anticipate a certain type of 
contamination, then he/she may choose α1, α2, α3, α4 accordingly. The 
choice of α1, α2, α3, α4 is explored empirically in the simulation studies 
of Section 6. However, we also caution against choosing α1, α2, α3, α4 
after examining the data, as this may result in a hidden inflation of 
Type I error rate.

Testing the Unilateral Null Hypothesis
Now we are concerned with testing the unilateral null hypothesis 

against its corresponding alternative,

H0: γ1µ1=0 or γ2µ2=0 against H1: γ1µ1≠0 and γ2µ2≠0.

The alternative hypothesis indicates that there is contamination 
in both directions. Because this test is developed assuming that the 
omnibus null hypothesis is false, in practice we recommend sequential 
testing: first perform the test described in Section 4, and then, only if 
the omnibus null hypothesis is rejected, proceed to the test that we 
describe presently.

If σ2 were known, a test of the unilateral null hypothesis could be 
obtained [1] based on

2
2 1

2 2 2 2
1 3(m, ) : ( ) 3 ,h m m m mσ σ σ= − + −

Where 
T

1 2 3: ( , , ) .m m m m=  More specifically, since 2(m, ) 0h σ ≥
with equality if and only if H0 is true, one could reject H0 if 

2(m, )h σ

exceeded a critical value suggested by Cramer’s Theorem, where
1 2 3m : (m ,m ,m ) .T=    However, since σ 2 is unknown, 2(m, )h σ cannot 

be calculated and must be replaced by 2(m, )h σ  for some 2σ .The 
question then becomes, what is an appropriate critical value ?

Before addressing the question, some comment on the choice of 
2σ is warranted. In the simulation studies of Section 6, we take 2σ  to 

be the maximum likelihood estimator of 2σ . If H1 is indeed true (and 
a compact parameter space is imposed), then 2σ is anticipated to 
converge to 2σ at the rate of n−1/2. If H0 is true, then 2σ  is anticipated to 
converge at the slower rate of n−1/4 [17]. However, maximum likelihood 
estimation of 2σ is not essential. Rather, we assume that 2σ  is chosen 
such that there exists known δn with 2 2(| | ) 1δσ σ− ≤ →

n and δn→ 0. 
For instance, if 2σ converges at a rate of n−1/4or better, one may take 

1/4
n nδ − +∈∝ for some (0,1/ 4).∈

The following lemmas are preparatory to identifying a critical value 
for 2(m, ).h σ In what follows, we define A to be the 3×3 matrix with 

Aij=mij−mimj and b to be the vector of partial derivatives of 2(m, )h σ  

with respect to m. We also define 


A and 


b  to be the corresponding 
estimators.

Lemma 5.1 Suppose H0is true. Then, for any (0,1),α ∈
2

1( (m, ) b Ab / ) 1 .α ασ −≤ → −
 

 Th z n

Proof. By Cramer’s Theorem, 2(m, ) / /Th b Ab nσ converges in law 

to standard normal. Since A and b are continuous functions of m and 
2σ , and since 0Tb Ab >  when the omnibus null hypothesis is false, 

the Continuous Mapping Theorem implies that / 1T Tb Ab b Ab →
 

in probability. By Slutsky’s Theorem, 2(m, ) / /Th b Ab nσ
 

 converges in 
law to standard normal. The desired result is an immediate consequence.

Lemma 5.2 Suppose H0 is true. Then,
2 2

2 1
2 2( (m, ) (m, ) 2 m 3m ) 1.δσ σ δ δ≤ + + + →   

n n nh h

Proof. Suppose that 2 2| | nσ σ δ− ≤  and 
2

2 ,σ>m  which occur with 
probability approaching 1.

Then

2
2 2 2 2 2

2 2( ) ( ) 2σ σ δ δ− ≤ − + +   

n nm m m

and
2 2 2 2 2
1 1 3 1 1 1 33 3 3 .m m m m m m mσ σ δ− ≤ + −       

Adding these two inequalities yields the desired result.

We are now in a position to describe our testing procedure.

