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Introduction
Microarray technology has allowed researchers to observe 

thousands of gene expressions all at once. Gene expression in cells is 
of relevance because it allows a way to pinpoint disease markers that 
are related to medical treatments [1]. A job that many researchers 
may want to perform would be to identify which genes in a cell are 
differentially expressed. For example, a researcher may need to conduct 
an experiment to discover differentially expressed genes between two 
experimental conditions. For explanation purposes this could be 
between healthy patients and patients who have a condition of interest 
such as cancer. Microarray analysis will allow the researcher to find 
which genes are expressed differently between these two groups of 
patients. The researchers will then be able to develop a treatment that 
targets these specific genes and create a more effective type of therapy. 
Further information on microarray technology can be found in Majtan 
et al. [2].

Over the years many methods have been studied to perform the 
analysis of microarray data. These methods can be categorized into 
two types, parametric methods and nonparametric methods. Examples 
of parametric methods are the t-test, Bayes t-test [3], an analysis 
of variance approach, and the B-statistic method. Nonparametric 
methods, on the other hand, have become very attractive in this field 
of research because of the previous costs of microarray experiments 
and the availability of replicated data has made it difficult to obtain 
large samples. Nonparametric methods include Significance Analysis 
of Microarrays (SAM) proposed by Tusher et al. [4], samroc, which 
uses a very similar test statistic to SAM’s in addition to the use of a 
receiver operating characteristic (ROC) curve [5], the mixture model 
method (MMM) [6], nonparametric empirical Bayes method [4] and 
the Zhao-Pan method. 

A variety of comparisons between methods have been performed 
in the past to find which method is most reliable in discovering true 
differentially expressed genes. The main purpose in these comparisons 
is to find the method that correctly identifies the highest proportion of 
the true differentially expressed (DE) genes as DE while maintaining 
a small proportion of equivalently expressed (EE) genes being falsely 
identified as DE. 

One of the most widely used methods for microarray analysis is 
the previously mentioned SAM. However, SAM is not a completely 
robust method and some shortcomings arise. Many researchers have 
attempted to modify the method in order to make it more reliable. 
When the number of significant genes is fairly large in a data set, the 
estimated number of significant genes by SAM is affected and the test 
is less powerful. As a solution, Pan et al. [6] suggested the use of MMM 
to estimate the distribution of the null and test statistic. The MMM 
allows for identifications of a rejection region for any type 1 error rate. 
In another attempt to fix this bias, Van de Wiel proposes a method 
using rank scores within SAM. Just by replacing the data with rank 
scores, the tendency of SAM to produce a biased estimate of DE genes 
is eliminated. The results are only valid though when the number of 
samples, N, is not “too small”. On the basis of the test statistic used in 
SAM, Broberg’s [5] created the samroc method. Broberg found that 
when the number of DE genes is large, then the samroc method is likely 
to work better than SAM. However, in most of the tests performed, the 
two methods worked just as well as each other when samroc did not 
outperform SAM.  

Breitling et al. [7] adopted another approach to identify 
differentially expressed genes called rank product in an attempt to 
exceed SAM. The results showed that, while being a simpler method 
than SAM, rank product outperformed SAM in identifying DE genes, 
even with very small data sets. It is also seen that the rank product 
method performed very similarly to fold change. Fold change (FC) 
is a popular method often used because of its simplicity and easy 
understanding.
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Abstract
Microarray technology, which observes thousands of gene expressions at once, is one of the popular topics in 

recent decades. When it comes to the analysis of microarray data to identify differentially expressed (DE) genes, many 
methods have been proposed and modified for improvement. However, the most popular methods such as Significance 
Analysis of Microarrays (SAM), samroc, fold change, and rank product are far from perfect. In order to determine which 
method is most powerful, it comes down to the characteristics of the sample and distribution of the gene expressions. 
The most practiced method is usually SAM or samroc but when the data tends to be skewed, the power of these 
methods decreases. With the concept that the median becomes a better measure of central tendency than the mean 
when the data is skewed, the test statistics of the SAM and fold change methods are modified in this paper. This study 
shows that the median modified fold change method improves the power for many cases when identifying DE genes if 
the data follows a lognormal distribution.      
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was chosen to be 5000 based on the work of Schwender et al. research.    

