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Introduction
Natural environments harbor a large number of microorganisms 

representing the major reservoir of undescribed biodiversity [1] and 
occupy diverse habitats from deep sea sediments to high up in the 
atmosphere [2]. But, most of the microbes are unculturable by standard 
techniques [3,4]. Thus, their ecology and functional roles are unknown 
and our understanding of the composition of the natural microbial 
world is therefore rudimentary. The reason for uncultivable nature may 
be the fact that they depend on other organisms for critical processes, 
fail to grow in vitro or have even become extinct in fossil records [5]. 
Some are metabolically active, even though they were unculturable 
in laboratory [6]. Culturing these microbes in artificial environment 
needs in-depth knowledge of the nutrient and growth requirements. 
Although some work has attempted to culture these uncultivable 
bacteria [7,8], the technique is time consuming and laborious and 
therefore needs some alternative methods to study them. 

DNA sequence-based methods can overcome these problems 
since we can isolate the genetic material directly from live or dead cells 
from various environmental samples, allowing a new emerging field 
called metagenomics. Metagenomics involves the culture independent 
approach to study the unculturable microorganisms directly from an 
environmental samples such as soil [9,10], seawater [11], ground water 
[12], antarctic desert soil [13] etc. In the mid-1980s, Norman Pace [14] 
suggested a culture-independent approach which was later named as 
‘‘metagenomics’’ by Handelsman and first appeared in publication in 
1998. This field is also called as environmental genomics, ecogenomics or 
community genomics. In this technique, the isolation of environmental 
DNA directly resulted in the isolation of a number of novel genes and 
was designed with several practical gains such as the discovery of new 
genes and gene products that would lead to agricultural innovations, 
medicinal chemistry and industrial processes. It can also be used to 
reveal diversity patterns of microorganisms, horizontal gene transfer 
analysis, identification of novel metabolic pathways and examining 
genes/operons for desirable enzyme candidates (e.g., cellulases, 
chitinases, lipases, antibiotics) and other natural products [3,15,16].

Ribosomal RNA for the identification of uncultured bacteria 
and its community

Ribosomal RNA is largely used for the study of uncultured bacteria 
as it has several advantages. The 16S gene occurs in all living organisms 
with the notable exception of viruses and represents more than 80% 
of total bacterial RNA found in every living cell and generally stable 
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Abstract
Microorganisms are the major part of earth’s biological diversity. Due to most of the microbes being non-

culturable, it is necessary to use culture independent techniques to study the uncultured microbes. Metagenomics is 
the molecular tool which helps to understand the genetic makeup of the wide variety of uncultivable microorganisms. 
Currently, Next Generation Sequencing (NGS) is one of the most advanced technologies used in metagenomics 
studies and different computational tools have been developed for the analysis of large metagenomic dataset. This 
review demonstrates the different tools used in NGS analysis and its applications in microbial ecology.
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and long enough (approx. 1500 nt), contains independently evolving 
domains, i.e. variable regions. They are shorter than 23s (approx. 2300 
nt) and easier to sequence. The 16S rRNA gene structure consists of 
interspersed conserved and variable regions which is suitable for PCR 
amplification and sequencing. As a molecular chronometer, these 
molecules have preserved their evolutionary history. Most of the 
studies have been carried out with 16S rRNA and has been used as a 
phylogenetic marker as it is present in all prokaryotes and contains 
different hypervariable regions separated by highly conserved gene 
segments. They have highly conserved portion which carries the 
information on early evolutionary events and more recent changes are 
documented within less conserved position or stretches. The degree 
of divergence of present day rRNA sequence gives an estimate of their 
phylogenetic distance. They donot have any ortholog - paralog issues 
or horizontal gene transfer. It is easy to PCR amplify and they have a 
very slow rate of mutation. The new era of metagenomics was ushered 
in by studies using 16S rRNA as a phylogenetic marker of microbial 
taxa. Focusing on a small part of the microbial genome brings down the 
sequencing costs dramatically [17]. 

