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Abstract
The accumulation of amyloid peptides 40 and 42 in senile plaques is one of the hallmark lesions of Alzheimer 

Disease (AD). Great efforts are currently made to design molecules able to target these lesions in brain, both for 
diagnostic and therapeutic aims. Recent studies showed that curcumin has high affinity for the amyloid deposits. 
Curcumin is a fluorescent molecule with wide pharmaceutical activities, including potent anti-oxidant, anti-inflammatory, 
and anti-carcinogenic properties. Still, its low solubility limits its clinical and preclinical use. The use of controlled 
stoichiometric ratios between curcumin and host molecules like Methyl-β-cyclodextrin, para-sulphonato-calix(4)arene 
and para-sulphonato-calix(6)arene allowed the solubilisation of curcumin and the formation of stable nanocarriers. 
Within the nanocarriers, curcumin was available at their surfaces, being able to interact with the environment. They 
showed high affinity for the amyloid deposits, strongly labeling not only the senile plaques but also the diffuse deposits 
of Alzheimer Disease brains. Their biocompatibility was proved on several cell lines. Moreover, they were shown to 
interact with the Aβ peptide, reducing its aggregation and preventing its toxicity.
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Introduction
Alzheimer Disease (AD) is one of the most common forms of 

dementia, currently affecting more than 26 million people worldwide. 
The two pathological features characterizing AD are the intraneuronal 
accumulation of tau protein (neurofibrillary tangles) and the 
extracellular aggregation of the Amyloid beta peptide, (Aβ), (senile 
plaques). Their detection in post-mortem tissue is still indispensable 
for the diagnosis [1]. The Aβ peptide, the main component of senile 
plaques, is considered to be the driving actor in the progression of 
Alzheimer Disease. According to the amyloid cascade hypothesis [2,3], 
the accumulation of Aβ peptide in the brain is the initial event in the 
sucession of reactions that lead to cortical dysfunction. Aβ plaques are 
present in moderate to frequent numbers in the cortical grey matter 
of AD patients, years before the onset of dementia. The possibility of 
efficiently target Aβ pathology in the brain is an important strategy 
for developing solutions for early diagnosis. Still, the development of 
biocompatible probes with selective affinity for the amyloid plaques is 
a challenge. 

Several studies showed the potential of curcumin in the treatment 
of AD. Curcumin not only impedes the aggregation of the amyloid 
peptide but is also able to disaggregate the already formed fibrils, 
according to in vitro studies [4-7]. Curcumin, as well as curcumin 
derivatives, already proved their potential for the diagnosis of AD, 
being able to bind to the amyloid deposits in vitro, in vivo or on post-
mortem tissue [8-13]. Moreover, curcumin is known to have numerous 
other protective and curative properties: anti-oxidant [14-19], anti-
inflammatory [20-22], and anti-cancerous [23-27], confirming its 
potential bio-compatibility. 

Despite such encouraging reports, the study of curcuminoids is 
severely limited by their exceedingly low bioavailability, due to their 
poor solubility and instability in aqueous solutions. Thus, curcuminoids 
are often prepared in dimethyl sulfoxide (DMSO) or methanol, and 

this has raised questions about their clinical efficacy. As the need for 
suitable probes for targetting Aβ aggregates in brain at early stages of 
AD is becoming imperative, efforts have been made to improve the 
solubility of these compounds [28]. 

Nanoparticle-based delivery has the potential of rendering 
hydrophobic agents, such as curcumin, dispersible in aqueous media. 
Liposomes and polymeric nanoparticles have been widely used as 
delivery systems [29-33]. An alternative to increasing the water 
solubility of active principles is the complexation with macromolecules. 
Cyclodextrins [34] and calix(n)arenes [35] are the most studied 
classes of macrocyclic host-compounds in supramolecular chemistry 
[36]. The cyclodextrins (α-, β-, γ-cyclodextrins) and their derivatives 
(2-O-methyl β-CD hydroxypropyl-β-CD and hydroxypropyl-γ-CD) 
were already proved to complex curcumin [37-43], improving its 
solubility by about 100 times. Para-sulphonato-calix(4)arene was also 
recently shown to be able to stabilize curcumin in aqueous solutions. 
The improved bio-activity of curcumin-cyclodextrin complexes was 
confirmed by several studies [37-40,42]. Two recent studies reported 
on the therapeutic effect of curcumin-cyclodextrin formulation in vivo, 
in AD mice models [43,44]. Still, up to now, the possibility to solubilize 
curcumin with the aid of macromolecules without impeding its ability 