Theorem 5.1 Let (0,1)α ∈  be given. Consider a test that rejects H0 

if and only if 2 2
1

2
2 1(m, ) b Ab / ) 2 m 3m .T

n n nh z nα δ δ δσ −> + + +
 

  Then 
the probability of incorrectly rejecting the null hypothesis under H0 is 
asymptotically less than or equal to α, while the probability of correctly 
rejecting the null hypothesis under H1 converges to 1.

Proof. The first part of the conclusion follows from Lemma 5.1 and 
Lemma 5.2. The second part of the conclusion follows from the facts 
that 2(m, )h σ  converges in probability to 2(m, ),h σ the latter quantity 
is positive under H1, and the critical value converges in probability to 0.

Our guidelines for δn are asymptotic. However, to carry out the test 
in practice, one must specify δn for a finite sample. If δn is too small, 
then the Type I error rate of the test will be too large. If δn is too large, 
then the power of the test will be unnecessarily low. The choice of δn is 
explored empirically in the simulation studies of Section 6.

Simulation Results
First we present results from simulation studies to assess the Type 

I and Type II error rates of our omnibus testing procedure in finite 
samples from the BCN+NP model. Table 1 pertains to omnibus testing 
based on sample sizes of n=100 and n=1000, with α1=α2=α3=α4=0.0125 
and parameter values as shown in the left column. (We put σ2=1 to 
generate data but subsequently treated σ2  as unknown. The simulation 
size was 1000.) To illustrate use of Table 1, consider two examples: 
First, when n=100, there is approximately a 3.8% Type I error rate. 
Second, when n=1000, there is approximately 78.0% power against the 
specific alternative (µ1, µ2, γ1,γ2)=(0,−1, 0.2, 0.1).

Tables 2 and 3 also pertain to omnibus testing but with different 
choices of α1 to α4. In Table 2 more consideration for rejecting the 
omnibus null hypothesis is given to T and W, whereas in Table 3 more 
consideration is given to U and V.

As shown in Tables 1-3, the omnibus test appears conservative 
at both sample sizes and all three combinations of α1 through α4, in 
that the observed Type I error rate is less than 5%. As anticipated, 
power tends to be greater with a larger sample size. The power 
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model) but then are subjected to forward and reverse cumulative 
distribution function(cdf) transformations.

More specifically, suppose that T1,. . ., Tn are i id with pdf
1 1 1

1 2 1 1 2 2(1 ) ( / ) (( ) / ) (( ) / ),v v vf t f t f tγ γ σ σ γ σ µ σ γ σ µ σ− − −− − + − + −

Where vf  denotes the T pdf on ν degrees of freedom and vF denotes 
the corresponding cdf. We assume that ν is known; in the context of 
microarray data analysis, ν will relate to the numbers of persons (or 
experimental units) on which gene expression data have been obtained. 
Data arising from this model can be transformed by 1: [ ( )],i v iX F T−= Φ  
where Φ  is the standard normal cdf. The transformed data are then 
analyzed as if they had arisen from the BCN+NP model. If σ2=1 and 
γ1µ1=γ2µ2=0, then the transformed data will actually be standard normal 
(and hence from the BCN+NP model), but otherwise the transformed 
data may not truly be from the BCN+NP model.

Table 4 is organized analogously to Table 1, except that there are 
additional columns corresponding to various choices of ν from 5 to 
100. (We have also obtained results analogous to those in Tables 2 and 
3 but have omitted including them in tabular form to streamline this 
manuscript.) The omnibus test appears conservative in most scenarios 
and is not markedly anticonservative in any. As anticipated, power 
tends to be greater with a larger sample size. The power under unilateral 
contamination tends to be greater if either the contaminating mean or 
the contaminating weight is larger, and the power seems to increase 
with the degrees of freedom. The power under asymmetric bilateral 
contamination often increases with the degrees of freedom and tends 

under unilateral contamination is better when the contaminating 
mean is larger (± 2) rather than smaller (± 1) and when the weight 
of contamination is larger (0.2) rather than smaller (0.1). The power 
under asymmetric bilateral normal contamination tends to be better 
when the contaminating means are different (in absolute value) than 
when the weights are different. The power under symmetric bilateral 
contamination is relatively low except when the sample size is larger 
and (µ1, µ2, γ1,γ2)=(2,−2, 0.1, 0.1).