It is important to choose the appropriate variable region of the 
16S rRNA for microbial ecological studies mainly for biogeography, 
metacommunity theory or microbiome analysis. Previous studies 
selected the hypervariable region which can exhibit sufficient 
phylogenetic signals to classify at the genus level [18]. Liu et al. [19] 
suggested for the 250 bp region between the V2 and V3 hypervariable 
regions for microbial ecological studies. The use of tags of the V3 and 
V6 regions in 454 pyrosequencing also provides sufficient taxonomic 
assignments [20]. Analysis by Wang et al. [21] proved that V2 and 
V4 regions can results best taxonomic assignment at the genus level, 
where as for the study of microbial community complex ecosystem it is 
recommended to use V7-V8 region [22,23]. 
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Analysis of metagenome using DGGE and TGGE 

Sanger sequencing (first generation sequencing) was widely used 
for molecular biology studies with no or minimum errors. Based on the 
Sanger sequencing approach, different PCR based methods have been 
developed to study the microbial communities. Denaturing Gradient 
Gel Electrophoresis (DGGE) or Terminal Restriction Fragment Length 
Polymorphism (T-RFLP) has been developed to analyze the uncultured 
microbial communities in diverse environments [24,25]. These 
methods allow differentiating gene molecules (in polyacrylamide gels) 
based on the decreased electrophoresis mobility of a partially melted 
double stranded DNA molecule at the level of a single base containing a 
linear gradient of DNA denaturants (a mixture of urea and formamide) 
or a linear temperature gradient. However, these techniques present 
several drawbacks as the dominant populations are better revealed and 
bands from more than one species may be hidden behind a single band 
resulting in underestimation of bacterial diversity. The same isolate can 
have different identifiable bands because multiple copies of 16S rRNA 
gene are present in a single genome of species. The Sanger sequencing 
based methods present several drawbacks since it is expensive and 
cannot detect rare microorganisms [26,27]. 

Next generation sequencing technology (NGS) 

NGS allows massively parallel sequencing with thousands to 
millions of sequences in one experiment at considerably low cost 
compared to Sanger method. There are no requirements of bacterial 
cloning of DNA fragments and electrophoresis, since NGS libraries 
preparation process are carried out in a cell-free system and the sequence 
output is directly detected. However, it produces shorter reads with a 
higher error rate than Sanger sequencing [28-30]. Moreover, secondary 
structure and thermal stability of the genome affects the efficiency of 
PCR amplification of the genomic fragments. There are different NGS 
platforms (e.g. Illumina, Pacific Biosciences, Ion Torrent, SOLiD) with 
different principle and divergent features such as run times, yields and 
read lengths [31] (Table 1). 

Advances in NGS have revolutionized the field of microbial 
ecology. Any NGS study follow some common steps such as sample and 
metadata collection, DNA extraction, library construction, sequencing 
and read preprocessing followed by quantitative analysis and functional 
binning [32,33]. Collection of environment sample is the first step in 
any metagenomic study. But, the problem faced in microbial ecology 
studies are that no information is available about the amount of required 

sampling that will comprise entire population in an environment. 
Usually rarefaction curve, a plot of number of species versus number 
of individuals sampled, which typically defines the population richness 
and evenness is used to estimate the fraction of species sequenced. 

Another important aspect for any successful metagenomic study is 
the extraction of high quality DNA from the environmental samples 
[34]. Environmental samples contain DNA in a variety of packages like 
free DNA, virus particle, and prokaryotic and eukaryotic cells. These can 
be suspended in water, bound to a solid matrix like soil, or encased in a 
biofilm or tissue. So extraction methods must be chosen carefully based 
on the medium and the DNA population of interest (Susannah Green 
Tringe) and DNA should come from all the microbial representative 
present in the sample without any shearing or contamination [35]. 
Although many commercial kits are available for metagenome isolation, 
it is required to develop our own method to optimize extraction and 
reducing bias caused by unequal lysis of different members of the soil 
microbial community [36,37]. Beat beating, sonication, detergents or 
enzymatic lysis have been used for the isolation purpose. Since some 
samples contain high humic acid, additional purification is required. 
Polyphenol compound often co-purified along with the DNA can 
enzymatically modify the isolated DNA [38]. One strategy may be the 
use of Skimmed milk which can aid in DNA extraction process from 
soil [39]. Multiple displacement amplification can be used to increase 
template DNA for samples with very less amount of DNA [40,41]. 