Journal of
Nanomedicine & NanotechnologyJo

ur
na

l o
f N

an
omedicine & Nanotechnology 

ISSN: 2157-7439



Citation: Ramdani L, Bourboulou R, Belkouch M, Jebors S, Tauran Y, et al. (2015) Multifunctional Curcumin-Nanocarriers Based on Host-Guest 
Interaction sfor Alzheimer Disease Diagnostic. J Nanomed Nanotechnol 6: 270. doi:10.4172/2157-7439.1000270

Page 2 of 7

Volume 6 • Issue 2 • 1000270J Nanomed Nanotechnol
ISSN: 2157-7439 JNMNT, an open access journal

to target the amyloid peptide and the amyloid deposits, for potential 
application in the early diagnosis of AD has not been evaluated. 

Here we report a new stealth and efficient solubilisation of curcumin 
using the para-sulphonato-calix(4)arene (SC4), the para-sulphonato-
calix(6)arene (SC6) and Methyl β-cyclodextrin. These nanoparticles 
were able to strongly label various amyloid aggregates in AD brains 
proving their potential as trackers of AD pathology. 

Experimental
Materials

Curcumin and Methyl β-cyclodextrin (MβCD) were obtained from 
SIGMA and were used as received. The para-sulphonato-calix(4)arene 
(SC4) and the para-sulphonato-calix(6)arene (SC6) were synthesized 
according to the method of Coleman et al, by direct sulphonation of 
calix(n)arene [45]. 

Curcumin solubilisation

Curcumin was solubilized in ethanol at a concentration of 3 mM. A 
volume of 5ml of macromolecules in water (at 300 µM concentration) 
was added, drop by drop, to 500 µl of curcumin solution, under 
continuous stirring. Thus, a final molar ratio of 1:1 between curcumin 
and the macromolecules was obtained. The formation of a colloidal 
phase is instantaneous. Stirring was allowed for 2h, without a cap, to 
completely evaporate ethanol. The so obtained complexes: MβCD-
curcumin (MβCD-Curc), SC4-curcumin (SC4-Curc) and SC6-
curcumin (SC6-Curc) were kept at 4°C for 12 h, on a rotating wheel. 
The eventual curcumin precipitate was eliminated by centrifugation at 
10000 rpm for 15 min. The loaded quantity of curcumin within the 
inclusion complexes was further estimated spectrofluorimetrically in 
50% EtOH and was found to be of 20 µg/ml for all the complexes. The 
colloids were further stocked at 4°C until use. 

Molecular docking studies

The 3D molecular structures of curcumin and of the three inclusion 
complexes were obtained from the Cambridge database. The docking 
was performed with AutoDock Vina software and analyzed by PYMOL 
of the Scripps Research Institute. The receptor (MβCD, SC4 or SC6) and 
the ligand (curcumin) were built up independently and the inclusion 
complex model was determined by energy minimization. 

Characterization of the complexes

The size of the supramolecular structures was estimated by 
dynamic light scattering, using a Malvern Nanosizer (particle sizer 
and ζ-potential analyser), with a 625 nm laser beam. The intensity 
autocorrelation functions of the light scattered at a fixed angle of 173° 
gave the size and the polydispersity indices. Transmission electron 
microscopy was employed to analyse the morphology of the complexes. 
Volumes of 1 µl of each colloid were deposited on formvar-coated 
copper TEM grids. The morphology of samples was observed under 
JEOL-1210 transmission electron microscope (JEOL, Tokyo, Japan) 
operating at 60 kV.

The monodispersity of the supramolecular structures and the 
stability in time were evaluated by means of flow cytometry, using a 
Gallios® cytometer (Beckman Coulter), at room temperature.