SAM	

The test statistic in SAM is very similar to the test statistic from 
the simple t-test. The difference lies on the introduction of a small 
constant, s0, in the denominator. The test statistic for SAM is as follows:
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where Xi is the expression of the ith gene under experimental condition 
1 and Yi is the expression of the ith gene under experimental condition 
2 (i = 1,…,n). Further, X and Y are the mean expression levels under 
conditions 1 and 2 respectively for gene i.

The “gene-specific scatter” or standard deviation s(i) is defined:
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where J is the number of replicates in experimental condition 1 and K 
is the number of replicates in experimental condition 2. 

The constant, s0, is added in order to correct the issue that the 
traditional t-test faces. The problem with the t-test occurs when genes 
have low expression levels and yield a small sample variance. The 
combination of those two factors lead to producing a large test statistic 
making it very likely that the gene will be identified as DE. The value 
of s0 represents a percentile of the standard deviation values of all the 
genes. The method to compute this value can be found on Page 30 of 
the SAM user guide [1].

In order to find which genes are DE, SAM calls an algorithm to create 
the null scores by pooling the data together across the two treatments 
per gene B times, where B is the total number of permutations. For each 
permutation, SAM finds the null statistic by using the same formula 
as the original test statistic, resulting in a total of B null statistics for 
each gene. The mean of the null statistic is then found for each gene 
and plotted against the ordered test statistic. The absolute differences 
between the two values are then found and compared against a cutoff 
value to determine whether or not there is a significant difference [4]. 
The cutoff value can be obtained by following the method explained on 
Page 29 of the SAM user guide [1].

Samroc

Broberg’s [5] approach to identifying lists of significant genes while 
minimizing the rate of false positives and false negatives consists of 
ranking genes in order of likelihood of being differentially expressed. 
The test statistic is similar to that of SAM, however the constant s0, is 
chosen in a different manner [9]. 

Fold change

According to McCarthy and Smyth [11], the earliest publications 
in analyzing microarray data to identify differentially expressed genes 
used the fold change rule. The fold change rule is defined as follows [9]:
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where X  and Y  are the mean expression levels under conditions 1 
and 2 respectively for gene i. The typical accepted cutoff value for the 
fold change rule is FCi > 2 [11]. McCarthy and Smyth also mention that 
a disadvantage of the fold change rule is that it does not take variability 

Comparisons across methods are interesting because each method 
usually results in outcomes without much agreement. In Jeffery et al. 
[8] it is found that only 8 to 21% of the genes are commonly identified 
between the ten different methods being compared including SAM, 
samroc, fold change, and rank product. The study shows that many 
factors such as number of genes and number of samples influences 
which method will obtain the best result. It is concluded that rank 
product works well under settings with low number of samples and the 
ROC curve performed well under data sets with large sample sizes. The 
conclusion by Kim et al. [9] is similar to that of Jeffery et al. [8], noting 
that the sample size, distribution, and equal variance assumptions of 
each test greatly impact which test performs better. Our study shows 
that SAM outperformed samroc when the data follows a lognormal 
distribution.  

Despite the advancement of next generation sequencing (NGS) 
as an alternative to microarrays, research in analysis of microarrays 
is still very relevant. Researchers in labs are more comfortable and 
confident with using microarrays as the technology has been around 
for a long time and it is less complicated than NGS [10]. Figuring out 
the most efficient method to identify differentially expressed genes 
under particular data settings can help master the data analysis step in 
microarray research. 