For added realism, we also consider scenarios in which the BCN+NP 
model is mispecified, in that the data originate from the “bilaterally 
contaminated and scaled T model with nuisance parameter”(BCT+NP 

(μ1, μ2, γ1, γ2 ) n=100 n=1000
(0,0,0,0) 0.038 0.038

(1, -1, 0.1, 0.1) 
(1, -1, 0.2, 0.2) 
(2, -2, 0.1, 0.1) 
(2, -2, 0.2, 0.2)

0.050 
0.021 
0.092 
0.015

0.054 
0.033 
0.521 
0.046

(1, 0, 0.2, 0.1)  
( 0, -1, 0.2, 0.1) 
(2, 0, 0.2, 0.1)  

( 0, -2, 0.2, 0.1)

0.291  
0.091 
0.845 
0.408

1.000 
0.780 
1.000 
1.000

(1, -1, 0.2, 0.1) 
(1, -2, 0.1, 0.1) 
(2, -2, 0.2, 0.1) 
(2, -1, 0.2, 0.2)

0.096 
0.170 
0.137 
0.256

0.657 
0.979 
0.975 
1.000

Shown above are results from testing the omnibus null hypothesis based on a 
simulation of size 1000 and using the procedure from Section 4. 

Table 1: Type I Error and Power for BCN+NP Data: α1=α2=α3=α4=0.0125.

(μ1, μ2, γ1, γ2) n=100 n=1000
(0,0,0,0) 0.037 0.046

(1, -1, 0.1, 0.1) 
(1, -1, 0.2, 0.2) 
(2, -2, 0.1, 0.1) 
(2, -2, 0.2, 0.2)

0.038 
0.037 
0.079 
0.029

0.054 
0.042 
0.384 
0.039

(1, 0, 0.2, 0.1)  
(0, -1, 0.2, 0.1) 
(2, 0, 0.2, 0.1)  
(0, -2, 0.2, 0.1)

0.353  
0.101 
0.902 
0.443

1.000 
0.854 
1.000 
1.000

(1, -1, 0.2, 0.1) 
(1, -2, 0.1, 0.1) 
(2, -2, 0.2, 0.1) 
(2, -1, 0.2, 0.2)

0.102 
0.182 
0.191 
0.275

0.720 
0.988 
0.978 
1.000

Shown above are results from testing the omnibus null hypothesis based on a 
simulation of size 1000 and using the procedure from Section 4. 

Table 2: Type I Error and Power for BCN+NP Data: α1=α4=0.02, α2=α3=0.005.

(μ1, μ2, γ1, γ2) n=100 n=1000
(0,0,0,0) 0.032 0.038

(1, -1, 0.1, 0.1) 
(1, -1, 0.2, 0.2) 
(2, -2, 0.1, 0.1) 
(2, -2, 0.2, 0.2)

0.033 
0.024 
0.080 
0.002

0.056 
0.024 
0.507 
0.055

(1, 0, 0.2, 0.1)  
(0, -1, 0.2, 0.1) 
(2, 0, 0.2, 0.1)  
(0, -2, 0.2, 0.1)

0.197  
0.073 
0.730 
0.319

1.000 
0.661 
1.000 
1.000

(1, -1, 0.2, 0.1) 
(1, -2, 0.1, 0.1) 
(2, -2, 0.2, 0.1) 
(2, -1, 0.2, 0.2)

0.045 
0.138 
0.088 
0.135

0.541 
0.958 
0.946 
0.999

Shown above are results from testing the omnibus null hypothesis based on a 
simulation of size 1000 and using the procedure from Section 4. 

Table 3: Type I Error and Power for BCN+NP Data: alpha1=alpha4=0.005, 
alpha2=alpha3=0.02.