Alzheimer disease cases

AD patients enrolled in a brain donation program of the Brain 
Bank “GIE NeuroCEB” run by a consortium of Patients Associations 

(including France Alzheimer Association) were employed for this 
study. The consent for the research utilization was signed by the 
patient himself, or the next of kin, in accordance with the French 
Bioethical Laws. The corpse was transported to the mortuary of a 
University Hospital belonging to the Neuro CEB network at the 
time of death. The brain was removed; one hemisphere was fixed in 
buffered 4% formaldehyde for the neuropathological diagnosis of AD; 
the other was immediately sliced. Samples from the superior temporal 
gyrus (Brodmann area 22) were mounted on a cork piece, dipped in 
isopentane cooled by liquid nitrogen and kept in a deep freezer at 
−80°C until use. The present study has been approved by the ad hoc 
committee of the Brain Bank.

Diagnosis

Formalin-fixed 5 µm thick sections, from multiple areas of the 
brain, including hippocampus and isocortical Brodmann area 22, 
were used for the diagnosis. The diagnosis of AD was confirmed by 
immunostaining with anti-Aβ antibody (6F3D clone; Dako, Trappes 
France) and anti-tau antibody (polyclonal rabbit anti-tau; Dako; 
Trappes code number A 0024). The diagnosis criteria of the NIA-
Reagan Institute were used [46]. 

Affinity of curcumin complexes for the amyloid deposits

Sections from the temporal isocortex (superior temporal gyrus) 
of three AD subjects (Braak neurofibrillary stage VI, Thal phase 5), 
containing numerous amyloid deposits and neurofibrillary tangles 
were used for the study. Post-mortem frozen 10 µm thick sections were 
prepared with the aid of a Leica cryostat. The samples were hydrated for 
5 min with Phosphate Buffer Saline (PBS) and then incubated 2 h with 200 
µl of the curcumin-macromolecules solution at 1 µg/ml. Subsequently, 
the samples were gently washed in PBS and mounted with a medium 
minimizing fading of the fluorescence (Dako Fluorescence Mounting 
Medium). In order to confirm the positive staining of amyloid deposits 
by curcumin-macromolecules complexes, Aβ immunohistochemistry 
was also performed before incubation with curcumin. After acetone 
fixation and PBS washing, the sections were incubated for 4h in 200 
µl solution of 6F/3D antibody (Dako), at 1/200 dilution. The samples 
were washed 3 times with PBS and incubated for other 2 h with the 
secondary antibody bearing the chromogen red Cy3. Following the 
immunostaining, the samples were further washed in PBS before 
incubation with curcumin-macromolecule complexes, as previously 
described. The colocalization was examined using 488 nm (to detect 
the staining of curcumin) and 543 nm (for Cy3 detection) excitation 
wavelengths, the signals being collected between 540-550 nm and 565-
580 nm, respectively. Colocalization was indicated by a yellow color on 
the “merged” images.

Cytotoxicity assay

To evaluate the cytotoxicity of curcumin complexes, control SH-
SY5Y cells (human neuroblastoma cells), HEK cells (from Human 
Embryonic Kidney), hAPPsw SH-SY5Y and hAPPsw HEK cells - cells 
stably overexpressing the human APP gene (hAPP) bearing the Swedish 
mutation causing familial Alzheimer disease - were used. The cells were 
seeded in 96 multiwell culture plates and grown in DMEM-F12 media 
containing 10% of Fetal Calf Serum (FCS) until approximately 80% 
confluence. The growth medium was then discarded and the cells were 
incubated for 24 h in a culture medium enriched in curcumin complexes 
(final concentration of curcumin 200 ng/ml). The cytotoxicity was 
assessed by means of MTT test, based on the conversion of tetrazolium 
salt into a purple formazan product [47]. 
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Rescuing effect

Control SH-SY5Y cells were used for determining the capacity 
of curcumin-macromolecule complexes to rescue the toxicity of Aβ 
42. Cells were seeded in 96 multiwell culture plates and grown until 
approximately 80% confluence. At this point, the growth medium was 
replaced by a new medium to which a freshly prepared solution of Aβ 42 
(purchased from GenicBio) in PBS (100 ng/ml) was added. The culture 
medium was also supplemented or not with curcumin-macromolecule 
complexes, with a final concentration of curcumin of 200 ng/ml. The 
cell viability was assessed by an MTT test, the experiments being 
carried six times in triplicates.