The focus of the present study is a comparison of the top 
performing and popular methods SAM, samroc, rank product, and 
fold change along with modified versions of the SAM method and 
the fold change rule. As it is evident in Kim et al. [9] and Jeffery et 
al. [8], sample size and distributional assumption of the data largely 
impacts the decision of which is the superior method to choose when 
identifying differentially expressed genes. The aim of this paper was 
found after evaluating previous research and understanding the biggest 
drawbacks in this area. Several settings of lognormal cases with various 
sample sizes will be tested under each of the methods. For the first 
time, a modification that uses median in place of the mean in the test 
statistics of SAM and the fold change rule will be made in this paper. 
The modifications follow from the concept that the median is a better 
measure of central tendency than the mean when describing skewed 
data. The expectation is that using the median will better represent the 
average gene expressions when the microarray data follows a skewed 
distribution. The modification to fold change will be shown to improve 
results in identifying differentially expressed genes under skewed 
data settings. A table of cutoff values for fold change and its modified 
version is also included in the present study. 

The organization of this paper is as follows. In section 2, the 
statistical techniques are given. A simulation study under the 
different settings of sample size and skewness is performed on each 
of the methods in section 3, section 4 will include the application and 
analysis of a real data set. Finally, conclusions will be made along with 
a statement of some concerns and future possible research in section 5. 

Statistical Methods
This section is a review of several favored statistical methods for 

identifying differentially expressed genes in microarray datasets. 
The performance of the methods on data that follow a lognormal 
distribution are of interest. Let the ith gene expression level of the 
jth sample under condition 1 be represented by Xij and the ith gene 
expression level of the kth sample under condition 2 be represented 
by Yik, where j = 1,…,J, k = 1,…,K, which represents replicates under 
condition 1 and 2 respectively. The gene number is represented by i, 
where i = 1,…,n. For this study n = 5000 genes. The number of genes, n, 
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to follow a lognormal distribution. The simulations of several 
combinations of sample sizes have been done while also using three 
different levels of skewness, slight, moderate, and high. 

Simulation techniques

The simulation is performed by generating 5000 genes where 500 of 
them are knowingly differentially expressed. A matrix, W, is generated 
of size (5000 x (J + K)), J is the number of samples from condition 1 and 
K represents the number of samples from condition 2. As stated earlier, 
each data point in the matrix represents a gene expression, Xij and Yik. 
The ith gene expression level under condition 1 is represented by Xij  and 
the ith gene expression level under condition 2 is represented by Yik. 

The comparison between SAM, samroc, fold change, rank product, 
and the proposed modifications using median are performed under 
cases of randomly generated data from the lognormal distribution. 
Different levels of skewness are considered: slightly, moderately, and 
highly skewed. The levels of skewness will be implemented by setting σ 
= 1,1.2,1.5 respectively. The data follows the model:
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( )ln 0,1=ikY N 	for k = 1,2,…K			             (3.2)

where ( )~ ln 1.5, , ~ ln ( 1.5, )η σ σ∅ −ij ijN N ,  and ( )~  0,1ς ij ln N

The choice of the sample sizes under condition 1 and 2, values of 
J and K, were chosen in order to cover a variety of situations that an 
experimenter may face when using real data and to be consistent with 
previous studies on microarray data. Sample sizes of (4,4) and  (10,26) 
were chosen as in Kim et al. and Zhang’s study where the latter is also 
the sample size of the Leukemia data from Baldi et al. [3]. The sample 
size (8,8) was also chosen since it is of same size as the apolipoprotein 
AI (Apo AI) dataset from Callow et al. [15]. For a thorough analysis 
covering more possibilities, sample sizes on a scale of 5 from 10 to 25 
were also chosen for J and K. All of the sample sizes can be seen in 
Table 2. For the purpose of this study, the process of simulating a data 
set and running the methods under each setting was 500 times, while 
the previously mentioned studies of Zhang and Schwender et al. used 
100 simulations for such comparisons.   