(μ1, μ2, γ1, γ2)
n=100 n=1000

df=5 10 50 100 df=5 10 50 100
(0,0,0,0) 0.027 0.03 0.026 0.039 0.038 0.037 0.045 0.051
(1, -1, 0.1, 0.1) 
(1, -1, 0.2, 0.2) 
(2, -2, 0.1, 0.1) 
(2, -2, 0.2, 0.2)

0.014 
0.022 
0.010 
0.014

0.017 
0.012 
0.010 
0.013

0.033 
0.016 
0.042 
0.015

0.035 
0.019 
0.037 
0.010

0.077 
0.528 
0.663 
1.000

0.037 
0.236 
0.058 
1.000

0.038 
0.030 
0.110 
0.319

0.049 
0.024 
0.264 
0.132

(1, 0, 0.2, 0.1) 
(0, -1, 0.2, 0.1) 
(2, 0, 0.2, 0.1) 
(0, -2, 0.2, 0.1)

0.182 
0.060 
0.528 
0.143

0.233 
0.078 
0.628 
0.197

0.248 
0.088 
0.803 
0.341

0.283 
0.091 
0.820 
0.403

0.992 
0.560 
1.000 
0.979

0.997 
0.592 
1.000 
0.996

1.000 
0.725 
1.000 
1.000

1.000 
0.740 
1.000 
1.000

(1, -1, 0.2, 0.1) 
(1, -2, 0.1, 0.1) 
(2, -2, 0.2, 0.1) 
(2, -1, 0.2, 0.2)

0.046 
0.026 
0.092 
0.089

0.050 
0.049 
0.106 
0.096

0.065 
0.103 
0.137 
0.172

0.077 
0.140 
0.127 
0.203

0.554 
0.539 
0.998 
0.999

0.601 
0.686 
0.985 
0.998

0.614 
0.934 
0.971 
0.999

0.621 
0.955 
0.966 
1.000

Shown above are results from testing the omnibus null hypothesis based on a 
simulation of size 1000 and using the procedure from Section 4. 

Table 4: Type I Error and Power for Transformed BCT+NP Data: 
α1=α2=α3=α4=0.0125.

(μ1, μ2, γ1, γ2) n=100 n=1000
(1, -1, 0.1, 0.1) 
(1, -1, 0.2, 0.2) 
(2, -2, 0.1, 0.1) 
(2, -2, 0.2, 0.2)

0.166 
0.209 
0.065 
0.402

0.210 
0.459 
0.007 
0.862

(1, 0, 0.2, 0.1)  
(0, -1, 0.2, 0.1) 
(2, 0, 0.2, 0.1)  
(0, -2, 0.2, 0.1)

0.145  
0.159 
0.054 
0.060

0.132 
0.143 
0.017
0.012

(1, -1, 0.2, 0.1) 
(1, -2, 0.1, 0.1) 
(2, -2, 0.2, 0.1) 
(2, -1, 0.2, 0.2)

0.215 
0.099 
0.176
0.245

0.288 
0.133 
0.124 
 0.893

Shown above are results from testing the unilateral null hypothesis based on a 
simulation of size 1000 and using the procedure from Section 5 with δ=0.05 for 
n=100 and δ=0.025 for n=1000. 

Table 5: Type I Error and Power for BCN+NP Data: Small δ.
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to be smaller when both contaminating means are smaller; the power 
is very sensitive to the degrees of freedom when both contaminating 
weights are smaller. The choice (α1, α2, α3, α4)=(0.02, 0.005, 0.005, 0.02) 
seems best overall. The power under symmetric bilateral contamination 
actually decreases with the degrees of freedom in many scenarios and 
tends to be smaller when both contaminating means are smaller. The 
choice (α1, α2, α3, α4)=(0.005, 0.02, 0.02, 0.005) appears best overall.