Aggregation assay

A solution of 5 µM Aβ 42 in water was freshly prepared and allowed 
to spontaneously aggregate at 20°C. A volume/volume solution of 
curcumin-macromolecule complexes (5 µg/ml final concentration in 
curcumin), or PBS (used as control) was added to the Aβ 42 solution. 
The effect of curcumin on the aggregation was measured by Thioflavin T 
assay [48], monitoring the fluorescence between 410-470 nm excitation 
and 475-495 nm emission wavelengths. 	

Results
Structural characterization of curcumin-macromolecule 
complexes

The MβCD macromolecule is a 7 membered α,1-4glucose cyclic 
molecule, while SC4 and SC6 are macrocycles composed of respectively 
4 and 6 phenolic rings, functionalized at the upper rim by sulphonate 
groups, favoring numerous electrostatic interactions, besides the 
hydrophobic aromatic interactions. The structural characteristics of 
curcumin and of its host macromolecules, as well as the model inclusion 
complexes are presented in Figure 1. In the complex with MβCD, one 
of the phenolic rings of the curcumin is engaged in the macrocycle, 
stabilized by hydrogen bonds with the hydroxyl groups. According to 
the molecular docking, SC4 is able to complex 2 curcumin molecules. 
One of the molecules, cinctured the macrocycle, two phenolic rings 
being involved in π-π interactions with the host. Another curcumin 

was partly encapsulated by π-π stacking with one of the phenol groups, 
and by hydrogen bonds with the suphonate groups of the host; the 
other moiety of the molecule is free of constraints. In a similar way 
SC6 formed a complex with 2 curcumin molecules, one at the upper 
rim of the calix(6)arene, the other one at the lower rim. Both guest 
molecules are stabilized by H-bonds interactions with the hydroxyl and 
sulphonate groups of the host and by π-π stacking interactions of two 
phenolic rings with the calix(6)arene macrocycle. Given the flexibility 
of the curcumin, but also of the macromolecules, other structures for 
the complexes are possible. 

Characterization of curcumin-macromolecule complexes 

The size of the curcumin-macromolecule complexes was estimated 
by dynamic light scattering and was found to be of 45 nm for MβCD-
curcumin and around 70 nm for SC4/SC6-curcumin (Table 1). 
The morphology of the curcumin-macromolecule complexes was 
determined by transmission electron microscopy. Monodispersed 
nanoparticles of a diameter between 45 and 75 nm were characteristic 
for the three complexes (Figure 2a). Adapted flow cytometry analysis 
at different time intervals proved that the size of the nanoparticles 
diminished slightly in time (several nm), but they remain monodisperse 
for more than 15 days (Figure 2b). 

Figure 1: Molecular structure of curcumin, of the three macromolecules used for 
curcumin solubilization and of the inclusion complexes formed by curcumin with 
the host-molecules; grey color represents carbon atoms, red color represents 
the oxygen atoms and the yellow color represents the sulfur atoms. 

 

Figure 2: Characterization of curcumin-macromolecule complexes: a) 
Morphological analysis by TEM revealed a monodisperse population of 
nanoparticles with several tens of nanometers in size; b) stability in time of 
curcumin-macromolecule complexes, as revealed by flow cytometry; A. U. = 
Arbitrary Units.

Complex Size average (nm) Polydispersity Index
Curcumin-MβCD 45 0,33 
Curcumin-SC4 68 0,42
Curcumin-SC6 75 0,31

Table 1: Characterization of curcumin-macromolecule complexes by dynamic light 
scattering; average of three runs, rounded to the nearest number.
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Post-mortem AD brain tissue 

The affinity of curcumin nanocarriers for the amyloid deposits 
was tested on post-mortem brain samples of three AD patients. The 
amyloid pathology of the cases chosen for the study was confirmed 
by immunohistochemistry with an antibody frequently used for the 
detection of the Aβ deposits, the 6F3D antibody. The cases presented 
numerous amyloid deposits, from diffuse deposits (an early stage of the 
senile plaque) to mature senile plaques (Duyckaerts 1990) (Figure 3). 