Results and discussion

An advantage of simulating gene expression data is that the exact 
genes that are differentially expressed are known. After each method 
is performed on the simulated data sets, the total number of genes 
that were correctly identified as DE, true positives (TP), and the total 
number of genes that were incorrectly identified as DE, false positives 
(FP), were recorded. With the number of TP and FP known, then 
the type 1 error rate and the power were calculated to perform the 
comparison of methods. The null hypothesis for microarray analysis is 
that the ith gene under condition 1 is the same as under condition 2 i.e., 
it is not DE, versus the alternative where the ith gene under condition 1 
is significantly different from the ith gene under condition 2 i.e., the ith 
gene is DE. The hypotheses are important to note in order to find the 
type 1 error rate, the probability of rejecting the null hypothesis given 
that it is in fact true, and the power, the probability of correctly rejecting 
a false null hypothesis. In terms of the microarray analysis done here 
the type 1 error rate reduces to the number of genes incorrectly 
identified as differentially expressed, FP, divided by the total number of 
equivalently expressed genes, 4500, and power reduces to the number 

into consideration. Since it does not account for variability, it makes 
it difficult to make sense of a set cutoff value. The shortfalls of the fold 
change rule led to the development of more sophisticated tests such as 
SAM, however they also have their flaws and do not have the intuitive 
appeal which the fold change rule has [7].    

Rank product

The rank product method was created with overcoming the 
problems of fold change in mind, while being statistically rigorous 
and simple at the same time [7]. After the rank product method 
gained popularity as a method to detect differentially expressed genes 
in microarray data, Koziol [12] extended the process to a two sample 
setting. Koziol defines the test statistic as follows: 

1 1

1 1= =
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J K

J K
i ij ik

j k

RP R R 			             (2.4)

where J is the number of replicates in experimental condition 1, K is 
the number of replicates in experimental condition 2, and the rank is 
taken among the expressions in a single sample, across the n genes, for 
each sample. Rij represents those ranks assigned to the ith gene under 
condition 1 and Rik will be those ranks assigned to the ith gene under 
condition 2. Further, the monotone log transformation is taken on the 
test statistic to obtain a better approximation of the null distribution 
and the resulting statistic is:
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According to Koziol [12], “the exact distribution of log(RPi) can 
be tedious” so a normal approximation of the distribution should be 
adequate, especially for large samples. If there is skewness in the data, 
then this approximation may not be adequate. 

Median fold change

It has been shown that microarray data is consistent and well 
approximated by the lognormal distribution [13]. The lognormal 
distribution is known to be a skewed distribution and the best measure 
of central tendency for this type of distribution is the median [13,14]. 

With the prevailing use among biologists as seen in [13] because 
of its attractive nature and simplicity, we are proposing the following 
modification to the fold change rule:     

max( , )
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=
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 
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.   				              (2.6)

Instead of using the average expression levels of the ith gene under 
condition 1 and 2, iX and iY , when calculating the fold change, 
the median expression levels for the ith gene, iX  and iY  under each 
condition is used.

i i1 i2 iJX =median(X ,X ,....... X ) 			              (2.7)

i i1 i2 iKY =median(Y ,Y ,...... Y ) 			              (2.8)

Simulation Study
Since a theoretical comparison among the test statistics is not 

possible, a simulation study has been conducted to compare the 
performance of the test statistics in this chapter. In this section, the 
performance of SAM, samroc, fold change, rank product and the 
proposed modifications of fold change using median are compared 
by applying the methods to simulated gene expression data sets. The 
methods are compared under the case where the data is simulated 
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(J,K) and 
Skew

Power P(type 1 error)
SAM sam-roc FC Med. FC Rank Prod. SAM sam-roc FC Med. FC Rank Prod.