Two kind of NGS strategy is applied in microbial community 
analysis: 1) deep amplicon sequencing and 2) complete metagenome 
or metatranscriptome analysis. Shotgun sequencing is applied to 
know the function of the community. The analysis procedure involves 
assembly (merging overlapping short reads into contigs), binning 
(grouping reads or contigs into individual genomes and assigning the 
groups to specific species, subspecies, or genus), functional annotation 
(for the prediction of CDS, CRISPR, noncoding RNAs) and functional 
assignment to the predicted protein coding sequences. On the other 
hand, amplicon sequencing is used for community profiling using 
marker genes (e.g., 16S rRNA gene) in different ecosystems. Procedure 
involves denoising (filtered the ‘noise’ sequences from the raw data), 
Chimera detection (recombinants which are formed when prematurely 
terminated fragments reanneal to other template DNA during PCR), 
OTU clustering (alignment is done by either aligning query sequences 
against pre-aligned reference sequences (42) or using pairwise and 
multiple sequence alignments), Taxonomic classification (taxonomic 

Technology
(company) Amplification Chemistry Sequencing 

method
Yield

(Gb/run)
Highest Average 

Read Length Error rate Output file Disadvan-
tage Advantage Website

Illumina Bridge amplifi-
cation

Reversible dye 
terminator (seq-

by-synthesis)

incorporation of 
fluorescent nucleo-

tides
1- 60 

300 bp (overlap-
ping paired-end 

sequencing avail-
able

≥0.1
Fastq (Phred 
+64 & 33, Il-
lumina +1.8)

Short reads 
and long 
runtime

High 
throughput 

and low 
cost

www.illumina.
com

SOLiD
(Life 
Technologies)

Emulsion PCR Sequencing by 
ligation (SBL)

fluorescent short 
linkers 3

75 bp (paired-end 
sequencing avail-

able)
>0.06 Fastq (Phred 

+33)
Long run-

time
Low error 

rate

www.applied-
biosystems. 

com

454 (Roche) Emulsion PCR Pyrosequencing 
(seq-by-synthesis)

incorporation of nor
mal nucleotides 0.7 700 bp 1 SFF, fasta, 

fastq

High error 
rate in ho-
mopolymer

Long read www.454.com

SMAT (Pacific 
Bio)

N/A (single 
molecule)

Single Mol-
ecule Real Time 

(SMRT™)

incorporation of 
fluorescent nucleo-

tides
0.3-0.5 

5,000 bp average; 
maximum read 
length ~22,000 

bases
16 Fastq (Phred 

+33)

No PCR 
longest 
reads

High error www.paci-
ficbio.com

Ion Torrent 
(Life 
Technology)

N/A Proton detection 
(seq-by-synthesis)

measuring pH 
change 1

400 bp (bidirec-
tional sequencing 

available)
1 Fastq (Phred 

+33) new Short read www.iontor-
rent. com

Table 1: Summary of the major next-generation sequencing platform.
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assignment of OTUs) and Statistical analysis, (alpha and beta-
diversity analysis, multidimensional scaling and analysis of similarities 
(ANOSIM), hypothesis testing etc). A flow diagram for the analysis 
of metagenomic data is shown in Figure 1 and Table 2 represents 
metagenomics tools available for Microbial Ecology Studies.

Third-generation sequencing 

Third-generation sequencing (SMRT sequencing) is based on the 

sequencing by synthesis approach and allows the detection of single 
molecules, but also enables real-time sequencing. The biggest advantage 
is that it allows 20,000 reads or more, with average read lengths of 5 
kilobases. Moreover, it can also directly detect epigenetic modifications 
such as 4-methylctosine (mC), 5-mC and 6-methyladenine [42]. 

Application of NGS in microbial ecology

Analysis of microbial community composition and its function is a 

 
Figure 1: Flow diagram for the analysis of Metagenomics data.