Affinity of curcumin-nanocarriers for amyloid deposits in 
human AD brains

Numerous amyloid deposits were specifically labeled by the three 
curcumin nanocarriers. The specificity was confirmed by the double 
labeling with 6F3D antibody (directed against the Aβ deposits). The 
senile plaques were strongly labeled by the curcumin nanocarriers 
(Figure 4). The nanocarriers also labeled 65% of the diffuse deposits. 

The macromolecules alone were not fluorescent and showed no 
labeling of the deposits (results not shown).

Biocompatibility of curcumin-complexes as tracers for the 
amyloid deposits

The cytotoxicity of MβCD, SC4 and of SC6 and of the curcumin-
nanocarriers formed with these three macromolecules was evaluated by 
MTT test on human neuroblastoma SH-SY5Y and embryonic kidney 
HEK cell, wild type and APP (stably overexpressing hAPP bearing the 
Swedish mutation). Neither the macromolecules alone (results not 
shown) nor the three curcumin-nanocarriers showed a toxic effect 
(Figure 5). 

Effect on Aβ toxicity and aggregation

The toxic effect of Aβ 42 peptide in the presence of curcumin-
nanocarriers was evaluated on SH-SY5Y wild type neurblastoma cells, 
over 24 h of incubation. The three nanocarriers showed a significant 
rescuing effect: the viability of cells submitted to Aβ42 was increased 
from 76% to 93% by MβCD-Curc, 97% by SC4-Curc and 96% by SC6-
Curc (Figure 6a). The link between the rescuing effect of curcumin-
nanocarriers and the ability of curcumin to impede peptide aggregation 
was evaluated with a thioflavin T assay. The three curcumin-
nanocarriers showed a strong inhibitory effect on peptide fibrillization. 
A relative estimation of the inhibition efficiency showed a reduction 
of the fibrillar content to: 62% by MβCD-Curc, 39% by SC4-Curc and 
56% by SC6-Curc (Figure 6b). 

Discussion
A new delivery system, based on the use of macromolecules for 

solubilizing curcumin, is presented in this study. Hydrosoluble calix(4)
arenes, SC4 and SC6, bearing 4 or 6 aromatic cycles functionalized at the 
upper rim with sulphonate groups, and MβCD efficiently solubilized 
curcumin. The curcumin-macromulecule complexes were organized 

 

Figure 3: Micrographs of a post-mortem superior temporal cortex sample of an 
AD patient revealed by 6F3D anti-Aβ antibody: numerous senile plaques and 
diffuse deposits are present in the cortical area.

 

Figure 4: Affinity of curcumin-nanocarriers for amyloid deposits; curcumin 
labeling in green, 6F3D labeling (specific for Aβ deposits) in red and the 
colocalization of the labeling, on the merged image, in yellow; the insert shows 
the labeling of the diffuse deposits); scale bar =50 µm.

 

Figure 5: Effect of curcumin-nanocarriers on the cellular viability of several cell 
lines after 24 h of incubation: wild type lines of SH-SY5Y human neuroblastoma 
and KEK embryonic kidney and their APP mutated lines (stably expressing 
swap mutation). 
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into nanoparticles of tens of nanometers in diameter, stable in time, 
for at least 15 days. Within the generated nanocarriers, the ability of 
curcumin to interact with the amyloid deposits in post-mortem brain 
samples of AD patients was conserved. Both mature senile plaques 
and diffuse deposits–the kinetic precursor of the senile plaques-were 
labeled by the three curcumin-nanocarriers. The strong affinity for 
the mature Aβ deposits and especially for the early aggregates points 
them as potential radiotracers or MRI markers for early diagnosis in 
AD. In view of this, several in vitro tests proved the biocompatibility 
of these curcumin nanocarriers: they were shown to be non-toxic on 
different cells lines, to significantly rescue the toxicity induced by Aβ 
42 aggregates and to limit the fibrillization of Aβ peptide. 