(4,4)
0.0613 0.3986 0.4395 0.4445 0.4677 0.0022 0.0448 0.0427 0.0409 0.0809L

M 0.0338 0.379 0.4538 0.4742 0.4528 0.0014 0.0433 0.044 0.0478 0.0791
H 0.018 0.3599 0.4638 0.479 0.4318 0.001 0.0413 0.0438 0.0474 0.0768

(8,8)
0.3594 0.6436 0.7109 0.7235 0.6725 0.0116 0.0473 0.0472 0.047 0.0807L

M 0.2415 0.584 0.6854 0.7072 0.6415 0.008 0.0452 0.0481 0.048 0.079
H 0.1224 0.5245 0.6468 0.6818 0.5965 0.0041 0.0417 0.0476 0.048 0.0772

(8,15)
0.4194 0.7142 0.8144 0.8182 0.7677 0.0132 0.0492 0.0496 0.0492 0.0745L

M 0.3806 0.65 0.7767 0.7907 0.728 0.0118 0.0477 0.05 0.0494 0.0728
H 0.3229 0.5843 0.7154 0.7521 0.6649 0.0098 0.0444 0.0497 0.049 0.0703

(8,20)
0.4305 0.7243 0.8409 0.8579 0.8091 0.0134 0.0499 0.0472 0.0481 0.0716L

M 0.4137 0.6596 0.8005 0.8225 0.7616 0.0125 0.0483 0.0475 0.0482 0.0691
H 0.3864 0.5935 0.7327 0.782 0.6932 0.0114 0.0462 0.0473 0.0485 0.0667

(8,25)
0.4369 0.7208 0.8638 0.873 0.8383 0.0135 0.0498 0.0496 0.0489 0.0687L

M 0.4341 0.6653 0.8248 0.8408 0.7874 0.0131 0.0489 0.0496 0.049 0.0663
H 0.4236 0.5999 0.7543 0.7961 0.7116 0.0126 0.0471 0.0498 0.0491 0.0637

(12,8)
0.5427 0.7418 0.7979 0.8108 0.7452 0.0174 0.0481 0.049 0.0493 0.0813L

M 0.397 0.6644 0.7409 0.7845 0.708 0.0126 0.0456 0.041 0.0485 0.0795
H 0.2371 0.5836 0.6944 0.7531 0.6531 0.0074 0.0427 0.0475 0.0484 0.0774

(10,15)
0.5984 0.7959 0.8588 0.8601 0.8132 0.0187 0.0488 0.049 0.048 0.0773L

M 0.4731 0.7204 0.8154 0.8284 0.7703 0.0144 0.0473 0.0489 0.0469 0.0754
H 0.3608 0.632 0.7427 0.7928 0.7028 0.0106 0.0443 0.0488 0.047 0.0732

(10,20)
0.5895 0.8107 0.8905 0.8973 0.8559 0.0181 0.0496 0.0499 0.0468 0.0744L

M 0.488 0.744 0.8498 0.8713 0.8099 0.0146 0.0482 0.0497 0.0491 0.0722
H 0.4168 0.6474 0.7674 0.829 0.7354 0.0121 0.0454 0.0498 0.0487 0.0699

(10,26)
0.5567 0.8149 0.9068 0.9149 0.886 0.0168 0.0499 0.0486 0.0486 0.0722L

M 0.4855 0.7487 0.8648 0.8861 0.8378 0.0145 0.0491 0.0484 0.0485 0.0699
H 0.4476 0.6574 0.7806 0.8432 0.756 0.0132 0.047 0.0488 0.0489 0.0673

(15,15)
0.8165 0.8931 0.9176 0.9106 0.8735 0.0261 0.0489 0.0485 0.0482 0.0821L

M 0.6801 0.8087 0.8747 0.8889 0.8318 0.021 0.047 0.0485 0.0483 0.0805
H 0.4591 0.6829 0.7765 0.8544 0.7588 0.0136 0.0434 0.0483 0.048 0.0789

(15,20)
0.8581 0.916 0.9461 0.9471 0.9169 0.0267 0.0485 0.0496 0.0496 0.0794L

M 0.7353 0.8465 0.9063 0.9261 0.8758 0.0226 0.0482 0.0497 0.0496 0.0778
H 0.5245 0.7177 0.8052 0.8913 0.7973 0.0153 0.0449 0.0495 0.0496 0.0762