Next we present results from simulation studies to assess the Type 
I and Type II error rates of our unilateral testing procedure in finite 
samples. Table 5 pertains to unilateral testing based on sample sizes of 
n=100 and n=1000 drawn from the BCN+NP model, with a “small” δ  
equaling 0.05 at the former sample size and 0.025 at the latter. (Note 
that (1000/100) −1/4  is close to 0.025/0.05.) Tables 6 and 7 double and 
triple the values of δ respectively.

The middle four rows of Tables 5-7 indicate that Type I error rates 
are well controlled for medium to large δ and for small δ when the 
unilaterally contaminating mean is larger (±2) rather than smaller 
(±1). The other eight rows of Tables 5-7 reveal that power tends to be 
greater when both contaminating weights are larger (±0.2) rather than 
smaller (±0.1) and the sample size is larger. Of course, power is also a 
decreasing function of δ.

Table 8 is organized analogously to Table 5 but is based on 
transformed data from the BCT+NP model with degrees of freedom 
as indicated in column headings. (We have also obtained results 
analogous to those in Tables 6 and 7). Type I error rates are reasonably 
well controlled for medium to large δ when the degrees of freedom are 
larger. A larger δ than considered in these simulation studies would be 
necessary to control Type I error rates when the degrees of freedom are 

smaller, particularly when the unilaterally contaminating mean is larger 
(±2) rather than smaller (±1). Power is often larger when the degrees of 
freedom are smaller, but this is potentially misleading since the Type I 
error rates tend to be inflated as well. When the degrees of freedom are 
larger, the power tends to be greater when both contaminating weights 
are larger (±0.2) rather than smaller (±0.1) and the sample size is larger.

Case Study
To illustrate our new testing procedures, we analyzed LOD scores 

obtained in a whole genome linkage analysis from an autism study [18]. 
Autism [19] is a complex neuro developmental condition that might 
be affected by multiple genetic and non-genetic factors. Furthermore, 
there is a high degree of phenotypic heterogeneity both within and 
among families. To address the heterogeneity in disease phenotypes, 
Talebizadeh et al. [18] proposed a novel multi-step stratification 
method that divides subjects with autism into subgroups using 
previously developed cluster analyses of severity scores from an autism 
diagnostic test [20]. The objective of the applied stratification method 
was to identify subgroups representing more homogeneous autism 
subjects by reducing both inter and intra-family heterogeneity. Linkage 
analysis [21] was then performed to identify genetic markers linked 
with autism within each subgroup. Linkage analysis is a method to find 
the approximate chromosomal position of disease genes by testing for 
co-segregation of a trait of interest relative to known genetic markers. 
The likelihood of co-segregation (linkage) is estimated by calculating 
LOD scores [21].

After data quality control and filtration, 16973 SNPs (autosomal 
and X-linked) from a total of 392 multiplex families were included for 
the linkage analysis. Subjects were stratified into a total of 16 subgroups 
considering the following: affected individual’s disease severity [20], 
intra-family heterogeneity, and affected individual’s gender [i.e., male 
only (M) and female-containing (Fc) pedigrees]. The LOD score from 
the linkage analysis is a measure of the strength of association between 
a genetic marker and disease in familial data. A LOD score that is less 
than or equal to 0 suggests no genetic linkage. To characterize the 
distribution of LOD scores, we applied the BCN+NP model to LOD 
scores within the “G4Fc” subgroup. The distributions of LOD scores 
in most other subgroups were not deemed suitable for BCN+NP 
modeling; they might have been amenable to a normal mixture model 
in which different components could have different variances, but such 

(μ1, μ2, γ1, γ2) n=100 n=1000
(1, -1, 0.1, 0.1) 
(1, -1, 0.2, 0.2) 
(2, -2, 0.1, 0.1) 
(2, -2, 0.2, 0.2)

0.082 
0.122 
0.033 
0.329

0.051 
0.194 
0.000 
0.710

(1, 0, 0.2, 0.1)  
(0, -1, 0.2, 0.1) 
(2, 0, 0.2, 0.1)  
(0, -2, 0.2, 0.1)

0.063  
0.062 
0.024 
0.028

0.025 
0.022 
0.003
0.001

(1, -1, 0.2, 0.1) 
(1, -2, 0.1, 0.1) 
(2, -2, 0.2, 0.1) 
(2, -1, 0.2, 0.2)

0.134 
0.060 
0.124
0.159

0.079 
0.017 
0.035 
0.701

Shown above are results from testing the unilateral null hypothesis based on a 
simulation of size 1000 and using the procedure from Section 5 with δ=0.10 for 
n=100 and δ=0.050 for n=1000. 