Alzheimers disease is a frequent form of dementia, Aβ plaques 
and NFTs playing a major role in the development of this disease. 
Significant evidences suggest that progressive accumulation of Aβ in 
limbic and association cortices precedes the neurodegeneration of 
tau and the cascade of biochemical and cellular modifications in the 
brain. The development of strategies to detect Aβ pathological changes 
in vivo, in the early stages of AD is essential. Currently, no imaging 
techniques capable of early detection of AD are available in clinics. 
The PET tracer [11], Pittsburg Compound (PIB) is employed for 
clinical diagnosis since 2004, after the first human study [49]. Other 
18F-amyloid tracers have been developed since, but their specificity is 
questioned. Moreover, these tracers have low affinity for the diffuse 
deposits, the diagnosis indicated being negative in the absence of senile 
plaques. Magnetic Resonance Imaging (MRI) is also a powerful tool 
for clinical and biological imaging able to map structure and function 
with excellent spatial resolution. Numerous amyloid scintigraphic 
and magnetic probes have been or are being developed. Still, few are 
fulfilling all the requirements in order to be employed for clinical 
diagnosis: bioavailable, non-toxic and target specific. 

Numerous studies confirmed the potential of curcumin in the 
treatment of AD [7,44,50-54] and lately, in early diagnosis [5,10,55-
58]. The lack of complete success of curcumin essays resides in its 
low bioavailability, related to its insolubility in aqueous solutions. 
Hugh efforts were made to improve its solubility, from chemistry to 
nanotechnology, either by functionalizing the basic molecule with ionic 
functions or by conjugation of small molecules (particularly amino 
acids [59]) or by designing nanoparticles based systems, like liposomes 
[30,60-62], solid lipid nanoparticles [31,33,63-65], or polymeric 
nanoparticles [32,44,62,66-70]. These types of nano-formulations are 

generally based on the inner encapsulation of curcumin. Formulations 
designed to solubilize curcumin by conserving its ability to bind Aβ 
peptide or to target the amyloid deposits are few [30,60] and they 
concern liposomes incorporating phopsphatidyl serine covalently 
linked with curcumin through the polar head.

Solubilization of curcumin by means of inclusion complexes 
represents a convenient alternative for increasing curcumin 
bioavailability concomitantly with preserving it available for targeting 
and interaction with the environment. Among the various existing drug 
carriers [35,71,72], cyclodextrins have been almost exclusively used for 
the solubilization of curcumin [37,41-43]. The stoichiometric ratio 
between cyclodextrins and curcumin was reported to be 2:1 [37,73], 
suggesting that each of the two phenolic rings of curcumin would be 
sheltered by the lipophilic cavity of two cyclodextrins. By controlling 
the molar concentration of each component, a complex ratio of 1:1 
cyclodextrin/curcumin can be obtained [38,41]. Such curcumin-
cyclodextrin complexes behave like a lipophilic supramolecule, 
being able to self-assemble into vesicular nanostructures in which 
curcumin is believed to be confined at the interior vesicle [40]. The 
potential of cyclodextrin-solubilized curcuminoids in the treatment 
of AD was already evaluated by the group of Quitschke et al.: by 
using 2-hydroxypropyl-gcyclodextrin, they showed that cyclodextrin-
solubilized curcuminoids are able to lower the amyloid plaque load in 
AD transgenic mice [43]. The study focused mainly on the metabolism 
of curcumin and curcuminoids. But could such formulations preserve 
the targeting ability of curcumin? This question was not examined 
before, to our knowledge. 

In this study, we have proved that MβCD-curcumin complex could 
self-assemble into nanoparticles in a way that retains, at least partially, 
the curcumin at the surface of the nanoparticles. Likewise curcumin-
para-sulphonato-calix(4)arene and curcumin-para-sulphonato-
calix(6)arene complexes self-assembled into nanoparticular systems, 
with curcumin at the surface of the particles. Several approaches 
have confirmed the availability of curcumin at the surface of these 
nanoparticles: the nanoparticles prevented Aβ42 induced toxicity; they 
were able to interact with the Aβ peptide, reducing its aggregation and 
they showed high affinity for the amyloid deposits, strongly labeling 
not only the senile plaques but also the diffuse deposits of Aβ on brain 
tissue of post-mortem AD patients. 

The potential of such curcumin-nanocarriers in early diagnosis as 
well as in the treatment of AD is to be considered as few reports deal 
with both therapeutic and preventive approach. The use of not only 
non-toxic, but also pro-active amyloid tracers may offer the possibility 
of an early diagnosis combined with a subsequent treatment effect, by 
preventing the toxicity due to Aβ aggregates, limiting the progression 
of the aggregation and thus, the evolution of the disease. 
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