(15,25)
0.8775 0.9242 0.9596 0.9585 0.9433 0.0272 0.0492 0.0481 0.0485 0.0777L

M 0.7625 0.8622 0.9219 0.939 0.9039 0.023 0.0481 0.0482 0.0485 0.0755
H 0.5577 0.7374 0.8211 0.9036 0.8243 0.0162 0.0462 0.0485 0.0487 0.0738

(20,20)
0.9223 0.9537 0.9692 0.9735 0.9423 0.0289 0.0485 0.0495 0.0473 0.0829L

M 0.8192 0.8876 0.9327 0.9592 0.9073 0.025 0.0475 0.0495 0.0473 0.0815
H 0.5906 0.7447 0.8247 0.935 0.8312 0.0172 0.0445 0.0497 0.0471 0.08

(20,25)
0.9416 0.9634 0.9796 0.9827 0.9656 0.0295 0.0483 0.05 0.0493 0.0812L

M 0.8542 0.9098 0.9491 0.9715 0.9346 0.026 0.0478 0.0499 0.0495 0.0797
H 0.6364 0.7702 0.8422 0.9488 0.8602 0.0184 0.0457 0.0497 0.0495 0.078

(25,25)
0.9657 0.9784 0.9882 0.989 0.977 0.0303 0.0486 0.05 0.0488 0.0844L

M 0.8903 0.9319 0.9624 0.981 0.9507 0.0268 0.0476 0.05 0.0488 0.0829
H 0.6616 0.7857 0.855 0.9644 0.8841 0.0187 0.0453 0.0499 0.0487 0.0815

Table 1: Power and P(type 1 error) for simulations under lognormal distribution.
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of correctly identified differentially expressed genes, TP, divided by the 
total number of actual differentially expressed genes, 500.

( )
( )

( )
P reject null null is true

P type I Error =
P null is true

FP/5000 FP= =
4500/5000 4500

Ç
                                            (3.3)

( )
( )

P reject null null is false
Power=

P n
TP 5000

ull i
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500 500

s fa s

0 0

l e

50

Ç
               	            (3.4)

The simulations carried out under the lognormal distribution 
revealed settings where the SAM method turns out to be the weakest 
of the methods. SAM worked rather poorly for all sample size 
combinations where at least one of the conditions had sample size less 
than 15. For settings where both conditions had 15 or more samples, 
SAM worked decently with a power most of the time above 0.70 except 
for few situations where the data was moderately skewed and in all cases 
that were highly skewed. In highly skewed settings, SAM was rather 
poor. The samroc method followed similar trends as SAM, however, 
samroc was more robust in respect to sample size. The performance 
of samroc was much better than SAM under settings where both 
conditions had sample sizes of 10 or higher. The values of power and 
type 1 error rate for each setting under a lognormal distribution are 
given in Table 1. Levels of skewness are indicated by L=slightly skewed, 

M=moderately skewed, and H=highly skewed (Table 1).

As Table 1 shows, the fold change method and the modified fold 
change method using median were consistently the top two methods 
across all sample sizes and all skewness settings for the lognormal data. 
The modified version of fold change with median worked better than 
the original fold change for all of the simulated sample sizes, obtaining 
higher levels of power while maintaining a type 1 error rate of 0.05 
or smaller. It can also be seen in Table 1 that as the level of skewness 
rises, the modified version of the fold change method with median 
further improves over the original fold change. For each sample size 
simulated, as skewness increases, the difference in power between the 
original fold change and median fold change increases, with the latter 
having the higher power. This relationship is illustrated in Figure 1. 
The improvement in the fold change method was anticipated because 
the modified version replaced the mean with the median and for the 
lognormal data, which is a skewed distribution, the median is a more 
accurate measurement of the central tendency as Manikandan [14] 
stated. 