Table 6: Type I Error and Power for BCN+NP Data: Medium δ.

(μ1, μ2, γ1, γ2) n=100 n=1000
(1, -1, 0.1, 0.1) 
(1, -1, 0.2, 0.2) 
(2, -2, 0.1, 0.1) 
(2, -2, 0.2, 0.2)

0.032 
0.068 
0.026
 0.279

0.007 
0.050 
0.000 
0.545

(1, 0, 0.2, 0.1)  
(0, -1, 0.2, 0.1) 
(2, 0, 0.2, 0.1)  
(0, -2, 0.2, 0.1)

0.010 
0.023 
0.014 
0.007

0.007 
0.002 
0.001
0.000

(1, -1, 0.2, 0.1) 
(1, -2, 0.1, 0.1) 
(2, -2, 0.2, 0.1) 
(2, -1, 0.2, 0.2)

0.054 
0.031 
0.100
0.096

0.016 
0.001 
0.010 
0.428

Shown above are results from testing the unilateral null hypothesis based on a 
simulation of size 1000and using the procedure from Section 5 with δ=0.15 for 
n=100 and δ=0.075 for n=1000. 

Table 7: Type I Error and Power for BCN+NP Data: Large δ.
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Figure 1: Fitted models from LOD case study.
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a model is beyond the scope of this manuscript.

The full BCN+NP model comprises three mixture components 
for LOD scores. The means of these mixture components are 0, 
µ1 ≥ 0, and µ2 ≤ 0. We assume that the within-component variance 
σ2 is unknown but equal across all components. We then applied our 
hypothesis testing procedures to detect whether there are substantial 
numbers of genetic variants from components with µ1>0 or µ2<0. The 
empirical distribution of the LOD values suggests either that there 
is some sort of digit preference in the data or that the underlying 
probability distribution is inherently of mixed type, with a discrete 
component supported on approximately 30 points and accounting 
for the vast majority of the observations. In either case, a histogram 
estimate suggests that approximating the empirical distribution of the 
LOD values using the BCN+NP model may be reasonable if one wishes 
the approximating distribution to be continuous (Cf. Figure 1).

To begin with, we note that σ2 in the BCN+NP model is estimated 
to be 0.119. Therefore, the BCN model with σ2 treated as known and 
equal to 1 would be highly inappropriate for these data and could 

yield faulty conclusions. In fact, since 2
1

4209n
ii

X
=

=∑ is far less than 
2
0.95,16973 17277,X = naive omnibus testing for the BCN model using the 

procedure of Charnigo et al. [1] would fail to detect any heterogeneity.

On the other hand, omnibus testing for the BCN+NP model using 
the procedure introduced herein yields T=35.1, U=42.2, V=33.7, and 
W=45.5. Thus, the omnibus null hypothesis is decisively rejected for 
any reasonable choice of α, regardless of how α is divided among α1 
through α4.

Moving to unilateral testing for the BCN+NP model, we obtain 
2 4(m, ) 7.4 10 .h σ −= ×  With α=0.05 and δ=0, the critical value for 

rejection of the unilateral null hypothesis is 9.5×10−4. Since the critical 
value is an increasing function of δ (for example, the critical value with 
δ=0.05 is 3.1×10−3), there is no choice of δ  for which the unilateral null 
hypothesis will be rejected at α=0.05.