Metagenomics tools website
General Software package
STAMP http://kiwi.cs.dal.ca/Software/STAMP
CD-HIT-OUT http://weizhong-lab.ucsd.edu/cd-hit-otu/
GAAS http://sourceforge.net/projects/gaas/
Megan http://www-ab.informatik.unituebingen.de/software/megan/ welcome.html
MetaPhlAn http://huttenhower.sph.harvard.edu/metaphlan
MetaSim http://www-ab.informatik.uni-tuebingen.de/software/metasim
Mocat http://vm-lux.embl.de/~kultima/MOCAT/index.htm
Livermore Metagenomics Analysis Toolkit https://computation-rnd.llnl.gov/lmat
Straine http://www.hsls.pitt.edu/obrc/index.php?page=URL1221230034
Metagenome assembly
Velvet http://www.ebi.ac.uk/~zerbino/velvet/
Celera http://www.cbcb.umd.edu/research/assembly.shtml#software
Metasim http://ab.inf.uni-tuebingen.de/software/metasim/welcome.html #Download 
Euler http://nbcr.sdsc.edu/euler/ JAZZ 
Mapping to reference genome 
Bowtie http://bowtie-bio.sourceforge.net/index.shtml
BWA http://bio-bwa.sourceforge.net/
MAPLE: http://www.genome.jp/maple-bin/mapleSubmit.cgi?aType=sDirect
Quality analysis 
FastQC http://www.bioinformatics.babraham.ac.uk/projects/download.html#fastqc
Prinseq http://edwards.sdsu.edu/cgi-bin/prinseq/prinseq.cgi
Gene calling
Genemark. hmm http://exon.gatech.edu/GeneMark/metagenome/Prediction/

http://www-ab.informatik.unituebingen.de/software/megan/
http://www.ebi.ac.uk/%7Ezerbino/velvet/
http://www.cbcb.umd.edu/research/assembly.shtml#software
http://ab.inf.uni-tuebingen.de/software/
http://nbcr.sdsc.edu/euler/
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major objective in modern microbial ecology studies. NGS has already 
been applied in such studies in diverse ecosystem such as caves, forests, 
hot springs, deserts etc [43-47]. A pyrosequencing based approach 
revealed that the soil stratification and resource availability can impact 
the taxonomic and functional diversity of bacterial communities [48]. 
NGS based studies have proved that the agriculture management system 
can significantly affect the microbial diversity [49,50]. Chhabra et al. 
[51] identified genes and operons responsible for mineral phosphate 
solubilization in the barley rhizosphere using pyrosequencing. A NGS 
based study of soil bacterial communities showed that the conversion 
of primary Amazonian forest to pasture increases bacterial alpha-
diversity, but decreases beta diversity resulting in the homogenization 
of communities across space. This homogenization is driven by the 
loss of forest soil bacteria with restricted ranges (endemics) and results 
in a net loss of diversity [52]. Analysis using 227 million Illumina 
shotgun sequences from forest soil and 246 million from deforested 
soils revealed that bacterial taxonomic and functional adaptations 
at the bacterial community level is due to an increase in nutrient 
availability from slash and burn clearing of Amazon forest [53]. 
Analysis of 62081 pyrosequencing reads from 10 soil samples revealed 
that bacterial diversity and soil physicochemical properties did not 
show consistent changes along the elevation gradients in southwestern 

highlands of Saudi Arabia [54]. An NGS study carried out in temperate 
deciduous forest of Northeast Ohio, USA found that the vernal pool 
microbial communities may rely on their metabolic plasticity for 
growth and survival during limited resources [55]. Analysis of NGS 
reads shown that microbial functional activity increased throughout 
decomposition in spring, summer and winter, while it decreased 
in autumn in a Midwest temperate forest in Morris Bean Reserve of 
Greene County, Ohio, USA [56]. Pyrosequencing of V3-V4 regions 
described the bacterioplankton communities in a coastal Antarctic 
lake which is under long-term environmental change [57]. Fierer et 
al. [47] used Illumina shotgun sequencing in different ecosystem and 
found that desert microbial communities had high relative abundance 
of genes associated with osmoregulation and dormancy, whereas genes 
linked with nutrient cycling and catabolism of plant-derived organic 
compounds was less. This study also revealed that abiotic factors are 
more important in harboring the desert microbial communities. 
Another shotgun study detected identification of genes related to phytic 
acid utilization [58]. Analysis of total of 1,294,216 raw 16S rRNAV6 
sequences revealed that Actinobacteria, Acidobacteria, Nitrospirae, 
and Verrucomicrobia were abundant in nutrient-rich inner mangrove 
sediments, while Proteobacteria and Deferribacterias were high in 
outer mangrove sediments [59]. Based on pyrosequencing of the V2-