  Even though the median fold change method constantly had the 
better power as the sample size increased, it is evident that when there 
are at least 15 samples of each condition and the skewness is not too 
heavy, all the methods work very similarly, producing about the same 
power and type 1 error rate. The similar performance between methods 
toward the higher number of sample sizes leaves the decision of 
which method to use for analysis of microarray data to the researcher 
depending on which assumptions best match the data and the method 
of choice. SAM, samroc, and fold change all have the assumption that 

 

Figure 1: Power and P(type 1 error) under lognormal distribution for sample size (10,20) for different 
levels of skewness. The blue columns correspond to the power and the red columns correspond to 
the P(type 1 error).  
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the genes share equal variance while rank product assumption is more 
relaxed allowing the variance to be about equal. The cutoff values for 
fold change and median fold change were chosen in order to obtain a 
type 1 error rate of no more than 0.05 and are given in Table 2.

Application
To illustrate the findings of this paper, a real data set, Apo AI 

data from Callow et al. [15] are analyzed in this section. The Apo AI 
dataset consists of 5548 genes and 16 samples. Out of the 16 samples, 8 
were from control mice and the other 8 samples were from mice with 
the Apo AI gene knocked out. The 8 mice that had the Apo AI gene 
knocked out will have a very low high-density lipoprotein cholesterol 
level and the delivery of the cholesterol to the liver will be affected [15].
The data were preprocessed in the similar way as the leukemia data 
(4.1), as was done by Kim et al. The difficulty when attempting to 
analyze this dataset is that there has not been reference genes adopted 
as biologically significant from previous studies as there was with the 
leukemia data. 

Table 3 shows the number of genes that were commonly found 
between each pair of the five methods. The idea expressed in Jeffery et 
al. [8] that only a very low percentage of genes will be found significant 
between multiple methods is supported by the results. The conflicting 
result between methods is one of the drawbacks of microarray analysis. 
There is a large inconsistency between the different methods to identify 
which genes are identified as significantly different between two groups 
[16] (Table 3).

Conclusion
A comparison of the performance of popular testing procedures 

for identifying differentially expressed genes from microarray data 

Sample Size Fold Change Median Fold Change
(4,4) 5.00 4.75
(8,8) 3.23 3.18
(8,15) 2.81 2.79
(8,20) 2.72 2.65
(8,25) 2.62 2.58
(10,10) 2.88 2.93
(10,15) 2.65 2.65
(10,20) 2.52 2.49
(10,26) 2.46 2.42
(15,15) 2.42 2.44
(15,20) 2.29 2.28
(15,25) 2.22 2.22
(20,20) 2.16 2.14
(20,25) 2.08 2.06
(25,25) 2.00 2.00

Table 2: Cutoff values for fold change and median fold change with at most 0.05 
P(type 1 error) under lognormal distribution.

Methods SAM

samroc 42 samroc

Fold Change 0 25 Fold 
Change

Median Fold 
Change

0 35 39 Median Fold 
Change

Rank Product 33 182 1 3 Rank 
Product

Table 3: Number of common identified significant genes in the Apo AI dataset.

such as SAM, samroc, fold change and rank product was conducted. 
On the basis of the assumption that microarray data are related to the 
lognormal distribution from Hoyle et al. [13] and the familiar idea 
that the median is a better measurement of central tendency than the 
mean when describing skewed data as expressed in Manikandan [14], 
modifications were attempted on fold change, replacing the mean 
gene expression values with the median.  It has been observed from 
Simulation results, fold change and the modified median fold change 
were consistently the top performing methods for lognormal data.

An analysis on a real microarray datasets was also performed to 
evaluate how the methods and the proposed modification would 
perform in a real situation. While the analysis on the Apo AI dataset 
showed that the median fold change method was an improvement to 
the original fold change, it also gave a nice visualization of how the 
different methods are inconsistent with each other when identifying 
differentially expressed genes. Hope findings of the paper will be useful 
for the practitioners in the area of health sciences and related area.
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