To understand why the unilateral null hypothesis is not rejected, we 
can juxtapose the fitted BCN+NP model against the fitted “unilaterally 
contaminated normal model with nuisance parameter”(UCN+NP 
model), a special case of the BCN+NP model in which either γ1µ1=0 or 
γ2µ2=0 but not(necessarily) both. Both models are fitted by maximum 
likelihood and are displayed in Figure 1. They are numerically 
indistinguishable to three decimal places on the parameters, as 0.545N 
(0, 0.119) +0.135N (0.980, 0.119)+ 0.320N(0, 0.119) and 0.865N(0, 

0.119)+ 0.135N(0.980, 0.119) respectively.

One might have anticipated that the estimate of µ2 equaling zero 
in the BCN+NP model should have forced 2(m, )h σ  to equal zero as 
well. However, the former estimate is based on maximum likelihood, 
whereas the latter test statistic is based primarily on moments. Even so, 
neither the fitted BCN+NP model nor the test statistic argues against 
the unilateral null hypothesis.

In light of the simulation results in Section 6, one may also be 
concerned about the possibility of inadequate power for the unilateral 
testing procedure. However, because the sample size in this case study 
was more than 16 times the larger sample size from the simulation 
results, and because the estimate of µ2 was zero, we do not believe 
that there was an undetected deviation of any importance from the 
unilateral null hypothesis in this case study, at least to the extent that 
the BCN+NP model approximation was valid.

The final fitted model for the G4Fc subgroup, one of the female-
containing subgroups, is 0.865N (0, 0.119)+0.135N (0.980, 0.119). 
This suggests that about 13.5% of genetic variants belong to a mixture 
component with µ1>0. We further calculated the posterior probabilities 
for genetic variants belonging to this mixture component. Such a 
posterior probability is a monotone function of the LOD score but 
may provide some insight that a LOD score does not, namely the 
probabilistic interpretation of how likely the genetic variant is to 
belong to the mixture component with µ1>0.

There are 253 SNPs with posterior probability greater than 
99% (corresponding LOD score, 1.27) and 669 SNPs with posterior 
probability above 98% (corresponding LOD score, 1.19). Using 50% 
posterior probability as a threshold, the cutoff point for LOD scores 
is 0.765. In other words, if a LOD score is less than 0.765, then the 
genetic variant will be assigned to the mixture component with mean 
zero. If a LOD score is greater than 0.765, then the genetic variant will 
be assigned to the mixture component with mean µ1>0. Alternatively, 
if one wishes to assign 13.5% of genetic variants to the mixture 
component with mean µ1>0, then one may use a cutoff of 0.427. On 
the other hand, a LOD score of 0.427, 0.765, or even 0.980 may not be 
sufficiently large to argue for a clear connection of the genetic variant 
with autism. Thus, caution is required in interpreting the results of the 
fitted model.

Conclusions
We have presented and theoretically justified new procedures 

(μ1, μ2, γ1, γ2)
n=100 n=1000

df=5 10 50 100 df=5 10 50 100
(1, -1, 0.1, 0.1) 
(1, -1, 0.2, 0.2) 
(2, -2, 0.1, 0.1) 
(2, -2, 0.2, 0.2)

0.312 
0.508 
0.596 
0.951

0.261 
0.428 
0.357 
0.875

0.190 
0.278 
0.100 
0.552

0.193 
0.270 
0.088 
0.455

0.829 
0.994 
0.999 
1.000

0.662 
0.977 
0.867 
1.000

0.338 
0.648 
0.027 
0.996

0.266 
0.591 
0.020 
0.975

(1, 0, 0.2, 0.1) 
(0, -1, 0.2, 0.1) 
(2, 0, 0.2, 0.1) 
(0, -2, 0.2, 0.1)

0.271 
0.226 
0.508 
0.327

0.241 
0.189 
0.309 
0.196

0.161 
0.168 
0.098 
0.059

0.168 
0.158 
0.057 
0.065

0.736 
0.502
0.996 
0.793

0.539 
0.391
0.885 
0.523

0.181 
0.229
0.104
0.065

0.152 
0.187
0.044
0.027

(1, -1, 0.2, 0.1) 
(1, -2, 0.1, 0.1) 
(2, -2, 0.2, 0.1) 
(2, -1, 0.2, 0.2)