Microbial diversity Analysis 
MLST http://www. mlst.net) http://www.mlst.net/
MOTHUR http://www.mothur.org/
EstimateS http://viceroy.eeb.uconn.edu/EstimateS/
QIIME http://qiime.org/install/virtual_box.html
PHACCS http://phaccs.sourceforge.net/
Binning 
TETRA http://www.megx.net/tetra/index.html
Phylopathia http://cbcsrv.watson.ibm.com/phylopythia.html
MEGAN http://ab.inf.uni-tuebingen.de/software/megan/
CARMA http://www.cebitec.uni-bielefeld.de/brf/carma/carma.html
Phymm http://www.cbcb.umd.edu/software/phymm/
Functional Annotation
MEX (Motif Extraction) http://adios.tau.ac.il/SPMatch/
RAMMCAP http://weizhong-lab.ucsd.edu/rammcap/cgi-bin/rammcap.cgi
Analysis of quantitative metagenomics data.
FANTOM: http://www.sysbio.se/Fantom/
Comparitive Metagenomics
MEGAN http://metagenomics.anl.gov/
MG-RAST http://metagenomics.anl.gov
Camera http://camera.calit2.net/
Shotgun FunctionalizeR http://shotgun.math.chalmers.se/
MetaStats http://metastats.cbcb.umd.edu/detection.html
UniFrac http://bmf.colorado.edu/unifrac/
Galaxy https://main.g2.bx.psu.edu/u/aun1/w/metagenomic-analysis
MetaMine http://www.megx.net/metamine/
MetaLook http://www.megx.net/metalook/index.php
IMG/M http://img.jgi.doe.gov/cgi-bin/m/main.cgi
Online tools for NGS analysis 
Parallel Meta http://www.computationalbioenergy.org/parallel-meta.html
SOrt-ITEMS http://metagenomics.atc.tcs.com/binning/SOrt-ITEMS/
PANGEA http://www.ohloh.net/p/pangea-plus
Genohub: https://genohub.com/bioinformatics/17/metagenomic-analysis
Additional Metagenome analysis links
EBI Metagenomics: https://www.ebi.ac.uk/metagenomics
MetaPhlAn: http://huttenhower.sph.harvard.edu/metaphlan
Amphora Net http://pitgroup.org/amphoranet

Table 2: Metagenomics tools available for microbial ecology studies

http://www
http://shotgun.math.chalmers.se/
http://metastats.cbcb.umd.edu/detection.html
http://bmf.colorado.edu/unifrac/
https://main.g2.bx.psu.edu/u/aun1/w/metagenomic-analysis
http://www.megx.net/metalook/index.php
http://img.jgi.doe.gov/cgi-bin/m/main.cgi
http://huttenhower.sph.harvard.edu/metaphlan
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V3 16S rRNA gene regions, Nacke et al. [60] found that soil bacterial 
community composition and diversity of the six analyzed management 
types showed significant differences between the land use patterns in 
grassland and forest ecosystems and more over bacterial community 
structure was largely driven by tree species and soil pH. 

NGS technologies are improving day by day with more accuracy 
and longer sequence reads which are applied in many microbial ecology 
studies. Due to the continuous decrease in NGS cost, a huge number of 
environmental samples has been sequenced to solve research problems 
in microbial ecology. This paper will be helpful in understanding 
the basics of next generation sequencing as well as for designing 
new metagenomics projects. Future research with the help of NGS 
technologies will further unzip the unseen microbial diversity and its 
function useful in solving ecological problems.
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