0.417 
0.443 
0.822 
0.807

0.346 
0.290 
0.644 
0.677

0.243 
0.140
 0.261 
0.365

0.220
0.113 
0.183 
0.313

0.968 
0.980
1.000
1.000

0.873 
0.885
1.000
1.000

0.444 
0.309 
0.518 
0.985

0.351 
0.198 
0.294
0.941

Shown above are results from testing the unilateral null hypothesis based on a simulation of size 1000 and using the procedure from Section 5 with δ=0.05 for n=100 and 
δ=0.025 for n=1000. 

Table 8: Type I Error and Power for Transformed BCT+NP Data: Small δ.
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for testing omnibus and unilateral null hypotheses in a bilaterally 
contaminated normal model with nuisance parameter representing the 
unknown within-component variability. As our case study makes clear, 
there will arise situations in which assuming the within-component 
variability to be known and equal to unity is not a viable modeling 
strategy, and thus the procedures in the earlier work by Charnigo et al. 
[1] will not be applicable.

Our case study also illustrates that having a unilateral testing
procedure is worthwhile. One may be inclined to assume that, if 
contamination is present in one direction, contamination should also 
be present in the other direction. Such an assumption may be true 
in many instances, but being able to declare that contamination is 
exclusively (or, at least, primarily) in one direction may be of scientific 
importance. Thus, even if one has an adequate sample size to estimate 
parameters for a model with two contaminating components, adopting 
such a model may be neither necessary nor desirable.

The primary limitation of the omnibus testing procedure proposed 
herein is that a union-inter section test with non-exclusive mechanisms 
to reject the null hypothesis (i.e., more than one of T through W 
could call for rejection simultaneously) will tend to be conservative. 
Even so, the simulation results suggest that the omnibus testing 
procedure may exhibit good power in many situations with unilateral 
contamination or asymmetric bilateral contamination. Symmetric 
bilateral contamination appears considerably more difficult to detect, 
presumably because such contamination is not easily distinguished 
from a larger value of the nuisance parameter under the omnibus null 
hypothesis. A secondary limitation is that the data analyst must specify 
α1 through α4. However, a “default” choice of α1=α2=α3=α4=α/4 may 
work reasonably well, if not optimally, in many situations.

The primary weakness of the unilateral testing procedure is its 
sensitivity to model misspecification. If the data originated from a 
bilaterally contained and scaled T model with nuisance parameter on 
low degrees of freedom and were transformed so that the bilaterally 
contaminated normal model with nuisance parameter could be applied, 
the Type I error rates may be surprisingly high. Of course, this can 
be corrected by adjusting δ, but we have not discovered a mechanism 
for adjusting δ under model misspecification, other than by trial and 
error. Indeed, a secondary weakness of the unilateral testing procedure 
is that the data analyst must specify δ. However, if the model has been 
correctly specified, then δ is interpretable as a high-probability bound 
between the true and estimated values of the nuisance parameter, and 
so choosing δ may not pose undue difficulty. The simulation results 
herein may also provide some guidance.

Future research should attempt to address the above issues, and 
one possibility may be a likelihood-based inferential framework. While 
ordinary likelihood ratio testing may not be helpful, because tractable 
asymptotic null distributions are not anticipated, an extension of 
the EM-test to the bilaterally contaminated normal (or scaled T) 
model with nuisance parameter may be viable, since the EM-test has 
previously been helpful in addressing null hypotheses that posit more 
than one component. Furthermore, methodology is needed that allows 
for differences in within-component variability, in effect changing 
the nuisance parameter into the second part of a component-specific 
vector characterizing that component probability distribution. Based 
on the work of Dai and Charnigo [7] as well as that of Chen et al. 
[5], we conjecture that a modified likelihood ratio test might have an 
asymptotic chi-square distribution under the omnibus null hypothesis 
in a bilaterally contaminated normal model with component-specific 
variances. An extension of the EM-test might be helpful to address the 

unilateral null hypothesis in such a scenario.
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